100+ datasets found
  1. Per Capita GDP of All Countries 1970 to 2022

    • kaggle.com
    zip
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibrar Hussain (2024). Per Capita GDP of All Countries 1970 to 2022 [Dataset]. https://www.kaggle.com/datasets/dataanalyst001/per-capita-gdp-of-all-countries-1970-to-2022
    Explore at:
    zip(92238 bytes)Available download formats
    Dataset updated
    Jul 15, 2024
    Authors
    Ibrar Hussain
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    The "Per Capita GDP of All Countries 1970 to 2022" dataset provides a comprehensive overview of the economic performance of all countries in the world from 1970 to 2022 in US Dollar. This dataset includes several key columns:

    Country: This column lists the names of the countries included in the dataset. Year: This column indicates the specific year for which the GDP data is recorded from 1970 to 2022. By analyzing this dataset, you can observe trends in economic growth, identify periods of significant economic change, and compare the economic performance of different countries over time. This information is valuable for economists, researchers, policymakers, and anyone interested in understanding the economic history and development of nations.

  2. T

    GDP PER CAPITA by Country in ...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). GDP PER CAPITA by Country in ... [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita?continent=...
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Feb 6, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Description

    This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  3. T

    GDP PER CAPITA by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP PER CAPITA by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita?continent=asia
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. N

    Income Distribution by Quintile: Mean Household Income in Country Club...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Country Club Hills, IL // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/481cbee0-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Illinois, Country Club Hills
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Country Club Hills, IL, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 17,156, while the mean income for the highest quintile (20% of households with the highest income) is 251,340. This indicates that the top earners earn 15 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 457,555, which is 182.05% higher compared to the highest quintile, and 2667.03% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Club Hills median household income. You can refer the same here

  5. C

    China Proportion of People Living Below 50 Percent Of Median Income: %

    • ceicdata.com
    Updated Oct 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2015). China Proportion of People Living Below 50 Percent Of Median Income: % [Dataset]. https://www.ceicdata.com/en/china/social-poverty-and-inequality/proportion-of-people-living-below-50-percent-of-median-income-
    Explore at:
    Dataset updated
    Oct 15, 2015
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2021
    Area covered
    China
    Description

    China Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 11.600 % in 2021. This records a decrease from the previous number of 11.900 % for 2020. China Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 15.100 % from Dec 1990 (Median) to 2021, with 19 observations. The data reached an all-time high of 19.500 % in 2010 and a record low of 8.900 % in 1990. China Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s China – Table CN.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  6. Country Socioeconomic Status Scores, Part II

    • kaggle.com
    zip
    Updated Jul 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sdorius (2017). Country Socioeconomic Status Scores, Part II [Dataset]. https://www.kaggle.com/datasets/sdorius/countryses/code
    Explore at:
    zip(17885 bytes)Available download formats
    Dataset updated
    Jul 14, 2017
    Authors
    sdorius
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the countries in this dataset have a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.

    See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.

    VARIABLE DESCRIPTIONS:

    unid: ISO numeric country code (used by the United Nations)

    wbid: ISO alpha country code (used by the World Bank)

    SES: Country socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174)

    country: Short country name

    year: Survey year

    gdppc: GDP per capita: Single time-series (imputed)

    yrseduc: Completed years of education in the adult (15+) population

    region5: Five category regional coding schema

    regionUN: United Nations regional coding schema

    DATA SOURCES:

    The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below. GDP per Capita:

    1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls.

    2. World Development Indicators Database Years of Education 1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/ 2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm

    3. Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/

    4. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.

    5. United Nations Population Division. 2009.

  7. T

    GDP PER CAPITA by Country in AFRICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP PER CAPITA by Country in AFRICA [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita?continent=africa
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. Indonesia GDP Per Capita Forecast Dataset

    • focus-economics.com
    • focus.s.nomatter.dev
    html
    Updated Jul 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FocusEconomics (2025). Indonesia GDP Per Capita Forecast Dataset [Dataset]. https://www.focus-economics.com/country-indicator/indonesia/gdp-per-capita-usd/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 25, 2025
    Dataset authored and provided by
    FocusEconomics
    License

    https://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/

    Time period covered
    2014 - 2025
    Area covered
    Indonesia
    Variables measured
    forecast, indonesia_gdp_per_capita
    Description

    Monthly and long-term Indonesia GDP Per Capita data: historical series and analyst forecasts curated by FocusEconomics.

  9. Census Income dataset

    • kaggle.com
    zip
    Updated Oct 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    tawfik elmetwally (2023). Census Income dataset [Dataset]. https://www.kaggle.com/datasets/tawfikelmetwally/census-income-dataset
    Explore at:
    zip(707150 bytes)Available download formats
    Dataset updated
    Oct 28, 2023
    Authors
    tawfik elmetwally
    Description

    This intermediate level data set was extracted from the census bureau database. There are 48842 instances of data set, mix of continuous and discrete (train=32561, test=16281).

    The data set has 15 attribute which include age, sex, education level and other relevant details of a person. The data set will help to improve your skills in Exploratory Data Analysis, Data Wrangling, Data Visualization and Classification Models.

    Feel free to explore the data set with multiple supervised and unsupervised learning techniques. The Following description gives more details on this data set:

    • age: the age of an individual.
    • workclass: The type of work or employment of an individual. It can have the following categories:
      • Private: Working in the private sector.
      • Self-emp-not-inc: Self-employed individuals who are not incorporated.
      • Self-emp-inc: Self-employed individuals who are incorporated.
      • Federal-gov: Working for the federal government.
      • Local-gov: Working for the local government.
      • State-gov: Working for the state government.
      • Without-pay: Not working and without pay.
      • Never-worked: Never worked before.
    • Final Weight: The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau. We use 3 sets of controls.

    These are: 1. A single cell estimate of the population 16+ for each state. 2. Controls for Hispanic Origin by age and sex. 3. Controls by Race, age and sex.

    We use all three sets of controls in our weighting program and "rake" through them 6 times so that by the end we come back to all the controls we used.

    People with similar demographic characteristics should have similar weights. There is one important caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state samples, each with its own probability of selection, the statement only applies within state.

    • education: The highest level of education completed.
    • education-num: The number of years of education completed.
    • marital-status: The marital status.
    • occupation: Type of work performed by an individual.
    • relationship: The relationship status.
    • race: The race of an individual.
    • sex: The gender of an individual.
    • capital-gain: The amount of capital gain (financial profit).
    • capital-loss: The amount of capital loss an individual has incurred.
    • hours-per-week: The number of hours works per week.
    • native-country: The country of origin or the native country.
    • income: The income level of an individual and serves as the target variable. It indicates whether the income is greater than $50,000 or less than or equal to $50,000, denoted as (>50K, <=50K).
  10. T

    GDP PER CAPITA by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 2, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP PER CAPITA by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita?continent=america
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jun 2, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  11. w

    Income Distribution Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Income Distribution Database [Dataset]. https://data360.worldbank.org/en/dataset/OECD_IDD
    Explore at:
    Dataset updated
    Apr 18, 2025
    Time period covered
    1974 - 2023
    Area covered
    Portugal, Denmark, Slovak Republic, Hungary, Luxembourg, Romania, Croatia, Belgium, Lithuania, Iceland
    Description

    The OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.

    Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.

    Small changes in estimates between years should be treated with caution as they may not be statistically significant.

    Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm

  12. B

    Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: %...

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % [Dataset]. https://www.ceicdata.com/en/belgium/social-poverty-and-inequality/be-proportion-of-people-living-below-50-percent-of-median-income-
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2021
    Area covered
    Belgium
    Description

    Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 8.100 % in 2021. This records an increase from the previous number of 7.900 % for 2020. Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 9.100 % from Dec 1985 (Median) to 2021, with 25 observations. The data reached an all-time high of 10.500 % in 2015 and a record low of 6.000 % in 1985. Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belgium – Table BE.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  13. w

    Globalization and Income Distribution Dataset 1975-2002 - Aruba,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Branko L. Milanovic (2023). Globalization and Income Distribution Dataset 1975-2002 - Aruba, Afghanistan, Angola...and 188 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/1786
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Branko L. Milanovic
    Time period covered
    1975 - 2002
    Area covered
    Angola
    Description

    Abstract

    Dataset used in World Bank Policy Research Working Paper #2876, published in World Bank Economic Review, No. 1, 2005, pp. 21-44.

    The effects of globalization on income distribution in rich and poor countries are a matter of controversy. While international trade theory in its most abstract formulation implies that increased trade and foreign investment should make income distribution more equal in poor countries and less equal in rich countries, finding these effects has proved elusive. The author presents another attempt to discern the effects of globalization by using data from household budget surveys and looking at the impact of openness and foreign direct investment on relative income shares of low and high deciles. The author finds some evidence that at very low average income levels, it is the rich who benefit from openness. As income levels rise to those of countries such as Chile, Colombia, or Czech Republic, for example, the situation changes, and it is the relative income of the poor and the middle class that rises compared with the rich. It seems that openness makes income distribution worse before making it better-or differently in that the effect of openness on a country's income distribution depends on the country's initial income level.

    Kind of data

    Aggregate data [agg]

  14. N

    Income Distribution by Quintile: Mean Household Income in Town And Country,...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Town And Country, MO // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/48452316-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Town and Country
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Town And Country, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 53,176, while the mean income for the highest quintile (20% of households with the highest income) is 848,049. This indicates that the top earners earn 16 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 1,320,990, which is 155.77% higher compared to the highest quintile, and 2484.18% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country median household income. You can refer the same here

  15. S

    Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: %

    • ceicdata.com
    Updated Mar 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % [Dataset]. https://www.ceicdata.com/en/sweden/social-poverty-and-inequality/se-proportion-of-people-living-below-50-percent-of-median-income-
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2021
    Area covered
    Sweden
    Description

    Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 11.100 % in 2021. This records an increase from the previous number of 10.100 % for 2020. Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 8.900 % from Dec 1975 (Median) to 2021, with 27 observations. The data reached an all-time high of 11.100 % in 2021 and a record low of 5.200 % in 1987. Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  16. T

    GDP PER CAPITA by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP PER CAPITA by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita?continent=europe
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  17. Brunei GDP Per Capita Forecast Dataset

    • focus-economics.com
    html
    Updated Feb 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FocusEconomics (2019). Brunei GDP Per Capita Forecast Dataset [Dataset]. https://www.focus-economics.com/country-indicator/brunei/gdp-per-capita-usd/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 20, 2019
    Dataset authored and provided by
    FocusEconomics
    License

    https://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/

    Time period covered
    2014 - 2025
    Area covered
    Brunei
    Variables measured
    forecast, brunei_gdp_per_capita
    Description

    Monthly and long-term Brunei GDP Per Capita data: historical series and analyst forecasts curated by FocusEconomics.

  18. Denmark GDP Per Capita Forecast Dataset

    • focus-economics.com
    html
    Updated Oct 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FocusEconomics (2025). Denmark GDP Per Capita Forecast Dataset [Dataset]. https://www.focus-economics.com/country-indicator/denmark/gdp-per-capita-eur/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 30, 2025
    Dataset authored and provided by
    FocusEconomics
    License

    https://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/

    Time period covered
    2014 - 2025
    Area covered
    Denmark
    Variables measured
    forecast, denmark_gdp_per_capita
    Description

    Monthly and long-term Denmark GDP Per Capita data: historical series and analyst forecasts curated by FocusEconomics.

  19. Global Income Inequality

    • kaggle.com
    zip
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    George Hany Fouad (2024). Global Income Inequality [Dataset]. https://www.kaggle.com/datasets/georgehanyfouad/global-income-inequality
    Explore at:
    zip(17988 bytes)Available download formats
    Dataset updated
    Sep 11, 2024
    Authors
    George Hany Fouad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Global Income Inequality Dataset (2000–2023)

    Overview

    This dataset provides a comprehensive look at global income inequality from the year 2000 to 2023. It includes key indicators such as Gini index, average income, income distribution across different population percentiles, and income group classifications for 30 countries worldwide. The dataset offers insights into how income is distributed within nations and highlights disparities across different economic groups.

    Data Features

    • Country: The name of the country.
    • Year: The year of the data point (2000–2023).
    • Population: The estimated population for the given year.
    • Gini Index: A measure of income inequality, where 0 represents perfect equality and 1 represents maximum inequality.
    • Average Income (USD): The average income in USD for the country in the given year.
    • Top 10% Income Share (%): The percentage of total income held by the top 10% of the population.
    • Bottom 10% Income Share (%): The percentage of total income held by the bottom 10% of the population.
    • Income Group: Categorization of the country’s income group (Low Income, Lower Middle Income, Upper Middle Income, High Income).

    Potential Uses

    • Economic Analysis: Understand global income inequality trends and how they vary by country and region.
    • Predictive Modeling: Use the dataset to build machine learning models predicting future income inequality based on historical data.
    • Policy Research: Study the impact of income distribution on policy decisions and economic growth in different nations.
    • Visualization: Create heatmaps, time series charts, and more to visualize the income inequality across various countries and years.

    Source

    The data has been generated to simulate realistic income inequality patterns based on publicly available data on global economic trends.

  20. World Bank Country and Lending Groups

    • kaggle.com
    zip
    Updated Nov 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tania J (2019). World Bank Country and Lending Groups [Dataset]. https://www.kaggle.com/taniaj/world-bank-country-and-lending-groups
    Explore at:
    zip(3384 bytes)Available download formats
    Dataset updated
    Nov 17, 2019
    Authors
    Tania J
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    Context

    This dataset was uploaded as supplemental data for the 2019 Kaggle ML & DS Survey. It allows classification of countries into income groups - low, lower-middle, upper-middle and high - by gross national income (GNI) per capita, in U.S. dollars,.

    For details of this calculation see here and here.

    Content

    The csv file consists of 218 countries listed by name and country code and their corresponding income group and lending category.

    Acknowledgements

    Thanks to the World Bank for providing the data at "https://datahelpdesk.worldbank.org/knowledgebase/articles/906519">https://datahelpdesk.worldbank.org/knowledgebase/articles/906519

    Inspiration

    This dataset allows any other data containing country names or codes to be supplemented with income group data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ibrar Hussain (2024). Per Capita GDP of All Countries 1970 to 2022 [Dataset]. https://www.kaggle.com/datasets/dataanalyst001/per-capita-gdp-of-all-countries-1970-to-2022
Organization logo

Per Capita GDP of All Countries 1970 to 2022

Economic Growth and Trends of All Countries

Explore at:
zip(92238 bytes)Available download formats
Dataset updated
Jul 15, 2024
Authors
Ibrar Hussain
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

The "Per Capita GDP of All Countries 1970 to 2022" dataset provides a comprehensive overview of the economic performance of all countries in the world from 1970 to 2022 in US Dollar. This dataset includes several key columns:

Country: This column lists the names of the countries included in the dataset. Year: This column indicates the specific year for which the GDP data is recorded from 1970 to 2022. By analyzing this dataset, you can observe trends in economic growth, identify periods of significant economic change, and compare the economic performance of different countries over time. This information is valuable for economists, researchers, policymakers, and anyone interested in understanding the economic history and development of nations.

Search
Clear search
Close search
Google apps
Main menu