20 datasets found
  1. Global Country Information 2023

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nidula Elgiriyewithana; Nidula Elgiriyewithana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.
  2. Large Scale International Boundaries

    • catalog.data.gov
    • geodata.state.gov
    • +1more
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the

  3. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    1999 - 2000
    Area covered
    Africa, South Africa, Zambia, Botswana, Lesotho, Namibia, Zimbabwe, Malawi
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  4. d

    Land Cover Trends Dataset, 2000-2011

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Land Cover Trends Dataset, 2000-2011 [Dataset]. https://catalog.data.gov/dataset/land-cover-trends-dataset-2000-2011
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 km2 in the Northern Basin and Range Ecoregion to a high of 78,782 km2 in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it is collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format. U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 square km in the Northern Basin and Range Ecoregion to a high of 78,782 square km in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it’s collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format.

  5. w

    Afrobarometer Survey 2002-2004, Merged Round 2 Data (16 Countries) -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 2002-2004, Merged Round 2 Data (16 Countries) - Botswana, Cabo Verde, Ghana, Kenya, Lesotho, Mali, Mozambique, Malawi, Namibia, Nigeria, Senegal, Tanzania, Uganda, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/886
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    2002 - 2004
    Area covered
    Mali, Cabo Verde, Nigeria, Senegal, Mozambique, Ghana, Botswana, Lesotho, Namibia, Malawi
    Description

    Abstract

    The Afrobarometer project assesses attitudes and public opinion on democracy, markets, and civil society in several sub-Saharan African.This dataset was compiled from the studies in Round 2 of the Afrobarometer, conducted from 2002-2004 in 16 countries, including Botswana, Cape Verde, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Senegal, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe

    Geographic coverage

    The Round 2 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Republic of Cabo Verde, Senegal, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Certain questions in the questionnaires for the Afrobarometer 2 survey addressed country-specific issues, but many of the same questions were asked across surveys. Citizens of the 16 countries were asked questions about their economic and social situations, and their opinions were elicited on recent political and economic changes within their country.

  6. d

    Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories,...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories, Geographic & Location Intelligence, Regular Updates [Dataset]. https://datarade.ai/data-products/global-point-of-interest-poi-data-230m-locations-5000-c-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset provided by
    Xverum LLC
    Authors
    Xverum
    Area covered
    French Polynesia, Mauritania, Antarctica, Northern Mariana Islands, Costa Rica, Guatemala, Andorra, Kyrgyzstan, Vietnam, Bahamas
    Description

    Xverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.

    With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.

    🔥 Key Features:

    Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.

    Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.

    Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.

    Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.

    Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.

    🏆Primary Use Cases:

    Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.

    Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.

    Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.

    Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.

    💡 Why Choose Xverum’s POI Data?

    • 230M+ Verified POI Records – One of the largest & most detailed location datasets available.
    • Global Coverage – POI data from 249+ countries, covering all major business sectors.
    • Regular Updates – Ensuring accurate tracking of business openings & closures.
    • Comprehensive Geographic & Business Data – Coordinates, addresses, categories, and more.
    • Bulk Dataset Delivery – S3 Bucket & cloud storage delivery for full dataset access.
    • 100% Compliant – Ethically sourced, privacy-compliant data.

    Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!

  7. d

    Global Location Data | 230M+ Business & POI Locations | Geographic & Mapping...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Location Data | 230M+ Business & POI Locations | Geographic & Mapping Insights | Bulk Delivery [Dataset]. https://datarade.ai/data-products/global-location-data-230m-business-poi-locations-geogr-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset provided by
    Xverum LLC
    Authors
    Xverum
    Area covered
    United States
    Description

    Xverum’s Location Data is a highly structured dataset of 230M+ verified locations, covering businesses, landmarks, and points of interest (POI) across 5000 industry categories. With accurate geographic coordinates, business metadata, and mapping attributes, our dataset is optimized for GIS applications, real estate analysis, market research, and urban planning.

    With continuous discovery of new locations and regular updates, Xverum ensures that your location intelligence solutions have the most current data on business openings, closures, and POI movements. Delivered in bulk via S3 Bucket or cloud storage, our dataset integrates seamlessly into mapping, navigation, and geographic analysis platforms.

    🔥 Key Features:

    Comprehensive Location Coverage: ✅ 230M+ locations worldwide, spanning 5000 business categories. ✅ Includes retail stores, corporate offices, landmarks, service providers & more.

    Geographic & Mapping Data: ✅ Latitude & longitude coordinates for precise location tracking. ✅ Country, state, city, and postal code classifications. ✅ Business status tracking – Open, temporarily closed, permanently closed.

    Continuous Discovery & Regular Updates: ✅ New locations added frequently to ensure fresh data. ✅ Updated business metadata, reflecting new openings, closures & status changes.

    Detailed Business & Address Metadata: ✅ Company name, category, & subcategories for industry segmentation. ✅ Business contact details, including phone number & website (if available). ✅ Operating hours for businesses with scheduling data.

    Optimized for Mapping & Location Intelligence: ✅ Supports GIS, real estate analysis & smart city planning. ✅ Enhances navigation & mapping solutions with structured geographic data. ✅ Helps businesses optimize site selection & expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered via S3 Bucket or cloud storage for full dataset access. ✅ Available in a structured format (.json) for easy integration.

    🏆 Primary Use Cases:

    Location Intelligence & Mapping: 🔹 Power GIS platforms & digital maps with structured geographic data. 🔹 Integrate accurate location insights into real estate, logistics & market analysis.

    Retail Expansion & Business Planning: 🔹 Identify high-traffic locations & competitors for strategic site selection. 🔹 Analyze brand distribution & presence across different industries & regions.

    Market Research & Competitive Analysis: 🔹 Track openings, closures & business density to assess industry trends. 🔹 Benchmark competitors based on location data & geographic presence.

    Smart City & Infrastructure Planning: 🔹 Optimize city development projects with accurate POI & business location data. 🔹 Support public & commercial zoning strategies with real-world business insights.

    💡 Why Choose Xverum’s Location Data? - 230M+ Verified Locations – One of the largest & most structured location datasets available. - Global Coverage – Spanning 249+ countries, with diverse business & industry data. - Regular Updates – Continuous discovery & refresh cycles ensure data accuracy. - Comprehensive Geographic & Business Metadata – Coordinates, addresses, industry categories & more. - Bulk Dataset Delivery (NO API) – Seamless access via S3 Bucket or cloud storage. - 100% Compliant – Ethically sourced & legally compliant.

    Access Xverum’s 230M+ Location Data for mapping, geographic analysis & business intelligence. Request a free sample or contact us to customize your dataset today!

  8. d

    Market Research Data | Global Map data | Geographic data | Address and Zip...

    • datarade.ai
    .csv
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Market Research Data | Global Map data | Geographic data | Address and Zip Code Database | Geocoded [Dataset]. https://datarade.ai/data-products/geopostcodes-market-research-data-map-data-geographic-dat-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Oct 19, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Saint Barthélemy, South Sudan, Papua New Guinea, Christmas Island, Monaco, Slovenia, Sierra Leone, Tokelau, Poland, Korea (Democratic People's Republic of)
    Description

    A global self-hosted Market Research dataset containing all administrative divisions, cities, addresses, and zip codes for 247 countries. All geospatial data is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.

    Use cases for the Global Zip Code Database (Market Research data)

    • Address capture and validation

    • Map and visualization

    • Reporting and Business Intelligence (BI)

    • Master Data Mangement

    • Logistics and Supply Chain Management

    • Sales and Marketing

    Data export methodology

    Our map data packages are offered in variable formats, including .csv. All geographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Fully and accurately geocoded

    • Administrative areas with a level range of 0-4

    • Multi-language support including address names in local and foreign languages

    • Comprehensive city definitions across countries

    For additional insights, you can combine the map data with:

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Times

    Why do companies choose our Market Research databases

    • Enterprise-grade service

    • Reduce integration time and cost by 30%

    • Weekly updates for the highest quality

    Note: Custom geographic data packages are available. Please submit a request via the above contact button for more details.

  9. Water bodies - GLC-SHARE

    • data.amerigeoss.org
    pdf, png, wms, zip
    Updated Jun 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2024). Water bodies - GLC-SHARE [Dataset]. https://data.amerigeoss.org/dataset/78e90025-684f-4d0e-ae3f-a2ed61496997
    Explore at:
    png, pdf, wms, zipAvailable download formats
    Dataset updated
    Jun 11, 2024
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    This dataset is a raster format GeoTIFF representing the percentage of density in each pixel of water bodies. It is part of the Global Land Cover-SHARE (GLC-SHARE) database at the global level created by FAO, Land and Water Division in partnership and with contribution from various partners and institutions.

    The water bodies dataset includes any geographic area covered for most of the year by inland water bodies. In some cases the water can be frozen for part of the year (less than 10 months). Because the geographic extent of water bodies can change, boundaries must be set consistently with class 11 according to the dominant situation during the year and/or across multiple years.

    Supplemental Information:

    GLC-SHARE provides a set of major thematic land cover layers resulting by a combination of "best available" high resolution national, regional and/or sub-national land cover databases with the weighted average land cover information derived from large-scale available datasets. The database is produced with a resolution of 30 arc second (1km). The approach implemented is based on the utilization of the Land Cover Classification System (LCCS) and SEEA (System of Environmental-Economic Accounting) legend systems for the harmonization of the various global, regional and national land cover legends. The major benefit of the GLC-SHARE product is its capacity to preserve the existing and available high resolution land cover information at the regional and country level obtained by spatial and multi-temporal source data, integrating them with the best synthesis of global datasets.

    Preliminary validation campaign was performed using 1000 random points statistically distributed over each land cover classes. The database is distributed in the following eleven layers, in raster format (GeoTIFF ), whose pixel values represent the percentage of density coverage in each pixel of the land cover type. The dominant layer, representing the value of the dominant land cover type, is also available along with a legend in LYR ESRI format. Finally, information on each layer's source is retrievable in sources layer, by joining the raster values with an Excel table. 01-Artificial Surfaces 02-CropLand 03-Grassland 04-Tree Covered Area 05-Shrubs Covered Area 06-Herbaceous vegetation, aquatic or regularly flooded 07-Mangroves 08-Sparse vegetation 09-BareSoil 10-Snow and glaciers 11-Waterbodies

    Contact points:

    Metadata Contact: FAO GIS Manager

    Resource Contact: Land and Water Officer FAO-NRL

    Data lineage:

    The land cover database is validated only using the high resolution remote sensing imagery present in Google Earth.

    Resource constraints:

    Reproduction and dissemination of material contained in GLC-SHARE Beta-Release v1.0 or educational, research, personal or other noncommercial purposes are authorized without any prior written permission from the copyright holders, provided FAO are fully acknowledged. No part of GLC-SHARE Beta-Release v1.0 data may be downloaded, stored in a retrieval system or transmitted by any means for resale or other commercial purposes without written permission of the copyright holders. If any information or resources on this site are attributed to a site or source external to FAO permission to use must be sought with FAO.

    The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. FAO declines all responsibility for errors or deficiencies in the database or software or in the documentation accompanying it, for program maintenance and upgrading as well as for any damage that may arise from them. FAO also declines any responsibility for updating the data and assumes no responsibility for errors and omissions in the data provided. Users are, however, kindly asked to report any errors or deficiencies in this product to FAO.

    Online resources:

    Download: GLC-Share - Water bodies

    Download: GLC-Share - Sources

    Download: GLC-Share report

  10. Afrobarometer Survey 2020 - Gabon

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Empirical Research in Political Economy (IREEP) (2022). Afrobarometer Survey 2020 - Gabon [Dataset]. https://microdata.worldbank.org/index.php/catalog/4746
    Explore at:
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    University of Cape Town (UCT, South Africa)
    Institute for Empirical Research in Political Economy (IREEP)
    Institute for Development Studies (IDS)
    Ghana Centre for Democratic Development (CDD)
    Michigan State University (MSU)
    Time period covered
    2020
    Area covered
    Gabon
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, and Round 7 (2016-2018) 34 countries. The survey covered 34 countries in Round 8 (2019-2021).

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Universe

    Citizens aged 18 years and above excluding those living in institutionalized buildings.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Gabon - Sample size: 1,200 - Sampling Frame: Recensement Général de la Population et des Logements (RGPL) de 2013 réalisée par la Direction Générale de la Statistique et des Etudes Economiques - Sample design: Representative, random, clustered, stratified, multi-stage area probability sample - Stratification: Province, Department, and urban-rural location - Stages: Primary sampling unit (PSU), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 8 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota to be achieved by alternating interviews between men and women; potential respondents (i.e. household members) of the appropriate gender are listed, then the computer chooses the individual random

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Round 8 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.

    The questionnaire consists of three parts: 1. Part 1 captures the steps for selecting households and respondents, and includes the introduction to the respondent and (pp.1-4). This section should be filled in by the Fieldworker. 2. Part 2 covers the core attitudinal and demographic questions that are asked by the Fieldworker and answered by the Respondent (Q1 – Q100). 3. Part 3 includes contextual questions about the setting and atmosphere of the interview, and collects information on the Fieldworker. This section is completed by the Fieldworker (Q101 – Q123).

    Response rate

    Outcome rates: - Contact rate: 99% - Cooperation rate: 92% - Refusal rate: 3% - Response rate: 91%

    Sampling error estimates

    +/- 3% at 95% confidence level

  11. w

    Research Database on Infrastructure Economic Performance 1980-2004 - Aruba,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +3more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Estache and Ana Goicoechea (2023). Research Database on Infrastructure Economic Performance 1980-2004 - Aruba, Afghanistan, Angola...and 190 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/1780
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Antonio Estache and Ana Goicoechea
    Time period covered
    1980 - 2004
    Area covered
    Angola
    Description

    Abstract

    Estache and Goicoechea present an infrastructure database that was assembled from multiple sources. Its main purposes are: (i) to provide a snapshot of the sector as of the end of 2004; and (ii) to facilitate quantitative analytical research on infrastructure sectors. The related working paper includes definitions, source information and the data available for 37 performance indicators that proxy access, affordability and quality of service (most recent data as of June 2005). Additionally, the database includes a snapshot of 15 reform indicators across infrastructure sectors.

    This is a first attempt, since the effort made in the World Development Report 1994, at generating a database on infrastructure sectors and it needs to be recognized as such. This database is not a state of the art output—this is being worked on by sector experts on a different time table. The effort has however generated a significant amount of new information. The database already provides enough information to launch a much more quantitative debate on the state of infrastructure. But much more is needed and by circulating this information at this stage, we hope to be able to generate feedback and fill the major knowledge gaps and inconsistencies we have identified.

    Geographic coverage

    The database covers the following countries: - Afghanistan - Albania - Algeria - American Samoa - Andorra - Angola - Antigua and Barbuda - Argentina - Armenia - Aruba - Australia - Austria - Azerbaijan - Bahamas, The - Bahrain - Bangladesh - Barbados - Belarus - Belgium - Belize - Benin - Bermuda - Bhutan - Bolivia - Bosnia and Herzegovina - Botswana - Brazil - Brunei - Bulgaria - Burkina Faso - Burundi - Cambodia - Cameroon - Canada - Cape Verde - Cayman Islands - Central African Republic - Chad - Channel Islands - Chile - China - Colombia - Comoros - Congo, Dem. Rep. - Congo, Rep. - Costa Rica - Cote d'Ivoire - Croatia - Cuba - Cyprus - Czech Republic - Denmark - Djibouti - Dominica - Dominican Republic - Ecuador - Egypt, Arab Rep. - El Salvador - Equatorial Guinea - Eritrea - Estonia - Ethiopia - Faeroe Islands - Fiji - Finland - France - French Polynesia - Gabon - Gambia, The - Georgia - Germany - Ghana - Greece - Greenland - Grenada - Guam - Guatemala - Guinea - Guinea-Bissau - Guyana - Haiti - Honduras - Hong Kong, China - Hungary - Iceland - India - Indonesia - Iran, Islamic Rep. - Iraq - Ireland - Isle of Man - Israel - Italy - Jamaica - Japan - Jordan - Kazakhstan - Kenya - Kiribati - Korea, Dem. Rep. - Korea, Rep. - Kuwait - Kyrgyz Republic - Lao PDR - Latvia - Lebanon - Lesotho - Liberia - Libya - Liechtenstein - Lithuania - Luxembourg - Macao, China - Macedonia, FYR - Madagascar - Malawi - Malaysia - Maldives - Mali - Malta - Marshall Islands - Mauritania - Mauritius - Mayotte - Mexico - Micronesia, Fed. Sts. - Moldova - Monaco - Mongolia - Morocco - Mozambique - Myanmar - Namibia - Nepal - Netherlands - Netherlands Antilles - New Caledonia - New Zealand - Nicaragua - Niger - Nigeria - Northern Mariana Islands - Norway - Oman - Pakistan - Palau - Panama - Papua New Guinea - Paraguay - Peru - Philippines - Poland - Portugal - Puerto Rico - Qatar - Romania - Russian Federation - Rwanda - Samoa - San Marino - Sao Tome and Principe - Saudi Arabia - Senegal - Seychelles - Sierra Leone - Singapore - Slovak Republic - Slovenia - Solomon Islands - Somalia - South Africa - Spain - Sri Lanka - St. Kitts and Nevis - St. Lucia - St. Vincent and the Grenadines - Sudan - Suriname - Swaziland - Sweden - Switzerland - Syrian Arab Republic - Tajikistan - Tanzania - Thailand - Togo - Tonga - Trinidad and Tobago - Tunisia - Turkey - Turkmenistan - Uganda - Ukraine - United Arab Emirates - United Kingdom - United States - Uruguay - Uzbekistan - Vanuatu - Venezuela, RB - Vietnam - Virgin Islands (U.S.) - West Bank and Gaza - Yemen, Rep. - Yugoslavia, FR (Serbia/Montenegro) - Zambia - Zimbabwe

    Kind of data

    Aggregate data [agg]

    Mode of data collection

    Face-to-face [f2f]

    Response rate

    Sector Performance Indicators

    Energy The energy sector is relatively well covered by the database, at least in terms of providing a relatively recent snapshot for the main policy areas. The best covered area is access where data are available for 2000 for about 61% of the 207 countries included in the database. The technical quality indicator is available for 60% of the countries, and at least one of the perceived quality indicators is available for 40% of the countries. Price information is available for about 41% of the countries, distinguishing between residential and non residential.

    Water & Sanitation Because the sector is part of the Millennium Development Goals (MDGs), it enjoys a lot of effort on data generation in terms of the access rates. The WHO is the main engine behind this effort in collaboration with the multilateral and bilateral aid agencies. The coverage is actually quite high -some national, urban and rural information is available for 75 to 85% of the countries- but there are significant concerns among the research community about the fact that access rates have been measured without much consideration to the quality of access level. The data on technical quality are only available for 27% of the countries. There are data on perceived quality for roughly 39% of the countries but it cannot be used to qualify the information provided by the raw access rates (i.e. access 3 hours a day is not equivalent to access 24 hours a day).

    Information and Communication Technology The ICT sector is probably the best covered among the infrastructure sub-sectors to a large extent thanks to the fact that the International Telecommunications Union (ITU) has taken on the responsibility to collect the data. ITU covers a wide spectrum of activity under the communications heading and its coverage ranges from 85 to 99% for all national access indicators. The information on prices needed to make assessments of affordability is also quite extensive since it covers roughly 85 to 95% of the 207 countries. With respect to quality, the coverage of technical indicators is over 88% while the information on perceived quality is only available for roughly 40% of the countries.

    Transport The transport sector is possibly the least well covered in terms of the service orientation of infrastructure indicators. Regarding access, network density is the closest approximation to access to the service and is covered at a rate close to 90% for roads but only at a rate of 50% for rail. The relevant data on prices only cover about 30% of the sample for railways. Some type of technical quality information is available for 86% of the countries. Quality perception is only available for about 40% of the countries.

    Institutional Reform Indicators

    Electricity The data on electricity policy reform were collected from the following sources: ABS Electricity Deregulation Report (2004), AEI-Brookings telecommunications and electricity regulation database (2003), Bacon (1999), Estache and Gassner (2004), Estache, Trujillo, and Tovar de la Fe (2004), Global Regulatory Network Program (2004), Henisz et al. (2003), International Porwer Finance Review (2003-04), International Power and Utilities Finance Review (2004-05), Kikukawa (2004), Wallsten et al. (2004), World Bank Caribbean Infrastructure Assessment (2004), World Bank Global Energy Sector Reform in Developing Countries (1999), World Bank staff, and country regulators. The coverage for the three types of institutional indicators is quite good for the electricity sector. For regulatory institutions and private participation in generation and distribution, the coverage is about 80% of the 207 counties. It is somewhat lower on the market structure with only 58%.

    Water & Sanitation The data on water policy reform were collected from the following sources: ABS Water and Waste Utilities of the World (2004), Asian Developing Bank (2000), Bayliss (2002), Benoit (2004), Budds and McGranahan (2003), Hall, Bayliss, and Lobina (2002), Hall and Lobina (2002), Hall, Lobina, and De La Mote (2002), Halpern (2002), Lobina (2001), World Bank Caribbean Infrastructure Assessment (2004), World Bank Sector Note on Water Supply and Sanitation for Infrastructure in EAP (2004), and World Bank staff. The coverage for institutional reforms in W&S is not as exhaustive as for the other utilities. Information on the regulatory institutions responsible for large utilities is available for about 67% of the countries. Ownership data are available for about 70% of the countries. There is no information on the market structure good enough to be reported here at this stage. In most countries small scale operators are important private actors but there is no systematic record of their existence. Most of the information available on their role and importance is only anecdotal.

    Information and Communication Technology The report Trends in Telecommunications Reform from ITU (revised by World Bank staff) is the main source of information for this sector. The information on institutional reforms in the sector is however not as exhaustive as it is for its sector performance indicators. While the coverage on the regulatory institutions is 100%, it varies between 76 and 90% of the countries for more of the other indicators. Quite surprisingly also, in contrast to what is available for other sectors, it proved difficult to obtain data on the timing of reforms and of the creation of the regulatory agencies.

    Transport Information on transport institutions and reforms is not systematically generated by any agency. Even though more data are needed to have a more comprenhensive picture of the transport sector, it was possible to collect data on railways policy reform from Janes World Railways (2003-04) and complement it with

  12. a

    US Federal Government Basemap

    • hub.arcgis.com
    Updated Mar 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    suggsjm_state_hiu (2018). US Federal Government Basemap [Dataset]. https://hub.arcgis.com/maps/338c566f66ca407d9bfd1353ebd1fe63
    Explore at:
    Dataset updated
    Mar 29, 2018
    Dataset authored and provided by
    suggsjm_state_hiu
    Area covered
    United States,
    Description

    Contains:World HillshadeWorld Street Map (with Relief) - Base LayerLarge Scale International Boundaries (v11.3)World Street Map (with Relief) - LabelsDoS Country Labels DoS Country LabelsCountry (admin 0) labels that have been vetted for compliance with foreign policy and legal requirements. These labels are part of the US Federal Government Basemap, which contains the borders and place names that have been vetted for compliance with foreign policy and legal requirements.Source: DoS Country Labels - Overview (arcgis.com)Large Scale International BoundariesVersion 11.3Release Date: December 19, 2023DownloadFor more information on the LSIB click here: https://geodata.state.gov/ A direct link to the data is available here: https://data.geodata.state.gov/LSIB.zipAn ISO-compliant version of the LSIB metadata (in ISO 19139 format) is here: https://geodata.state.gov/geonetwork/srv/eng/catalog.search#/metadata/3bdb81a0-c1b9-439a-a0b1-85dac30c59b2 Direct inquiries to internationalboundaries@state.govOverviewThe Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.3 (published 19 December 2023). The 11.3 release contains updates to boundary lines and data refinements enabling reuse of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.National Geospatial Data AssetThis dataset is a National Geospatial Data Asset managed by the Department of State on behalf of the Federal Geographic Data Committee's International Boundaries Theme.DetailsSources for these data include treaties, relevant maps, and data from boundary commissions and national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process involves analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.Attribute StructureThe dataset uses thefollowing attributes:Attribute NameCC1COUNTRY1CC2COUNTRY2RANKSTATUSLABELNOTES These attributes are logically linked:Linked AttributesCC1COUNTRY1CC2COUNTRY2RANKSTATUS These attributes have external sources:Attribute NameExternal Data SourceCC1GENCCOUNTRY1DoS ListsCC2GENCCOUNTRY2DoS ListsThe eight attributes listed above describe the boundary lines contained within the LSIB dataset in both a human and machine-readable fashion. Other attributes in the release include "FID", "Shape", and "Shape_Leng" are components of the shapefile format and do not form an intrinsic part of the LSIB."CC1" and "CC2" fields are machine readable fields which contain political entity codes. These codes are derived from the Geopolitical Entities, Names, and Codes Standard (GENC) Edition 3 Update 18. The dataset uses the GENC two-character codes. The code ‘Q2’, which is not in GENC, denotes a line in the LSIB representing a boundary associated with an area not contained within the GENC standard.The "COUNTRY1" and "COUNTRY2" fields contain human-readable text corresponding to the name of the political entity. These names are names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the list of Independent States in the World and the list of Dependencies and Areas of Special Sovereignty maintained by the Department of State. To ensure the greatest compatibility, names are presented without diacritics and certain names are rendered using commonly accepted cartographic abbreviations. Names for lines associated with the code ‘Q2’ are descriptive and are not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS are names of independent states. Other names are those associated with dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.The following fields are an intrinsic part of the LSIB dataset and do not rely on external sources:Attribute NameMandatoryContains NullsRANKYesNoSTATUSYesNoLABELNoYesNOTESNoYesNeither the "RANK" nor "STATUS" field contains null values; the "LABEL" and "NOTES" fields do.The "RANK" field is a numeric, machine-readable expression of the "STATUS" field. Collectively, these fields encode the views of the United States Government on the political status of the boundary line.Attribute NameValueRANK123STATUSInternational BoundaryOther Line of International Separation Special Line A value of "1" in the "RANK" field corresponds to an "International Boundary" value in the "STATUS" field. Values of "2" and "3" correspond to "Other Line of International Separation" and "Special Line", respectively.The "LABEL" field contains required text necessarily to describe the line segment. The "LABEL" field is used when the line segment is displayed on maps or other forms of cartographic visualizations. This includes most interactive products. The requirement to incorporate the contents of the "LABEL" field on these products is scale dependent. If a label is legible at the scale of a given static product a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field is not a line labeling field but does contain the preferred description for the three LSIB line types when lines are incorporated into a map legend. Using the "CC1", "CC2", or "RANK" fields for labeling purposes is prohibited.The "NOTES" field contains an explanation of any applicable special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, any limitations regarding the purpose of the lines, or the original source of the line. Use of the "NOTES" field for labeling purposes is prohibited.External Data SourcesGeopolitical Entities, Names, and Codes Registry: https://nsgreg.nga.mil/GENC-overview.jspU.S. Department of State List of Independent States in the World: https://www.state.gov/independent-states-in-the-world/U.S. Department of State List of Dependencies and Areas of Special Sovereignty: https://www.state.gov/dependencies-and-areas-of-special-sovereignty/The source for the U.S.—Canada international boundary (NGDAID97) is the International Boundary Commission: https://www.internationalboundarycommission.org/en/maps-coordinates/coordinates.phpThe source for the “International Boundary between the United States of America and the United States of Mexico” (NGDAID82) is the International Boundary and Water Commission: https://catalog.data.gov/dataset?q=usibwcCartographic UsageCartographic usage of the LSIB requires a visual differentiation between the three categories of boundaries. Specifically, this differentiation must be between:- International Boundaries (Rank 1);- Other Lines of International Separation (Rank 2); and- Special Lines (Rank 3).Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary.Additional cartographic information can be found in Guidance Bulletins (https://hiu.state.gov/data/cartographic_guidance_bulletins/) published by the Office of the Geographer and Global Issues.ContactDirect inquiries to internationalboundaries@state.gov.CreditsThe lines in the LSIB dataset are the product of decades of collaboration between geographers at the Department of State and the National Geospatial-Intelligence Agency with contributions from the Central Intelligence Agency and the UK Defence Geographic Centre.Attribution is welcome: U.S. Department of State, Office of the Geographer and Global Issues.Changes from Prior ReleaseThe 11.3 release is the third update in the version 11 series.This version of the LSIB contains changes and accuracy refinements for the following line segments. These changes reflect improvements in spatial accuracy derived from newly available source materials, an ongoing review process, or the publication of new treaties or agreements. Notable changes to lines include:• AFGHANISTAN / IRAN• ALBANIA / GREECE• ALBANIA / KOSOVO• ALBANIA/MONTENEGRO• ALBANIA / NORTH MACEDONIA• ALGERIA / MOROCCO• ARGENTINA / BOLIVIA• ARGENTINA / CHILE• BELARUS / POLAND• BOLIVIA / PARAGUAY• BRAZIL / GUYANA• BRAZIL / VENEZUELA• BRAZIL / French Guiana (FR.)• BRAZIL / SURINAME• CAMBODIA / LAOS• CAMBODIA / VIETNAM• CAMEROON / CHAD• CAMEROON / NIGERIA• CHINA / INDIA• CHINA / NORTH KOREA• CHINA / Aksai Chin• COLOMBIA / VENEZUELA• CONGO, DEM. REP. OF THE / UGANDA• CZECHIA / GERMANY• EGYPT / LIBYA• ESTONIA / RUSSIA• French Guiana (FR.) / SURINAME• GREECE / NORTH MACEDONIA• GUYANA / VENEZUELA• INDIA / Aksai Chin• KAZAKHSTAN / RUSSIA• KOSOVO / MONTENEGRO• KOSOVO / SERBIA• LAOS / VIETNAM• LATVIA / LITHUANIA• MEXICO / UNITED STATES• MONTENEGRO / SERBIA• MOROCCO / SPAIN• POLAND / RUSSIA• ROMANIA / UKRAINEVersions 11.0 and 11.1 were updates to boundary lines. Like this version, they also contained topology fixes, land boundary terminus refinements, and tripoint adjustments. Version 11.2 corrected a few errors in the attribute data and ensured that CC1 and CC2 attributes are in alignment with an updated version of the Geopolitical Entities, Names, and Codes (GENC) Standard, specifically Edition 3 Update 17.LayersLarge_Scale_International_BoundariesTerms of

  13. e

    Caribbean LME - Belize, Costa Rica, Cuba, Dominican Republic, Honduras,...

    • b2find.eudat.eu
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Caribbean LME - Belize, Costa Rica, Cuba, Dominican Republic, Honduras, Mexico, Panama - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/5ccd3126-ea05-5334-be59-f960d170bfd3
    Explore at:
    Dataset updated
    Oct 21, 2023
    Area covered
    Mexico, Costa Rica, Panama, Dominican Republic, Caribbean, Belize, Cuba
    Description

    The boundaries of the CLME Project encompass the Caribbean Sea LME and the North Brazil Shelf LME and include 26 countries and 19 dependent territories of France, the Netherlands, United Kingdom and United States. These countries range from among the largest (e.g. Brazil, USA) to among the smallest (e.g. Barbados, St. Kitts and Nevis), and from the most developed to the least developed. Consequently, there is an extremely wide range in their capacities for living marine resource management. Throughout the region, the majority of the population inhabits the coastal zone, and there is a very high dependence on marine resources for livelihoods from fishing and tourism, particularly among the small island developing states (SIDS), of which there are 16. In addition 18 of the 19 dependent territories are SIDS. The region is characterized by a diversity of national and regional governance and institution arrangements, stemming primarily from the governance structures established by the countries that colonized the region. Physical and geographical characteristics The Caribbean Sea is a semi-enclosed ocean basin bounded by the Lesser Antilles to the east and southeast, the Greater Antilles (Cuba, Hispaniola, and Puerto Rico) to the north, and by Central America to the west and southwest. It is located within the tropics and covers 1,943,000 km2. The Wider Caribbean, which includes the Gulf of Mexico, the Caribbean Sea and the adjacent parts of the Atlantic Ocean encompasses an area of 2,515,900 km2 and is the second largest sea in the world. (Bjorn 1997, Sheppard 2000, IUCN 2003). It is noted for its many islands, including the Leeward and Windward Islands situated on its eastern boundary, Cuba, Hispaniola, Puerto Rico, Jamaica and the Cayman Islands. There is little seasonal variation in surface water temperatures. Temperatures range from 25.5 °C in the winter to 28 °C in the summer. The adjacent region of the North Brazil Shelf Large Marine Ecosystem is characterized by its tropical climate. It extends in the Atlantic Ocean from the boundary with the Caribbean Sea to the Paraiba River estuary in Brazil. The LME owes its unity to the North Brazil Current, which flows parallel to Brazil’s coast and is an extension of the South Equatorial Current coming from the East. The LME is characterized by a wide shelf, and features macrotides and upwellings along the shelf edge. It has moderately diverse food webs and high production due in part to the high levels of nutrients coming from the Amazon and Tocantins rivers, as well as from the smaller rivers of the Amapa and western Para coastal plains. The Caribbean Sea averages depths of 2,200 m, with the deepest part, known as the Cayman trench, plunging to 7,100 m. The drainage basin of the Wider Caribbean covers 7.5 million km2 and encompasses eight major river systems, from the Mississippi to the Orinoco (Hinrichsen 1998). The region is highly susceptible to natural disasters. Most of the islands and the Central American countries lie within the hurricane belt and are vulnerable to frequent damage from strong winds and storm surges. Recent major natural disasters include hurricanes Gilbert (1988) and Hugo (1989), the eruptions of the Soufriere Hills Volcano in Montserrat (1997) and the Piparo Mud Volcano in Trinidad (1997), as well as drought conditions in Cuba and Jamaica during 1997-98, attributed to the El Niño phenomenon. More recently Hurricane Georges devastated large areas, as did Hurricanes Mitch and Ivan (2004). In the case of Ivan, damages were extensive to both natural and infrastructural assets, with estimates reported by Grenada of US$815 million, the Cayman Islands US$1.85 billion, Jamaica US$360 million and Cuba US$1.2 billion. Although the intense category 5 hurricanes Katrina and Rita did not make landfall in the Caribbean, in 2005, Hurricane Wilma devastated the Yucatan peninsula and has the distinction of being the most intense hurricane on record in the Atlantic. Ecological status The marine and coastal systems of the region support a complex interaction of distinct ecosystems, with an enormous biodiversity, and are among the most productive in the world. As mentioned above, several of the world's largest and most productive estuaries (Amazon and Orinoco) are found in the region. The coast of Belize has the second largest barrier reef in the world extending some 250 kilometers and covering approximately 22,800 km2. The region's coastal zone is significant, encompassing entire countries for many of the island nations. Fish and Fisheries A wide range of fisheries activities (industrial, artisanal and recreational) coexist in the CLME Project area. Overall landings from the main fisheries rose from around 177,000 tonnes in 1975 to a peak of 1,000,000 tonnes in 1995 before declining to around 800,000 tonnes in 2005. The total landings from all fisheries shows the decline over the last decade. In the reef fish fisheries, declines in overall landings are rarely observed; instead, there are shifts in species composition. For instance a decline in the percentage of snapper and grouper in the catch, the larger, long-lived predators, is an indication of over exploitation; although not in the Caribbean Large Marine Ecosystem, this pattern was evident in Bermuda between 1969 and 1975 where the percentage of snappers and groupers declined from 67% to 38% and also on the north coast of Jamaica between 1981 and 1990 where the 11 decline was from 26% to 12%. According to an FAO assessment, some 35% of the region's stocks are overexploited. The fisheries of the Caribbean Region are based upon a diverse array of resources. The fisheries of greatest importance are for offshore pelagics, reef fishes, lobster, conch, shrimps, continental shelf demersal fishes, deep slope and bank fishes and coastal pelagics. There is a variety of less important fisheries such as for marine mammals, sea turtles, sea urchins, and seaweeds. The management and governance of these fisheries varies greatly and is fragmented with incomplete or absent frameworks at the sub-regional and regional levels and weak vertical and horizontal linkages. The fishery types vary widely in exploitation; vessel and gear used, and approach to their development and management. However, most coastal resources are considered to be overexploited and there is increasing evidence that pelagic predator biomass has been severely depleted (FAO 1998, Mahon 2002, Myers and Worm 2003). Recreational fishing, an important but undocumented contributor to tourism economies, is an important link between shared resource management and tourism, as the preferred species are mainly predatory migratory pelagics (e.g. billfishes, wahoo, and dolphinfish). This aspect of shared resource management has received minimal attention in most Caribbean countries (Mahon and McConney 2004). Pollution and Ecosystem Health Pollution, mainly from land-based sources, and degradation of nearshore habitats are among the major threats to the region’s living marine resources. The CLME is showing signs of environmental stress, particularly in the shallow waters of coral reef systems and in semi-enclosed bays. Coastal water quality has been declining throughout the region, due to a number of factors including rapid population growth in coastal areas, poor land-use practices and increasing discharges of untreated municipal and industrial waste and agricultural pesticides and fertilizers. Throughout the region, pollution by a range of substances and sources including sewage, nutrients, sediments, petroleum hydrocarbons and heavy metals is of increasing concern. The GIWA studies identified a number of pollution hotspots in the region, mainly around the coastal cities. Pollution has significant transboundary implications, as a result of the high potential for transport across EEZs in wind and ocean currents. Not only could this cause degradation of living marine resources in places far from the source, but it could also pose a threat to human and animal health by the introduction of pathogens. Pollution has been implicated in the increasing episodes of fish kills in the region, although this is not conclusive. Socio-economic situation The physical expanse of the region's coastal zone is significant, encompassing the entire land mass for many of the islands. Additionally, for countries such as the island nations of the Caribbean, Panama and Costa Rica, marine territory represents more than 50% of the total area under national sovereignty. In general, the region’s coastal zone is where the majority of it human population live and where most economic activities also take place. In 2001, the population of the Caribbean Sea region (not including the United States) was around 102 million, of which it is estimated that 59% is in Colombia and Venezuela, 27% is in Cuba and Hispaniola, 10% is in Central America and Mexico, and 3% is in the Small Islands. Taking into account the population growth rate for each country in the Caribbean Sea region, it is expected that the number of inhabitants would be close to 123 million in 2020. When the population for Guyana, Suriname, French Guiana, and the regions of Brazil and Florida that comprise the CLME Project are included, this number is expected to increase to approximately 130 million. Almost all the countries in the region are among the world’s premier tourism destinations, providing an important source of income for their economies. The population in the Caribbean Sea region swells during the tourist season by the influx of millions of tourists, mostly in beach destinations. In 2004, for example, the Mexican state of Quintana Roo received 10.8 million tourists with over 35% of those arriving by cruise ships. There is a high dependence on living marine resources for food, employment and income from fishing and tourism, particularly among the SIDS. Although its contribution to GDP is relatively low, marine

  14. Mangrove forests

    • data.globalforestwatch.org
    • opendata.rcmrd.org
    • +1more
    Updated Mar 24, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Forest Watch (2015). Mangrove forests [Dataset]. https://data.globalforestwatch.org/documents/d9bad342fe4846ecb83fc72b0e1fffe7
    Explore at:
    Dataset updated
    Mar 24, 2015
    Dataset authored and provided by
    Global Forest Watchhttp://www.globalforestwatch.org/
    Area covered
    Description

    To improve scientific understanding of the extent and distribution of mangrove forests of the world the status and distribution of global mangroves were mapped using recently available Global Land Survey (GLS) data and the Landsat archive.The project interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Results were validated using existing GIS data and the published literature to map ‘true mangroves’.The total area of mangroves in the year 2000 was 137,760 km2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world's mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generally confined to the tropical and subtropical regions and the largest percentage of mangroves is found between 5° N and 5° S latitude.The remaining area of mangrove forest in the world is less than previously thought; the estimate provided in this study is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations. This data set presents the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created

  15. v

    USA Land Cover GAP

    • anrgeodata.vermont.gov
    • a-public-data-collection-for-nepa-sandbox.hub.arcgis.com
    • +1more
    Updated Jul 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). USA Land Cover GAP [Dataset]. https://anrgeodata.vermont.gov/datasets/052f88c43cda4b638e399568b7482884
    Explore at:
    Dataset updated
    Jul 1, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    This layer contains detailed land cover data representing ecological systems. These data were developed by NatureServe and are "intended to represent recurring groups of biological communities that are found in similar physical environments and are influenced by similar dynamic ecological processes, such as fire or flooding. They are intended to provide a classification unit that is readily mappable, often from remote imagery, and readily identifiable by conservation and resource managers in the field." -- NatureServeFrom the USGS GAP Analysis Program Website: "National GAP Land Cover Data provide information on the distribution of native vegetation types, modified and introduced vegetation, developed areas, and agricultural areas of the United States. For all areas of the county except Hawaii, native vegetation areas are classified to the Ecological System types developed by NatureServe. Ecological Systems provide detailed information on the vegetative communities of an area that is not available in most other regional or national land cover products. This level of thematic detail makes possible the construction of wildlife habitat distribution models, and the construction of complicated hydrology and fire dynamics models, and many other applications. Information about land cover is a key component of effective conservation planning and the management of biological diversity as it is used to build predictive models of wildlife distribution and biodiversity across large geographic areas. When used in conjunction with protected areas data (PAD-US), land cover data can be used to identify habitat types that may be under-protected so management activities can be adjusted. These maps and data can be used to identify those places in the country with sufficient good quality habitat to support wildlife, a key step in developing sound conservation plans."Dataset SummaryThis layer contains data from the USGS CAP Land Cover dataset. These data include detailed vegetation and land use patterns for the continental United States. The dataset incorporates the Ecological System classification system developed by NatureServe to represent natural and semi-natural land cover. The 590 land use classes in the data set can be displayed at three levels of detail, from general (8 classes) to most detailed. The Land Cover Data Set can be used to identify those places in the country with sufficient good quality habitat to support wildlife, a key step in developing sound conservation plans.Additional resources:Ecological Systems of the United States, A Working Classification of the U.S. Terrestrial SystemsLandcover Data and Modeling from the USGS National Gap Analysis Program (GAP) | Land Cover Data PortalLink to source metadataWhat can you do with this layer?This layer has query, identify, and export image services available. The layer is restricted to an 24,000 x 24,000 pixel limit, which represents an area of nearly 450 miles on a side.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.

  16. w

    Afrobarometer Survey 1999-2000, Merged Round 1 Data (12 Countries) -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1999-2000, Merged Round 1 Data (12 Countries) - Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria, Tanzania, Uganda, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/885
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    1999 - 2001
    Area covered
    Uganda, Tanzania, Mali, Botswana, Nigeria, Lesotho, Namibia, Zimbabwe, Ghana, Malawi
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics.

    The 12 country datasetis a combined dataset for the 12 African countries surveyed during round 1 of the survey, conducted between 1999-2000 (Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria South Africa, Tanzania, Uganda, Zambia and Zimbabwe), plus data from the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    Geographic coverage

    The Round 1 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Lesotho, Malawi, Mali, Namibia, Nigeria, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Because Afrobarometer Round 1 emerged out of several different survey research efforts, survey instruments were not standardized across all countries, there are a number of features of the questionnaires that should be noted, as follows: • In most cases, the data set only includes those questions/variables that were asked in nine or more countries. Complete Round 1 data sets for each individual country have already been released, and are available from ICPSR or from the Afrobarometer website at www.afrobarometer.org. • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires. • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed. • Response options also varied on some questions, and where applicable, these differences are also noted.

  17. d

    Global Roads Open Access Data Set, Version 1 (gROADSv1).

    • datadiscoverystudio.org
    Updated Jul 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Global Roads Open Access Data Set, Version 1 (gROADSv1). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/bb6950268a3d4b378991f555c785b96d/html
    Explore at:
    Dataset updated
    Jul 1, 2018
    Description

    description: The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.; abstract: The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.

  18. Private Forest Wind Damage Assessment Spatial Database - May 2025

    • datasalsa.com
    shp
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture, Food and the Marine (2025). Private Forest Wind Damage Assessment Spatial Database - May 2025 [Dataset]. https://datasalsa.com/dataset/?catalogue=data.gov.ie&name=private-forest-wind-damage-assessment-spatial-database-may-2025
    Explore at:
    shpAvailable download formats
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Department of Agriculture, Food and the Marine
    Time period covered
    Jul 10, 2025
    Description

    Private Forest Wind Damage Assessment Spatial Database - May 2025. Published by Department of Agriculture, Food and the Marine. Available under the license Licence Not Specified (notspecified).Following Storm Darragh and Storm Éowyn during the winter of 2024/2025, and noting that many forests have been windblown around the country, Minister for Agriculture, Food and the Marine, Martin Heydon, and Minister of State for Forestry, Horticulture and Farm Safety, Michael Healy-Rae, invited key stakeholders to join department officials on a taskforce to ensure that storm-damaged forests were managed safely and appropriately. A Forestry Windblow Taskforce was set up to quantify forest damage and to identify approaches to facilitate the mobilisation of wind damaged timber.

    Part of the Taskforce’s work involved initiating a detailed mapping assessment using high-resolution satellite imagery to provide information at a local or forest stand level scale. The detailed assessment of windblow damage was undertaken using high resolution satellite imagery from SkySat, and supplemented with pre and post storm Sentinel-2 and PlanetScope satellite data. In addition, drone imagery was also acquired for a number of specific locations.

    The mapping exercise relied on the tasking of SkySat imagery during cloud-free weather conditions to acquire the necessary imagery data. The mapping was conducted largely between early February and the beginning of April 2025. The mapping effort focused on a target area of interest where the damage was deemed most likely to have occurred. These target areas were forests stands that were predominantly coniferous species and at least 15 years of age. These age and species criteria were used to filter both Coillte’s sub-compartment database and DAFM’s private forest dataset to confine the wind damage mapping exercise to the most relevant forests.

    The windblow mapping exercise utilised a range of available EO datasets of varying spatial and temporal resolution which included: SkySat: 75% (c. 0.50 m resolution), Sentinel-2/PlanetScope: 20% (c. 10 m resolution/c. 3 m resolution), and drone imagery: 5% ( c. 0.2 m resolution).

    The national estimate of private wind damage area (11,414 ha) as included in the private forest wind damage spatial database is within approximately +/- 500 hectares of the actual windblown private forest area. This uncertainty is due in part to the fact that for some parts of the country, SkySat satellite imagery has not yet been acquired. It is expected that there will be an ongoing refinement of the private forest windblow area estimate when new SkySat or other Earth Observation data becomes available over the coming months.

    As part of this mapping exercise, “older” windblown areas, i.e. windblown forest areas that are more than 4 years old, were also identified and mapped. It is estimated these damage forest areas represent between 750 and 1,000 hectares of the total national area estimate of private wind damaged forest.

    The area of wind damage in broadleaf stands may be greater than identified in the private forest wind damage database given the focus in the mapping exercise on coniferous species that were at least 15 years of age. This is also due in part to the fact that the identification of windblow in broadleaf stands is more challenging, particularly if the damage impacts individual trees.

    The output from the mapping assessment is an ESRI Shapefile polygon database of wind damaged, privately owned forest areas greater than or equal to 0.1 hectares. The Shapefile is provided in the Irish Transverse Mercator geographic coordinate system. The main attribute included the spatial database table is area in hectares for each wind damaged forest area delineated.

    These data are provisional in that they are a record of DAFM data holding in relation to private wind damaged forest at this time (May 2025). They are not published as legal definitions of the current actuality with regard to their geographic extent. They may contain errors and omissions and it should also be noted that the data cannot be taken as being absolutely current. Therefore they should be treated as indicative of the actual geographic situation. The Department of Agriculture, Food and the Marine will accept no liability for any loss or damage suffered by those using this data for any purpose whatsoever....

  19. a

    Private Forest Wind Damage Assessment Spatial Database - May 2025 - Dataset...

    • opendata.agriculture.gov.ie
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Private Forest Wind Damage Assessment Spatial Database - May 2025 - Dataset - DAFM Open Data [Dataset]. https://opendata.agriculture.gov.ie/dataset/private-forest-wind-damage-assessment-spatial-database-may-2025
    Explore at:
    Dataset updated
    May 16, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Following Storm Darragh and Storm Éowyn during the winter of 2024/2025, and noting that many forests have been windblown around the country, Minister for Agriculture, Food and the Marine, Martin Heydon, and Minister of State for Forestry, Horticulture and Farm Safety, Michael Healy-Rae, invited key stakeholders to join department officials on a taskforce to ensure that storm-damaged forests were managed safely and appropriately. A Forestry Windblow Taskforce was set up to quantify forest damage and to identify approaches to facilitate the mobilisation of wind damaged timber. Part of the Taskforce’s work involved initiating a detailed mapping assessment using high-resolution satellite imagery to provide information at a local or forest stand level scale. The detailed assessment of windblow damage was undertaken using high resolution satellite imagery from SkySat, and supplemented with pre and post storm Sentinel-2 and PlanetScope satellite data. In addition, drone imagery was also acquired for a number of specific locations. The mapping exercise relied on the tasking of SkySat imagery during cloud-free weather conditions to acquire the necessary imagery data. The mapping was conducted largely between early February and the beginning of April 2025. The mapping effort focused on a target area of interest where the damage was deemed most likely to have occurred. These target areas were forests stands that were predominantly coniferous species and at least 15 years of age. These age and species criteria were used to filter both Coillte’s sub-compartment database and DAFM’s private forest dataset to confine the wind damage mapping exercise to the most relevant forests. The windblow mapping exercise utilised a range of available EO datasets of varying spatial and temporal resolution which included: SkySat: 75% (c. 0.50 m resolution), Sentinel-2/PlanetScope: 20% (c. 10 m resolution/c. 3 m resolution), and drone imagery: 5% ( c. 0.2 m resolution). The national estimate of private wind damage area (11,414 ha) as included in the private forest wind damage spatial database is within approximately +/- 500 hectares of the actual windblown private forest area. This uncertainty is due in part to the fact that for some parts of the country, SkySat satellite imagery has not yet been acquired. It is expected that there will be an ongoing refinement of the private forest windblow area estimate when new SkySat or other Earth Observation data becomes available over the coming months. As part of this mapping exercise, “older” windblown areas, i.e. windblown forest areas that are more than 4 years old, were also identified and mapped. It is estimated these damage forest areas represent between 750 and 1,000 hectares of the total national area estimate of private wind damaged forest. The area of wind damage in broadleaf stands may be greater than identified in the private forest wind damage database given the focus in the mapping exercise on coniferous species that were at least 15 years of age. This is also due in part to the fact that the identification of windblow in broadleaf stands is more challenging, particularly if the damage impacts individual trees. The output from the mapping assessment is an ESRI Shapefile polygon database of wind damaged, privately owned forest areas greater than or equal to 0.1 hectares. The Shapefile is provided in the Irish Transverse Mercator geographic coordinate system. The main attribute included the spatial database table is area in hectares for each wind damaged forest area delineated. These data are provisional in that they are a record of DAFM data holding in relation to private wind damaged forest at this time (May 2025). They are not published as legal definitions of the current actuality with regard to their geographic extent. They may contain errors and omissions and it should also be noted that the data cannot be taken as being absolutely current. Therefore they should be treated as indicative of the actual geographic situation. The Department of Agriculture, Food and the Marine will accept no liability for any loss or damage suffered by those using this data for any purpose whatsoever.

  20. a

    Watershed Boundary HUC 12

    • new-york-opd-geographic-information-gateway-nysdos.hub.arcgis.com
    • opdgig.dos.ny.gov
    Updated Nov 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2022). Watershed Boundary HUC 12 [Dataset]. https://new-york-opd-geographic-information-gateway-nysdos.hub.arcgis.com/maps/NYSDOS::watershed-boundary-huc-12
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset authored and provided by
    New York State Department of State
    Area covered
    Description

    The United States is divided and sub-divided into successively smaller hydrologic units which are classified into four levels: regions, subregions, accounting units, and cataloging units. The hydrologic units are arranged or nested within each other, from the largest geographic area (regions) to the smallest geographic area (cataloging units). Each hydrologic unit is identified by a unique hydrologic unit code (HUC) consisting of two to eight digits based on the four levels of classification in the hydrologic unit system. The intent of defining Hydrologic Units (HU) within the Watershed Boundary Dataset is to establish a base-line drainage boundary framework, accounting for all land and surface areas. Hydrologic units are intended to be used as a tool for water-resource management and planning activities particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The WBD complements the National Hydrography Dataset (NHD) and supports numerous programmatic missions and activities including: watershed management, rehabilitation and enhancement, aquatic species conservation strategies, flood plain management and flood prevention, water-quality initiatives and programs, dam safety programs, fire assessment and management, resource inventory and assessment, water data analysis and water census. The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" "Standard" (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.View Dataset on the Gateway

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
Organization logo

Global Country Information 2023

Explore at:
csvAvailable download formats
Dataset updated
Jun 15, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Nidula Elgiriyewithana; Nidula Elgiriyewithana
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Description

This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

Key Features

  • Country: Name of the country.
  • Density (P/Km2): Population density measured in persons per square kilometer.
  • Abbreviation: Abbreviation or code representing the country.
  • Agricultural Land (%): Percentage of land area used for agricultural purposes.
  • Land Area (Km2): Total land area of the country in square kilometers.
  • Armed Forces Size: Size of the armed forces in the country.
  • Birth Rate: Number of births per 1,000 population per year.
  • Calling Code: International calling code for the country.
  • Capital/Major City: Name of the capital or major city.
  • CO2 Emissions: Carbon dioxide emissions in tons.
  • CPI: Consumer Price Index, a measure of inflation and purchasing power.
  • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
  • Currency_Code: Currency code used in the country.
  • Fertility Rate: Average number of children born to a woman during her lifetime.
  • Forested Area (%): Percentage of land area covered by forests.
  • Gasoline_Price: Price of gasoline per liter in local currency.
  • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
  • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
  • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
  • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
  • Largest City: Name of the country's largest city.
  • Life Expectancy: Average number of years a newborn is expected to live.
  • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
  • Minimum Wage: Minimum wage level in local currency.
  • Official Language: Official language(s) spoken in the country.
  • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
  • Physicians per Thousand: Number of physicians per thousand people.
  • Population: Total population of the country.
  • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
  • Tax Revenue (%): Tax revenue as a percentage of GDP.
  • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
  • Unemployment Rate: Percentage of the labor force that is unemployed.
  • Urban Population: Percentage of the population living in urban areas.
  • Latitude: Latitude coordinate of the country's location.
  • Longitude: Longitude coordinate of the country's location.

Potential Use Cases

  • Analyze population density and land area to study spatial distribution patterns.
  • Investigate the relationship between agricultural land and food security.
  • Examine carbon dioxide emissions and their impact on climate change.
  • Explore correlations between economic indicators such as GDP and various socio-economic factors.
  • Investigate educational enrollment rates and their implications for human capital development.
  • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
  • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
  • Investigate the role of taxation and its impact on economic development.
  • Explore urbanization trends and their social and environmental consequences.
Search
Clear search
Close search
Google apps
Main menu