100+ datasets found
  1. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  2. All Country's COVID-19 Dataset.

    • kaggle.com
    zip
    Updated Oct 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Sharma (2024). All Country's COVID-19 Dataset. [Dataset]. https://www.kaggle.com/datasets/aman2626786/all-countrys-covid-19-dataset
    Explore at:
    zip(12187 bytes)Available download formats
    Dataset updated
    Oct 23, 2024
    Authors
    Aman Sharma
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides comprehensive statistics on COVID-19 for countries around the world. It includes data on the number of active cases, critical cases, total deaths, and total tests conducted. The dataset is updated frequently to ensure the most current information is available.

    Key Features:

    Global Coverage: Data for countries across all continents, including Asia, Africa, Europe, North America, South America, and Oceania. Detailed Statistics: Includes metrics such as active cases, critical cases, total deaths, and total tests. Population Data: Provides population figures for each country to contextualize the COVID-19 statistics. Frequent Updates: The dataset is updated regularly to reflect the latest information.

  3. Global Covid-19 Data

    • kaggle.com
    zip
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Covid-19 Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-covid-19-data
    Explore at:
    zip(15394324 bytes)Available download formats
    Dataset updated
    Dec 3, 2023
    Authors
    The Devastator
    Description

    Global Covid-19 Data

    Global Covid-19 data on cases, deaths, vaccinations, and more

    By Valtteri Kurkela [source]

    About this dataset

    The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.

    Some of the key metrics covered in the dataset include:

    1. Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.

    2. Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.

    3. Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.

    4. Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.

    5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).

    6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.

    7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.

    8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;

    For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate

    1. Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.

    The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.

    Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19

    How to use the dataset

    Introduction:

    • Understanding the Basic Structure:

      • The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
      • Each row represents data for a specific country or region at a certain point in time.
    • Selecting Desired Columns:

      • Identify the specific columns that are relevant to your analysis or research needs.
      • Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
    • Filtering Data:

      • Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
      • This can help you analyze trends over time or compare data between different regions.
    • Analyzing Vaccination Metrics:

      • Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
      • Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
    • Investigating Testing Information:

      • Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
      • Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
    • Exploring Hospitalization and ICU Data:

      • Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
      • Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
    • Assessing Covid-19 Cases and Deaths:

      • Analyze variables like total_cases, new_ca...
  4. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. COVID-19 Global Case and Death Data

    • kaggle.com
    zip
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). COVID-19 Global Case and Death Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/covid-19-global-case-and-death-data
    Explore at:
    zip(81724234 bytes)Available download formats
    Dataset updated
    Dec 4, 2023
    Authors
    The Devastator
    Description

    COVID-19 Global Case and Death Data

    Global COVID-19 Cases and Deaths Over Time

    By Coronavirus (COVID-19) Data Hub [source]

    About this dataset

    The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.

    The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.

    Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.

    Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.

    To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.

    It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.

    Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic

    How to use the dataset

    • Understanding the Dataset Structure:

      • The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
      • Both files contain different columns that provide information about the COVID-19 cases and deaths.
      • Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
    • Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.

    • Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.

    • Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.

    • Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.

    • Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.

    • Comparing Countries/Regions: Compare COVID-19

    Research Ideas

    • Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...
  6. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  7. COVID-19 Worldwide Daily Data

    • kaggle.com
    zip
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altadata (2020). COVID-19 Worldwide Daily Data [Dataset]. https://www.kaggle.com/altadata/covid19
    Explore at:
    zip(469881 bytes)Available download formats
    Dataset updated
    Aug 28, 2020
    Authors
    Altadata
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">

    ALTADATA is a curated data marketplace where our subscribers and our data partners can easily exchange ready-to-analyze datasets and create insights with EPO, our visual data analytics platform.

    COVID-19 Worldwide Daily Data

    Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.

    Overview

    In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.

    The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.

    The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.

    Methodology

    • Cases and Death counts include confirmed and probable (where reported)
    • Recovered cases are estimates based on local media reports, and state and local reporting when available, and therefore may be substantially lower than the true number. US state-level recovered cases are from COVID Tracking Project.
    • Active cases = total cases - total recovered - total deaths
    • Incidence Rate = cases per 100,000 persons
    • Case-Fatality Ratio (%) = Number recorded deaths / Number cases
    • Country Population represents 2019 projections by UN Population Division, integrated to the JHU CSSE's COVID-19 data by ALTADATA

    Data Source

    Related Data Products

    Suggested Blog Posts

    Data Dictionary

    • Reported Date (reported_date) : Covid-19 Report Date
    • Country_Region (country_region) : Country, region or sovereignty name
    • Population (population) : Country populations as per United Nations Population Division
    • Confirmed Case (confirmed) : Confirmed cases include presumptive positive cases and probable cases
    • Active cases (active) : Active cases = total confirmed - total recovered - total deaths
    • Deaths (deaths) : Death cases counts
    • Recovered (recovered) : Recovered cases counts
    • Mortality Rate (mortality_rate) : Number of recorded deaths * 100 / Number of confirmed cases
    • Incident Rate (incident_rate) : Confirmed cases per 100,000 persons
  8. Worldwide COVID-19 Data from WHO (2025 Edition)

    • kaggle.com
    zip
    Updated Nov 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Worldwide COVID-19 Data from WHO (2025 Edition) [Dataset]. https://www.kaggle.com/datasets/adilshamim8/worldwide-covid-19-data-from-who/versions/40
    Explore at:
    zip(4078955 bytes)Available download formats
    Dataset updated
    Nov 2, 2025
    Authors
    Adil Shamim
    Description

    Dataset Overview

    This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.

    Source Information

    • Website: WHO COVID-19 Dashboard
    • Organization: World Health Organization (WHO)
    • Data Coverage: Global (by country/territory)
    • Time Period: Up to 2025

    The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.

    Dataset Contents

    • Country/Region: The name of the country or territory.
    • Date: Reporting date.
    • New Cases: Number of new confirmed COVID-19 cases.
    • Cumulative Cases: Total confirmed COVID-19 cases to date.
    • New Deaths: Number of new confirmed deaths due to COVID-19.
    • Cumulative Deaths: Total deaths reported to date.
    • Additional fields may include population, rates per 100,000, and more (see data files for details).

    How to Use

    This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting

    Data Reliability

    The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.

    Acknowledgements

    Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.

  9. Top 11 Countries with Highest Covid Death

    • kaggle.com
    zip
    Updated Oct 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rabbani Mozahid (2020). Top 11 Countries with Highest Covid Death [Dataset]. https://www.kaggle.com/rabbani/top-11-countries-with-highest-covid-death
    Explore at:
    zip(423 bytes)Available download formats
    Dataset updated
    Oct 4, 2020
    Authors
    Rabbani Mozahid
    Description

    Dataset

    This dataset was created by Rabbani Mozahid

    Contents

  10. T

    CORONAVIRUS DEATHS by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths?continent=america
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Apr 18, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  11. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  12. m

    Covid-19 latest news dataset

    • data.mendeley.com
    Updated Oct 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajat Thakur (2021). Covid-19 latest news dataset [Dataset]. http://doi.org/10.17632/8rbm7d874k.1
    Explore at:
    Dataset updated
    Oct 27, 2021
    Authors
    Rajat Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coronavirus disease 2019 (COVID19) time series that lists confirmed cases, reported deaths, and reported recoveries. Data is broken down by country (and sometimes by sub-region).

    Coronavirus disease (COVID19) is caused by severe acute respiratory syndrome Coronavirus 2 (SARSCoV2) and has had an effect worldwide. On March 11, 2020, the World Health Organization (WHO) declared it a pandemic, currently indicating more than 118,000 cases of coronavirus disease in more than 110 countries and territories around the world.

    This dataset contains the latest news related to Covid-19 and it was fetched with the help of Newsdata.io news API.

  13. COVID-19 Cases by Country

    • console.cloud.google.com
    Updated Jul 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:European%20Centre%20for%20Disease%20Prevention%20and%20Control (2020). COVID-19 Cases by Country [Dataset]. https://console.cloud.google.com/marketplace/product/european-cdc/covid-19-global-cases
    Explore at:
    Dataset updated
    Jul 23, 2020
    Dataset provided by
    Googlehttp://google.com/
    Description

    This dataset is maintained by the European Centre for Disease Prevention and Control (ECDC) and reports on the geographic distribution of COVID-19 cases worldwide. This data includes COVID-19 reported cases and deaths broken out by country. This data can be visualized via ECDC’s Situation Dashboard . More information on ECDC’s response to COVID-19 is available here . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This dataset is hosted in both the EU and US regions of BigQuery. See the links below for the appropriate dataset copy: US region EU region This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. Users of ECDC public-use data files must comply with data use restrictions to ensure that the information will be used solely for statistical analysis or reporting purposes.

  14. T

    CORONAVIRUS DEATHS by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths?continent=asia
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Apr 18, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  15. COVID-19 Tracking Germany

    • kaggle.com
    zip
    Updated Feb 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heads or Tails (2023). COVID-19 Tracking Germany [Dataset]. https://www.kaggle.com/datasets/headsortails/covid19-tracking-germany
    Explore at:
    zip(14492010 bytes)Available download formats
    Dataset updated
    Feb 7, 2023
    Authors
    Heads or Tails
    Area covered
    Germany
    Description

    Read the associated blogpost for a detailed description of how this dataset was prepared; plus extra code for producing animated maps.

    Context

    The 2019 Novel Coronavirus (COVID-19) continues to spread in countries around the world. This dataset provides daily updated number of reported cases & deaths in Germany on the federal state (Bundesland) and county (Landkreis/Stadtkreis) level. In April 2021 I added a dataset on vaccination progress. In addition, I provide geospatial shape files and general state-level population demographics to aid the analysis.

    Content

    The dataset consists of thre main csv files: covid_de.csv, demgraphics_de.csv, and covid_de_vaccines.csv. The geospatial shapes are included in the de_state.* files. See the column descriptions below for more detailed information.

    • covid_de.csv: COVID-19 cases and deaths which will be updated daily. The original data are being collected by Germany's Robert Koch Institute and can be download through the National Platform for Geographic Data (the latter site also hosts an interactive dashboard). I reshaped and translated the data (using R tidyverse tools) to make it better accessible. This blogpost explains how I prepared the data, and describes how to produces animated maps.

    • demographics_de.csv: General Demographic Data about Germany on the federal state level. Those have been downloaded from Germany's Federal Office for Statistics (Statistisches Bundesamt) through their Open Data platform GENESIS. The data reflect the (most recent available) estimates on 2018-12-31. You can find the corresponding table here.

    • covid_de_vaccines.csv: In April 2021 I added this file that contains the Covid-19 vaccination progress for Germany as a whole. It details daily doses, broken down cumulatively by manufacturer, as well as the cumulative number of people having received their first and full vaccination. The earliest data are from 2020-12-27.

    • de_state.*: Geospatial shape files for Germany's 16 federal states. Downloaded via Germany's Federal Agency for Cartography and Geodesy . Specifically, the shape file was obtained from this link.

    Column Description

    COVID-19 dataset covid_de.csv:

    • state: Name of the German federal state. Germany has 16 federal states. I removed converted special characters from the original data.

    • county: The name of the German Landkreis (LK) or Stadtkreis (SK), which correspond roughly to US counties.

    • age_group: The COVID-19 data is being reported for 6 age groups: 0-4, 5-14, 15-34, 35-59, 60-79, and above 80 years old. As a shortcut the last category I'm using "80-99", but there might well be persons above 99 years old in this dataset. This column has a few NA entries.

    • gender: Reported as male (M) or female (F). This column has a few NA entries.

    • date: The calendar date of when a case or death were reported. There might be delays that will be corrected by retroactively assigning cases to earlier dates.

    • cases: COVID-19 cases that have been confirmed through laboratory work. This and the following 2 columns are counts per day, not cumulative counts.

    • deaths: COVID-19 related deaths.

    • recovered: Recovered cases.

    Demographic dataset demographics_de.csv:

    • state, gender, age_group: same as above. The demographic data is available in higher age resolution, but I have binned it here to match the corresponding age groups in the covid_de.csv file.

    • population: Population counts for the respective categories. These numbers reflect the (most recent available) estimates on 2018-12-31.

    Vaccination progress dataset covid_de_vaccines.csv:

    • date: calendar date of vaccination

    • doses, doses_first, doses_second: Daily count of administered doses: total, 1st shot, 2nd shot.

    • pfizer_cumul, moderna_cumul, astrazeneca_cumul: Daily cumulative number of administered vaccinations by manufacturer.

    • persons_first_cumul, persons_full_cumul: Daily cumulative number of people having received their 1st shot and full vaccination, respectively.

    Acknowledgements

    All the data have been extracted from open data sources which are being gratefully acknowledged:

    • The [Robert ...
  16. Pre-existing conditions of people who died due to coronavirus (COVID-19),...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jul 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Pre-existing conditions of people who died due to coronavirus (COVID-19), England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/preexistingconditionsofpeoplewhodiedduetocovid19englandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 21, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.

  17. A

    Spatiotemporal data for 2019-Novel Coronavirus Covid-19 Cases and deaths

    • data.amerigeoss.org
    csv, pdf, txt
    Updated Jan 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). Spatiotemporal data for 2019-Novel Coronavirus Covid-19 Cases and deaths [Dataset]. https://data.amerigeoss.org/it/dataset/2019-novel-coronavirus-cases
    Explore at:
    txt(23645), csv(4916), pdf(15032), txt(7422), csv(795112664)Available download formats
    Dataset updated
    Jan 4, 2022
    Dataset provided by
    UN Humanitarian Data Exchange
    Description

    Data Overview

    This repository contains spatiotemporal data from many official sources for 2019-Novel Coronavirus beginning 2019 in Hubei, China ("nCoV_2019")

    You may not use this data for commercial purposes. If there is a need for commercial use of the data, please contact Metabiota at info@metabiota.com to obtain a commercial use license.

    The incidence data are in a CSV file format. One row in an incidence file contains a piece of epidemiological data extracted from the specified source.

    The file contains data from multiple sources at multiple spatial resolutions in cumulative and non-cumulative formats by confirmation status. To select a single time series of case or death data, filter the incidence dataset by source, spatial resolution, location, confirmation status, and cumulative flag.

    Data are collected, structured, and validated by Metabiota’s digital surveillance experts. The data structuring process is designed to produce the most reliable estimates of reported cases and deaths over space and time. The data are cleaned and provided in a uniform format such that information can be compared across multiple sources. Data are collected at the time of publication in the highest geographic and temporal resolutions available in the original report.

    This repository is intended to provide a single access point for data from a wide range of data sources. Data will be updated periodically with the latest epidemiological data. Metabiota maintains a database of epidemiological information for over two thousand high-priority infectious disease events. Please contact us (info@metabiota.com) if you are interested in licensing the complete dataset.

    Cumulative vs. Non-Cumulative Incidence

    Reporting sources provide either cumulative incidence, non-cumulative incidence, or both. If the source only provides a non-cumulative incidence value, the cumulative values are inferred using prior reports from the same source. Use the CUMULATIVE FLAG variable to subset the data to cumulative (TRUE) or non-cumulative (FALSE) values.

    Case Confirmation Status

    The incidence datasets include the confirmation status of cases and deaths when this information is provided by the reporting source. Subset the data by the CONFIRMATION_STATUS variable to either TOTAL, CONFIRMED, SUSPECTED, or PROBABLE to obtain the data of your choice.

    Total incidence values include confirmed, suspected, and probable incidence values. If a source only provides suspected, probable, or confirmed incidence, the total incidence is inferred to be the sum of the provided values. If the report does not specify confirmation status, the value is included in the "total" confirmation status value.

    The data provided under the "Metabiota Composite Source" often does not include suspected incidence due to inconsistencies in reporting cases and deaths with this confirmation status.

    Outcome - Cases vs. Deaths

    The incidence datasets include cases and deaths. Subset the data to either CASE or DEATH using the OUTCOME variable. It should be noted that deaths are included in case counts.

    Spatial Resolution

    Data are provided at multiple spatial resolutions. Data should be subset to a single spatial resolution of interest using the SPATIAL_RESOLUTION variable.

    Information is included at the finest spatial resolution provided to the original epidemic report. We also aggregate incidence to coarser geographic resolutions. For example, if a source only provides data at the province-level, then province-level data are included in the dataset as well as country-level totals. Users should avoid summing all cases or deaths in a given country for a given date without specifying the SPATIAL_RESOLUTION value. For example, subset the data to SPATIAL_RESOLUTION equal to “AL0” in order to view only the aggregated country level data.

    There are differences in administrative division naming practices by country. Administrative levels in this dataset are defined using the Google Geolocation API (https://developers.google.com/maps/documentation/geolocation/). For example, the data for the 2019-nCoV from one source provides information for the city of Beijing, which Google Geolocations indicates is a “locality.” Beijing is also the name of the municipality where the city Beijing is located. Thus, the 2019-nCoV dataset includes rows of data for both the city Beijing, as well as the municipality of the same name. If additional cities in the Beijing municipality reported data, those data would be aggregated with the city Beijing data to form the municipality Beijing data.

    Sources

    Data sources in this repository were selected to provide comprehensive spatiotemporal data for each outbreak. Data from a specific source can be selected using the SOURCE variable.

    In addition to the original reporting sources, Metabiota compiles multiple sources to generate the most comprehensive view of an outbreak. This compilation is stored in the database under the source name “Metabiota Composite Source.” The purpose of generating this new view of the outbreak is to provide the most accurate and precise spatiotemporal data for the outbreak. At this time, Metabiota does not incorporate unofficial - including media - sources into the “Metabiota Composite Source” dataset.

    Quality Assurance

    Data are collected by a team of digital surveillance experts and undergo many quality assurance tests. After data are collected, they are independently verified by at least one additional analyst. The data also pass an automated validation program to ensure data consistency and integrity.

    NonCommercial Use License

    • Creative Commons License Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

    • This is a human-readable summary of the Legal Code.

    • You are free:

      to Share — to copy, distribute and transmit the work to Remix — to adapt the work

    • Under the following conditions:

      Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

      Noncommercial — You may not use this work for commercial purposes.

      Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

    • With the understanding that:

      Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.

      Public Domain — Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.

      Other Rights — In no way are any of the following rights affected by the license: Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations; The author's moral rights; Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice — For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page.

    For details and the full license text, see http://creativecommons.org/licenses/by-nc-sa/3.0/

    Liability

    Metabiota shall in no event be liable for any decision taken by the user based on the data made available. Under no circumstances, shall Metabiota be liable for any damages (whatsoever) arising out of the use or inability to use the database. The entire risk arising out of the use of the database remains with the user.

  18. Data from: Worldwide differences in COVID-19-related mortality

    • scielo.figshare.com
    jpeg
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro Curi Hallal (2023). Worldwide differences in COVID-19-related mortality [Dataset]. http://doi.org/10.6084/m9.figshare.14284478.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Pedro Curi Hallal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Mortality statistics due to COVID-19 worldwide are compared, by adjusting for the size of the population and the stage of the pandemic. Data from the European Centre for Disease Control and Prevention, and Our World in Data websites were used. Analyses are based on number of deaths per one million inhabitants. In order to account for the stage of the pandemic, the baseline date was defined as the day in which the 10th death was reported. The analyses included 78 countries and territories which reported 10 or more deaths by April 9. On day 10, India had 0.06 deaths per million, Belgium had 30.46 and San Marino 618.78. On day 20, India had 0.27 deaths per million, China had 0.71 and Spain 139.62. On day 30, four Asian countries had the lowest mortality figures, whereas eight European countries had the highest ones. In Italy and Spain, mortality on day 40 was greater than 250 per million, whereas in China and South Korea, mortality was below 4 per million. Mortality on day 10 was moderately correlated with life expectancy, but not with population density. Asian countries presented much lower mortality figures as compared to European ones. Life expectancy was found to be correlated with mortality.

  19. f

    Table1_Different Trends in Excess Mortality in a Central European Country...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    • +1more
    xlsx
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krisztina Bogos; Zoltan Kiss; Anna Kerpel Fronius; Gabriella Temesi; Jenő Elek; Ildikó Madurka; Zsuzsanna Cselkó; Péter Csányi; Zsolt Abonyi-Tóth; György Rokszin; Zsófia Barcza; Judit Moldvay (2023). Table1_Different Trends in Excess Mortality in a Central European Country Compared to Main European Regions in the Year of the COVID-19 Pandemic (2020): a Hungarian Analysis.XLSX [Dataset]. http://doi.org/10.3389/pore.2021.1609774.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Frontiers
    Authors
    Krisztina Bogos; Zoltan Kiss; Anna Kerpel Fronius; Gabriella Temesi; Jenő Elek; Ildikó Madurka; Zsuzsanna Cselkó; Péter Csányi; Zsolt Abonyi-Tóth; György Rokszin; Zsófia Barcza; Judit Moldvay
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hungary
    Description

    Objective: This study examined cumulative excess mortality in European countries in the year of the Covid-19 pandemic and characterized the dynamics of the pandemic in different countries, focusing on Hungary and the Central and Eastern European region.Methods: Age-standardized cumulative excess mortality was calculated based on weekly mortality data from the EUROSTAT database, and was compared between 2020 and the 2016–2019 reference period in European countries.Results: Cumulate weekly excess mortality in Hungary was in the negative range until week 44. By week 52, it reached 9,998 excess deaths, corresponding to 7.73% cumulative excess mortality vs. 2016–2019 (p-value = 0.030 vs. 2016–2019). In Q1, only Spain and Italy reported excess mortality compared to the reference period. Significant increases in excess mortality were detected between weeks 13 and 26 in Spain, United Kingdom, Belgium, Netherland and Sweden. Romania and Portugal showed the largest increases in age-standardized cumulative excess mortality in the Q3. The majority of Central and Eastern European countries experienced an outstandingly high impact of the pandemic in Q4 in terms of excess deaths. Hungary ranked 11th in cumulative excess mortality based on the latest available data of from the EUROSTAT database.Conclusion: Hungary experienced a mortality deficit in the first half of 2020 compared to previous years, which was followed by an increase in mortality during the second wave of the COVID-19 pandemic, reaching 7.7% cumulative excess mortality by the end of 2020. The excess was lower than in neighboring countries with similar dynamics of the pandemic.

  20. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +1more
    csv, docx, html, xlsx
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths

CORONAVIRUS DEATHS by Country Dataset

CORONAVIRUS DEATHS by Country Dataset (2025)

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
csv, excel, xml, jsonAvailable download formats
Dataset updated
Mar 4, 2020
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2025
Area covered
World
Description

This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

Search
Clear search
Close search
Google apps
Main menu