100+ datasets found
  1. d

    The United Nations Population Statistics Database

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Apr 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K. Kovacs; E. Horvath (2021). The United Nations Population Statistics Database [Dataset]. http://doi.org/10.15485/1464266
    Explore at:
    Dataset updated
    Apr 30, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    K. Kovacs; E. Horvath
    Time period covered
    Jan 1, 1950 - Dec 31, 2004
    Description

    The United Nations Energy Statistics Database (UNSTAT) is a comprehensive collection of international energy and demographic statistics prepared by the United Nations Statistics Division. The 2004 version represents the latest in the series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The database contains comprehensive energy statistics for more than 215 countries or areas for production, trade and intermediate and final consumption (end-use) for primary and secondary conventional, non-conventional and new and renewable sources of energy. Mid-year population estimates are included to enable the computation of per capita data. Annual questionnaires sent to national statistical offices serve as the primary source of information. Supplementary data are also compiled from national, regional and international statistical publications. The Statistics Division prepares estimates where official data are incomplete or inconsistent. The database is updated on a continuous basis as new information and revisions are received. This metadata file represents the population statistics during the expressed time. For more information about the country site codes, click this link to the United Nations "Standard country or area codes for statistical use": https://unstats.un.org/unsd/methodology/m49/overview/

  2. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  3. Total population worldwide 1950-2100

    • statista.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  4. H

    Pakistan - Population Counts

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Pakistan - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-pakistan
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    Pakistan
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  5. g

    Population Density Around the Globe

    • globalmidwiveshub.org
    • covid19.esriuk.com
    • +6more
    Updated May 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2020). Population Density Around the Globe [Dataset]. https://www.globalmidwiveshub.org/maps/b71f7fd5dbc8486b8b37362726a11452
    Explore at:
    Dataset updated
    May 20, 2020
    Dataset authored and provided by
    Direct Relief
    Area covered
    Description

    Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics

  6. H

    Syrian Arab Republic - Population Counts

    • data.humdata.org
    • data.amerigeoss.org
    geotiff
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Syrian Arab Republic - Population Counts [Dataset]. https://data.humdata.org/dataset/02b3654c-f8a4-4f00-90d0-d69af4c020c3?force_layout=desktop
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    WorldPop
    Area covered
    Syria
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  7. o

    Education Attainment and Enrollment around the World - Dataset - Data...

    • data.opendata.am
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Education Attainment and Enrollment around the World - Dataset - Data Catalog Armenia [Dataset]. https://data.opendata.am/dataset/dcwb0038973
    Explore at:
    Dataset updated
    Jul 7, 2023
    Area covered
    World
    Description

    Patterns of educational attainment vary greatly across countries, and across population groups within countries. In some countries, virtually all children complete basic education whereas in others large groups fall short. The primary purpose of this database, and the associated research program, is to document and analyze these differences using a compilation of a variety of household-based data sets: Demographic and Health Surveys (DHS); Multiple Indicator Cluster Surveys (MICS); Living Standards Measurement Study Surveys (LSMS); as well as country-specific Integrated Household Surveys (IHS) such as Socio-Economic Surveys.As shown at the website associated with this database, there are dramatic differences in attainment by wealth. When households are ranked according to their wealth status (or more precisely, a proxy based on the assets owned by members of the household) there are striking differences in the attainment patterns of children from the richest 20 percent compared to the poorest 20 percent.In Mali in 2012 only 34 percent of 15 to 19 year olds in the poorest quintile have completed grade 1 whereas 80 percent of the richest quintile have done so. In many countries, for example Pakistan, Peru and Indonesia, almost all the children from the wealthiest households have completed at least one year of schooling. In some countries, like Mali and Pakistan, wealth gaps are evident from grade 1 on, in other countries, like Peru and Indonesia, wealth gaps emerge later in the school system.The EdAttain website allows a visual exploration of gaps in attainment and enrollment within and across countries, based on the international database which spans multiple years from over 120 countries and includes indicators disaggregated by wealth, gender and urban/rural location. The database underlying that site can be downloaded from here.

  8. H

    India - Population Counts

    • data.humdata.org
    • data.amerigeoss.org
    geotiff
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). India - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-india
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  9. w

    Land area, number of countries, number of regions and population of...

    • workwithdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data, Land area, number of countries, number of regions and population of continents [Dataset]. https://www.workwithdata.com/datasets/continents?col=continent%2Ccountries%2Cland_area%2Cpopulation%2Cregions
    Explore at:
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about continents, featuring 5 columns: continent, land area, number of countries, number of regions, and population. The preview is ordered by population (descending).

  10. H

    Holy See - Population Counts

    • data.humdata.org
    • data.amerigeoss.org
    geotiff
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Holy See - Population Counts [Dataset]. https://data.humdata.org/dataset/02b973c5-3241-4d5c-8502-961ec351113d?force_layout=desktop
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    WorldPop
    Area covered
    Holy See
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  11. Hybrid gridded demographic data for the world, 1950-2020

    • zenodo.org
    • explore.openaire.eu
    • +1more
    nc
    Updated Apr 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Chambers; Jonathan Chambers (2020). Hybrid gridded demographic data for the world, 1950-2020 [Dataset]. http://doi.org/10.5281/zenodo.3768003
    Explore at:
    ncAvailable download formats
    Dataset updated
    Apr 27, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonathan Chambers; Jonathan Chambers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution.

    This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data.

    Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020)

    Method - demographic fractions

    Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day.

    To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as:

    \(\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}}\)

    Where:

    - \(\delta_{year,\ country,age}^{\text{wpp}}\) is the ratio of change in demographic for a given age and and country from the UN WPP dataset.

    - \(f_{year,\ country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country, and year.

    - \(f_{2010,country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020.

    The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4.

    For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as:

    \(f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}}\)

    Where:

    - \(f_{year,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for given year, for the grid cell c.

    - \(f_{2010,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for 2010, for the grid cell c.

    The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model.

    Method - demographic totals

    Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020.

    The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell.

    Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050).

    Disclaimer

    This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified.

  12. H

    United Arab Emirates - Population Counts

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). United Arab Emirates - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-united-arab-emirates
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    United Arab Emirates
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  13. H

    Turkey - Population Counts

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turkey - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-turkey
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    Türkiye
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  14. H

    Nigeria - Population Counts

    • data.humdata.org
    • data.amerigeoss.org
    geotiff
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Nigeria - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-nigeria
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    Nigeria
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  15. H

    Kenya - Population Counts

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Kenya - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-kenya
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  16. Rural Access Index by Country (2022 - 2023)

    • sdg-transformation-center-sdsn.hub.arcgis.com
    Updated Apr 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Development Solutions Network (2023). Rural Access Index by Country (2022 - 2023) [Dataset]. https://sdg-transformation-center-sdsn.hub.arcgis.com/datasets/rural-access-index-by-country-2022-2023
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    Sustainable Development Solutions Networkhttps://www.unsdsn.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Pacific Ocean, Arctic Ocean, Bering Sea, Proliv Longa, South Pacific Ocean, Proliv Longa, North Pacific Ocean
    Description

    The Rural Access Index (RAI) is a measure of access, developed by the World Bank in 2006. It was adopted as Sustainable Development Goal (SDG) indicator 9.1.1 in 2015, to measure the accessibility of rural populations. It is currently the only indicator for the SDGs that directly measures rural access.The RAI measures the proportion of the rural population that lives within 2 km of an all-season road. An all-season road is one that is motorable all year, but may be temporarily unavailable during inclement weather (Roberts, Shyam, & Rastogi, 2006). This dataset implements and expands on the most recent official methodology put forward by the World Bank, ReCAP's 2019 RAI Supplemental Guidelines. This is, to date, the only publicly available application of this method at a global scale.MethodologyReCAP's methodology provided new insight on what makes a road all-season and how this data should be handled: instead of removing unpaved roads from the network, the ones that are classified as unpaved are to be intersected with topographic and climatic conditions and, whenever there’s an overlap with excess precipitation and slope, a multiplying factor ranging from 0% to 100% is applied to the population that would access to that road. This present dataset developed by SDSN's SDG Transformation Centre proposes that authorities ability to maintain and remediate road conditions also be taken into account.Data sourcesThe indicator relies on four major items of geospatial data: land cover (rural or urban), population distribution, road network extent and the “all-season” status of those roads.Land cover data (urban/rural distinction)Since the indicator measures the acess rural populations, it's necessary to define what is and what isn't rural. This dataset uses the DegUrba Methodology, proposed by the United Nations Expert Group on Statistical Methodology for Delineating Cities and Rural Areas (United Nations Expert Group, 2019). This approach has been developed by the European Commission Global Human Settlement Layer (GHSL-SMOD) project, and is designed to instil some consistency into the definitions based on population density on a 1-km grid, but adjusted for local situations.Population distributionThe source for population distribution data is WorldPop. This uses national census data, projections and other ancillary data from countries to produce aggregated, 100 m2 population data. Road extentTwo widely recognized road datasets are used: the real-time updated crowd-sourced OpenStreetMap (OSM) or the GLOBIO’s 2018 GRIP database, which draws data from official national sources. The reasons for picking the latter are mostly related to its ability to provide information on the surface (pavement) of these roads, to the detriment of the timeliness of the data, which is restrained to the year 2018. Additionally, data from Microsoft Bing's recent Road Detection project is used to ensure completeness. This dataset is completely derived from machine learning methods applied over satellite imagery, and detected 1,165 km of roads missing from OSM.Roads’ all-season statusThe World Bank's original 2006 methodology defines the term all-season as “… a road that is motorable all year round by the prevailing means of rural transport, allowing for occasional interruptions of short duration”. ReCAP's 2019 methodology makes a case for passability equating to the all-season status of a road, along with the assumption that typically the wet season is when roads become impassable, especially so in steep roads that are more exposed to landslides.This dataset follows the ReCAP methodology by creating an passability index. The proposed use of passability factors relies on the following three aspects:• Surface type. Many rural roads in LICs (and even in large high-income countries including the USA and Australia) are unpaved. As mentioned before, unpaved roads deteriorate rapidly and in a different way to paved roads. They are very susceptible to water ingress to the surface, which softens the materials and makes them very vulnerable to the action of traffic. So, when a road surface becomes saturated and is subject to traffic, the deterioration is accelerated. • Climate. Precipitation has a significant effect on the condition of a road, especially on unpaved roads, which predominate in LICs and provide much of the extended connectivity to rural and poor areas. As mentioned above, the rainfall on a road is a significant factor in its deterioration, but the extent depends on the type of rainfall in terms of duration and intensity, and how well the roadside drainage copes with this. While ReCAP suggested the use of general climate zones, we argue that better spatial and temporal resolutions can be acquired through the Copernicus Programme precipitation data, which is made available freely at ~30km pixel size for each month of the year.• Terrain. The gradient and altitude of roads also has an effect on their accessibility. Steep roads become impassable more easily due to the potential for scour during heavy rainfall, and also due to slipperiness as a result of the road surface materials used. Here this is drawn from slope calculated from SRTM Digital Terrain data.• Road maintenance. The ability of local authorities to remediate damaged caused by precipitation and landslides is proposed as a correcting factor to the previous ones. Ideally this would be measured by the % of GDP invested in road construction and maintenance, but this isn't available for all countries. For this reason, GDP per capita is adopted as a proxy instead. The data range is normalized in such a way that a road maxed out in terms of precipitation and slope (accessibility score of 0.25) in a country at the top of the GDP per capita range is brought back at to the higher end of the accessibility score (0.95), while the accessibility score of a road meeting the same passability conditions in a country which GDP per capita is towards the lower end is kept unchanged.Data processingThe roads from the three aforementioned datasets (Bing, GRIP and OSM) are merged together to them is applied a 2km buffer. The populations falling exclusively on unpaved road buffers are multiplied by the resulting passability index, which is defined as the normalized sum of the aforementioned components, ranging from 0.25 to. 0.9, with 0.95 meaning 95% probability that the road is all-season. The index applied to the population data, so, when calculated, the RAI includes the probability that the roads which people are using in each area will be all-season or not. For example, an unpaved road in a flat area with low rainfall would have an accessibility factor of 0.95, as this road is designed to be accessible all year round and the environmental effects on its impassability are minimal.The code for generating this dataset is available on Github at: https://github.com/sdsna/rai

  17. H

    San Marino - Population Counts

    • data.humdata.org
    • data.amerigeoss.org
    geotiff
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). San Marino - Population Counts [Dataset]. https://data.humdata.org/dataset/fe79da61-4f02-4e61-b2e9-8c2911a3ff6f?force_layout=desktop
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    San Marino
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  18. Gridded Population of the World, Version 3 (GPWv3): Population Count Grid,...

    • data.nasa.gov
    • datasets.ai
    • +3more
    application/rdfxml +5
    Updated Sep 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates [Dataset]. https://data.nasa.gov/dataset/Gridded-Population-of-the-World-Version-3-GPWv3-Po/ph8f-vum3
    Explore at:
    json, csv, application/rdfxml, tsv, application/rssxml, xmlAvailable download formats
    Dataset updated
    Sep 20, 2019
    Area covered
    Earth, World
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates consists of estimates of human population for the years 2005, 2010, and 2015 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population counts that the grids are derived from are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics. All of the grids have been adjusted to match United Nations national level population estimates. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).

  19. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid,...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Feb 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future Estimates - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/gridded-population-of-the-world-version-3-gpwv3-population-density-grid-future-estimates
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    World, Earth
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future EstimatesFuture Estimates consists of estimates of human population for the years 2005, 2010, and 2015 by 2.5 arc-minute grid cells. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The future estimate population values are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics. All of the grids have been adjusted to match United Nations national level population estimates. The population density grids are derived by dividing the population count grids by the land area grid and represent persons per square kilometer. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).

  20. T

    PERSONAL SAVINGS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PERSONAL SAVINGS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/personal-savings
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    May 28, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for PERSONAL SAVINGS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
K. Kovacs; E. Horvath (2021). The United Nations Population Statistics Database [Dataset]. http://doi.org/10.15485/1464266

The United Nations Population Statistics Database

Explore at:
Dataset updated
Apr 30, 2021
Dataset provided by
ESS-DIVE
Authors
K. Kovacs; E. Horvath
Time period covered
Jan 1, 1950 - Dec 31, 2004
Description

The United Nations Energy Statistics Database (UNSTAT) is a comprehensive collection of international energy and demographic statistics prepared by the United Nations Statistics Division. The 2004 version represents the latest in the series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The database contains comprehensive energy statistics for more than 215 countries or areas for production, trade and intermediate and final consumption (end-use) for primary and secondary conventional, non-conventional and new and renewable sources of energy. Mid-year population estimates are included to enable the computation of per capita data. Annual questionnaires sent to national statistical offices serve as the primary source of information. Supplementary data are also compiled from national, regional and international statistical publications. The Statistics Division prepares estimates where official data are incomplete or inconsistent. The database is updated on a continuous basis as new information and revisions are received. This metadata file represents the population statistics during the expressed time. For more information about the country site codes, click this link to the United Nations "Standard country or area codes for statistical use": https://unstats.un.org/unsd/methodology/m49/overview/

Search
Clear search
Close search
Google apps
Main menu