Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates. Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050.
The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_international
https://cloud.google.com/bigquery/public-data/international-census
Dataset Source: www.census.gov
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source -http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What countries have the longest life expectancy?
Which countries have the largest proportion of their population under 25?
Which countries are seeing the largest net migration?
The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) A1, B1, and A2 Scenarios, 1990-2100, were adopted in 2000 from population projections realized at the International Institute for Applied Systems Analysis (IIASA) in 1996. The Intergovernmental Panel on Climate Change (IPCC) SRES A1 and B1 scenarios both used the same IIASA "rapid" fertility transition projection, which assumes low fertility and low mortality rates. The SRES A2 scenario used a corresponding IIASA "slow" fertility transition projection (high fertility and high mortality rates). Both IIASA low and high projections are performed for 13 world regions including North Africa, Sub-Saharan Africa, China and Centrally Planned Asia, Pacific Asia, Pacific OECD, Central Asia, Middle East, South Asia, Eastern Europe, European part of the former Soviet Union, Western Europe, Latin America, and North America. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for LABOR FORCE PARTICIPATION RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background and Aims: Declining fertility is a key driver behind the rapid aging of populations worldwide. Finland has experienced a 25% decline in fertility from 2010 to date and ranks low even on the European and Nordic scales. This study aimed to address the association between sociodemographic indicators and birth rate (i.e., live births relative to total population) in Finland.Methods: Open data on 310 Finnish municipalities were retrieved from the public database of Statistics Finland. Several sociodemographic subdimensions (population structure, education and income, location and living, divorces, car ownership rate, and crime rate), each converted to standard deviation units, were modeled against birth rate at the municipality level using generalized estimating equations.Results: In this dataset, average annual birth rate was 8.8 per 1,000 individuals. Birth rate was positively associated with change in population size (rate ratio 1.06, 95% confidence interval 1.04−1.08), percentage of
Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire
Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe
Basic units of analysis that the study investigates include: individuals and groups
Sample survey data [ssd]
A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.
The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.
Sample Universe
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample Design
The sample design is a clustered, stratified, multi-stage, area probability sample.
To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.
In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:
The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages
A first-stage to stratify and randomly select primary sampling units;
A second-stage to randomly select sampling start-points;
A third stage to randomly choose households;
A final-stage involving the random selection of individual respondents
We shall deal with each of these stages in turn.
STAGE ONE: Selection of Primary Sampling Units (PSUs)
The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.
We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.
Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.
Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.
Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.
Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.
The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.
These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.
The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Population: Natural Growth Rate data was reported at -0.060 % in 2022. This records a decrease from the previous number of 0.034 % for 2021. China Population: Natural Growth Rate data is updated yearly, averaging 1.203 % from Dec 1949 (Median) to 2022, with 74 observations. The data reached an all-time high of 3.333 % in 1963 and a record low of -0.457 % in 1960. China Population: Natural Growth Rate data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Natural Growth Rate: By Region.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There is a need to understand the growth and burden of malnutrition in children with cerebral palsy (CP) in order to design appropriate inclusive nutrition strategies. We compared the nutritional status and four-year longitudinal growth of a population-based cohort of children and young people (C&Y) with CP (n=97; 2-17 years; 55/42 M/F), and an age and sex matched group without CP (n=91; 2-17y; 50/41 M/F) in rural Uganda. The cohorts were assessed in 2015 and 2019 for weight, height, social demographic characteristics, and feeding related factors. Nutritional status was determined using the World Health Organization (WHO) Z-scores. Wilcoxon sign rank and Mann-Whitney tests were used to test within and between group differences. Multivariable linear regression was used to determine predictors of the change in growth. Approximately two thirds (62/97 (64%)) of C&Y with CP were malnourished (with
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -2.590 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -2.590 % in 2021 and a record low of -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing total population for Japan by year from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Healthy Diet Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mariaren/covid19-healthy-diet-dataset on 28 January 2022.
--- Dataset description provided by original source is as follows ---
“Health requires healthy food."
Roger Williams (1603 – 1683)
In the past couple months, we’ve witnessed doctors, nurses, paramedics and thousands of medical workers putting their lives on the frontline to save patients who are infected. And as the battle with COVID-19 continues, we should all ask ourselves – What should we do to help out? What can we do to protect our loved ones, those who sacrifice for us, and ourselves from this pandemic?
These questions all relate back to the CORD-19 Open Research Dataset Challenge Task Question: “What do we know about non-pharmaceutical interventions?”
And my simple answer is : We need to protect our families and our own healths by adapting to a healthy diet.
The USDA Center for Nutrition Policy and Promotion recommends a very simple daily diet intake guideline: 30% grains, 40% vegetables, 10% fruits, and 20% protein, but are we really eating in the healthy eating style recommended by these food divisions and balances?
In this dataset, I have combined data of different types of food, world population obesity and undernourished rate, and global COVID-19 cases count from around the world in order to learn more about how a healthy eating style could help combat the Corona Virus. And from the dataset, we can gather information regarding diet patterns from countries with lower COVID infection rate, and adjust our own diet accordingly.
In each of the 4 datasets below, I have calculated fat quantity, energy intake (kcal), food supply quantity (kg), and protein for different categories of food (all calculated as percentage of total intake amount). I've also added on the obesity and undernourished rate (also in percentage) for comparison. The end of the datasets also included the most up to date confirmed/deaths/recovered/active cases (also in percentage of current population for each country).
Data for different food group supply quantities, nutrition values, obesity, and undernourished percentages are obtained from Food and Agriculture Organization of the United Nations FAO website To see the specific types of food included in each category from the FAO data, take a look at the last dataset Supply_Food_Data_Description.csv
.
Data for population count for each country comes from Population Reference Bureau PRB website
Data for COVID-19 confirmed, deaths, recovered and active cases are obtained from Johns Hopkins Center for Systems Science and Engineering CSSE website
The USDA Center for Nutrition Policy and Promotion diet intake guideline information can be found in ChooseMyPlate.gov
Note: I will update and push new versions of the datasets weekly. (Current version include COVID data from the week of 02/06/2021) Click here to see my data cleaning/preprocessing code in R
If you like this dataset, please don't forget to give me an upvote! 👍
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Life Expectancy (WHO)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/kumarajarshi/life-expectancy-who on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Although there have been lot of studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that affect of immunization and human development index was not taken into account in the past. Also, some of the past research was done considering multiple linear regression based on data set of one year for all the countries. Hence, this gives motivation to resolve both the factors stated previously by formulating a regression model based on mixed effects model and multiple linear regression while considering data from a period of 2000 to 2015 for all the countries. Important immunization like Hepatitis B, Polio and Diphtheria will also be considered. In a nutshell, this study will focus on immunization factors, mortality factors, economic factors, social factors and other health related factors as well. Since the observations this dataset are based on different countries, it will be easier for a country to determine the predicting factor which is contributing to lower value of life expectancy. This will help in suggesting a country which area should be given importance in order to efficiently improve the life expectancy of its population.
The project relies on accuracy of data. The Global Health Observatory (GHO) data repository under World Health Organization (WHO) keeps track of the health status as well as many other related factors for all countries The data-sets are made available to public for the purpose of health data analysis. The data-set related to life expectancy, health factors for 193 countries has been collected from the same WHO data repository website and its corresponding economic data was collected from United Nation website. Among all categories of health-related factors only those critical factors were chosen which are more representative. It has been observed that in the past 15 years , there has been a huge development in health sector resulting in improvement of human mortality rates especially in the developing nations in comparison to the past 30 years. Therefore, in this project we have considered data from year 2000-2015 for 193 countries for further analysis. The individual data files have been merged together into a single data-set. On initial visual inspection of the data showed some missing values. As the data-sets were from WHO, we found no evident errors. Missing data was handled in R software by using Missmap command. The result indicated that most of the missing data was for population, Hepatitis B and GDP. The missing data were from less known countries like Vanuatu, Tonga, Togo, Cabo Verde etc. Finding all data for these countries was difficult and hence, it was decided that we exclude these countries from the final model data-set. The final merged file(final dataset) consists of 22 Columns and 2938 rows which meant 20 predicting variables. All predicting variables was then divided into several broad categories:Immunization related factors, Mortality factors, Economical factors and Social factors.
The data was collected from WHO and United Nations website with the help of Deeksha Russell and Duan Wang.
The data-set aims to answer the following key questions: 1. Does various predicting factors which has been chosen initially really affect the Life expectancy? What are the predicting variables actually affecting the life expectancy? 2. Should a country having a lower life expectancy value(<65) increase its healthcare expenditure in order to improve its average lifespan? 3. How does Infant and Adult mortality rates affect life expectancy? 4. Does Life Expectancy has positive or negative correlation with eating habits, lifestyle, exercise, smoking, drinking alcohol etc. 5. What is the impact of schooling on the lifespan of humans? 6. Does Life Expectancy have positive or negative relationship with drinking alcohol? 7. Do densely populated countries tend to have lower life expectancy? 8. What is the impact of Immunization coverage on life Expectancy?
--- Original source retains full ownership of the source dataset ---
Estimated number of persons by quarter of a year and by year, Canada, provinces and territories.
We built an Integrated Population Model (IPM) and fitted parameters with four datasets: (1) population survey data, (2) nest survey data, (3) duckling survival data, and (4) annual band-recovery data. Our study area covers the entire country of the Netherlands, as all data were collected as part of national monitoring programs or citizen science projects. We limited our analyses to the years 2003-2020 due to a limited sampling effort in the years before 2003 for most datasets. Population survey data. Breeding bird populations have been monitored in the Netherlands as part of a national Breeding bird Monitoring Program (BMP) starting in 1984 (Boele et al. 2014). BMP is based on intensive territory mapping in fixed study plots carried out by well-trained volunteers and professionals who follow a standardized protocol. Territory mapping is based on a large, and annually constant, number of field visits (5-10 between March and July depending on species) in which all birds with territorial behavior (e.g., pair bond, display, nests) are recorded on maps. Species-specific interpretation criteria are used to determine the number and exact locations of "territories" at the end of the season. The counts of 1990 constitute the index baseline. Index values for the following years are then calculated as the relative difference between that year's counts and those of the reference year (Sovon 2019). Nest survey data. Nest data for Dutch Mallards were retrieved from the National Nest Record Scheme (Bijlsma et al. 2020). Mallard nests are mainly reported as 'bycatch' during nest surveys of grassland-breeding waders. To calculate clutch size and egg hatch rate, incomplete clutches were excluded by using only successfully hatched nests. In total, there were 4415 observations of clutch size with a range of 149-402 nests observed annually. For egg hatch rate per successful clutch, we calculated for each year the total number of eggs laid and the number of eggs hatched in nests where at least one egg had hatched. In total 2383 nest observations were available, with the number of observations ranging between 54 and 282 nests per year. Duckling survival data. We used data for Mallard females with broods collected through a citizen science project to estimate annual duckling survival rates. Contributors to this project were asked to report brood size and brood age on a mobile application specifically developed for this purpose. From 2018 onward, contributors were asked to make repeated observations of the same broods to allow for the calculation of duckling survival. We therefore used data for the years 2018-2020, as only for these years were there enough repeated observations of broods to estimate duckling survival. The final dataset included 2825 observations of 1212 broods distributed over the three years. Adult band-recovery data. Annual survival of post-fledgling birds was estimated using data for Mallards that were banded between 2003 and 2020 and were later recovered and reported dead. In the Netherlands, Mallards are banded mostly in traditional duck decoys (Karelse 1994). Since the year 2000, 20133 Mallards have been banded, of which 1233 were recovered dead (Buijs and Thomson, 2001, van Noordwijk et al. 2003). We only included Mallards that were banded in the breeding season (March-July) to exclude winter migrants that breed in other countries. This dataset included 2615 Mallards, of which 203 were recovered dead. Europe's highest densities of breeding Mallards (Anas platyrhynchos) are found in the Netherlands, but the breeding population there has declined by ~30% since the 1990s. The exact cause of this decline has remained unclear. Here, we used an integrated population model to jointly analyze Mallard population survey, nest survey, duckling survival and band-recovery data. We used this approach to holistically estimate all relevant vital rates, including duckling survival rates for years for which no explicit data were available. Mean vital rate estimates were high for nest success (0.38 ±0.01) and egg hatch rate (0.96 ±0.001), but relatively low for clutch size (8.2 ±0.05) compared to populations in other regions. Estimates for duckling survival rate for the three years for which explicit data were available were low (0.16-0.27) compared to historical observations, but were comparable to rates reported for other regions with declining populations. Finally, mean survival rate was low for ducklings (0.18 ±0.02), but high and stable for adults (0.71 ±0.03). Population growth rate was only affected by variation in duckling survival, but since this is a predominantly latent state variable, this result should be interpreted with caution. However, it does strongly indicate that none of the other vital rates, all of which were supported by data, was able to sufficiently explain the population decline. Together with a comparison with historic vital rates, these findings point to a reduced duckling survival rate as the li...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for EMPLOYMENT RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -1.180 % in 2021. Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -1.180 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -1.180 % in 2021 and a record low of -1.180 % in 2021. Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically