98 datasets found
  1. Global Country Information Dataset 2023

    • kaggle.com
    zip
    Updated Jul 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2023). Global Country Information Dataset 2023 [Dataset]. https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023
    Explore at:
    zip(24063 bytes)Available download formats
    Dataset updated
    Jul 8, 2023
    Authors
    Nidula Elgiriyewithana ⚡
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    DOI

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.

    Data Source: This dataset was compiled from multiple data sources

    If this was helpful, a vote is appreciated ❤️ Thank you 🙂

  2. Land Cover 2050 - Regional

    • africageoportal.com
    • uneca.africageoportal.com
    • +8more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Regional [Dataset]. https://www.africageoportal.com/datasets/ec4d1d1fe03a4e62997a7a9397cf644d
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this regional model layer when performing analysis within a single continent. This layer displays a single global land cover map that is modeled by region for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  3. T

    Land Use_data

    • opendata.utah.gov
    Updated Jan 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Land Use_data [Dataset]. https://opendata.utah.gov/dataset/Land-Use_data/9qcj-4mzv
    Explore at:
    kml, csv, application/geo+json, xml, xlsx, kmzAvailable download formats
    Dataset updated
    Jan 13, 2020
    Description

    This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the Northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the Southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe’s Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe’s Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS.

  4. 🌱Forest coverage by countries from 1990-2020

    • kaggle.com
    zip
    Updated Sep 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raghu M (2022). 🌱Forest coverage by countries from 1990-2020 [Dataset]. https://www.kaggle.com/datasets/raghurayirath/population-growth-vs-forest-cover
    Explore at:
    zip(98869 bytes)Available download formats
    Dataset updated
    Sep 15, 2022
    Authors
    Raghu M
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    Column description | Dataset Glossary (Column-Wise)

    =========================

    Country Name :Country name Country Code :Country Code Capital :Capital of the country Continent :Continent Area (km²) :Area of the country (km²) Population Density (per km²) :Population Density of the country (per km²) Population Growth Rate :Population Growth Rate of the country World Population Percentage :World Population Percentage Population Rank :Population Rank Forest Area 1990 :Forest coverage recorded in 1990 (% of land area) Forest Area 1991 :Forest coverage recorded in 1991(% of land area) Forest Area 1992 :Forest coverage recorded in 1992(% of land area) Forest Area 1993 :Forest coverage recorded in 1993(% of land area) Forest Area 1994 :Forest coverage recorded in 1994(% of land area) Forest Area 1995 :Forest coverage recorded in 1995(% of land area) Forest Area 1996 :Forest coverage recorded in 1996(% of land area) Forest Area 1997 :Forest coverage recorded in 1997(% of land area) Forest Area 1998 :Forest coverage recorded in 1998(% of land area) Forest Area 1999 :Forest coverage recorded in 1999(% of land area) Forest Area 2000 :Forest coverage recorded in 2000(% of land area) Forest Area 2001 :Forest coverage recorded in 2001(% of land area) Forest Area 2002 :Forest coverage recorded in 2002(% of land area) Forest Area 2003 :Forest coverage recorded in 2003(% of land area) Forest Area 2004 :Forest coverage recorded in 2004(% of land area) Forest Area 2005 :Forest coverage recorded in 2005(% of land area) Forest Area 2006 :Forest coverage recorded in 2006(% of land area) Forest Area 2007 :Forest coverage recorded in 2007(% of land area) Forest Area 2008 :Forest coverage recorded in 2008(% of land area) Forest Area 2009 :Forest coverage recorded in 2009(% of land area) Forest Area 2010 :Forest coverage recorded in 2010(% of land area) Forest Area 2011 :Forest coverage recorded in 2011(% of land area) Forest Area 2012 :Forest coverage recorded in 2012(% of land area) Forest Area 2013 :Forest coverage recorded in 2013(% of land area) Forest Area 2014 :Forest coverage recorded in 2014(% of land area) Forest Area 2015 :Forest coverage recorded in 2015(% of land area) Forest Area 2016 :Forest coverage recorded in 2016(% of land area) Forest Area 2017 :Forest coverage recorded in 2017(% of land area) Forest Area 2018 :Forest coverage recorded in 2018(% of land area) Forest Area 2019 :Forest coverage recorded in 2019(% of land area) Forest Area 2020 :Forest coverage recorded in 2020(% of land area)

    Content

    =============

    In this Dataset, We have forest cover area data recorded from 1990 to 2020 for every Country/Territory in the world. Along with dataset contains different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

    Acknowledgement

    ==============

    This Dataset is created from https://data.worldbank.org/ If you want to learn more, you can visit the Website.

    Cover Photo by: https://www.istockphoto.com/

  5. Land Cover 2050 - Global

    • rwanda.africageoportal.com
    • pacificgeoportal.com
    • +11more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://rwanda.africageoportal.com/datasets/cee96e0ada6541d0bd3d67f3f8b5ce63
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  6. d

    Data from: Land Cover Trends Dataset, 2000-2011

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Land Cover Trends Dataset, 2000-2011 [Dataset]. https://catalog.data.gov/dataset/land-cover-trends-dataset-2000-2011
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 km2 in the Northern Basin and Range Ecoregion to a high of 78,782 km2 in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it is collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format. U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 square km in the Northern Basin and Range Ecoregion to a high of 78,782 square km in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it’s collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format.

  7. G

    Land area by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Oct 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Land area by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/land_area/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Oct 16, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 196 countries was 656095 sq. km. The highest value was in Russia: 16376870 sq. km and the lowest value was in Monaco: 2 sq. km. The indicator is available from 1961 to 2023. Below is a chart for all countries where data are available.

  8. World_Countries_Dataset

    • kaggle.com
    zip
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamza edit (2025). World_Countries_Dataset [Dataset]. https://www.kaggle.com/datasets/hamzaedit/world-countries-dataset
    Explore at:
    zip(10246 bytes)Available download formats
    Dataset updated
    Jul 22, 2025
    Authors
    Hamza edit
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    **🌍 World Countries Dataset This World Countries Dataset contains detailed information about countries across the globe, offering insights into their geographic, demographic, and economic characteristics.

    It includes various features such as population, area, GDP, languages, and regional classifications. This dataset is ideal for projects related to data visualization, statistical analysis, geographical studies, or machine learning applications such as clustering or classification of countries.

    This dataset was manually compiled/collected from reliable open data sources (e.g., Wikipedia, World Bank, or other governmental datasets).

    **🔍 Sample Questions Explored Using Python: - Q. 1) Which countries have the highest and lowest population? - Q. 2) What is the average area (in sq. km) of countries in each region? - Q. 3) Which countries have more than 100 million population and GDP above $1 trillion? - Q. 4) Which languages are most commonly spoken across countries? - Q. 5) Show a bar graph comparing GDPs of G7 nations. - Q. 6) How many countries are there in each continent or region? - Q. 7) Which countries have both a high population density and low GDP per capita? - Q. 8) Create a world map visualization of population or GDP distribution. - Q. 9) What are the top 10 most densely populated countries? - Q. 10) How many landlocked countries are there in the world?

    **🧾 Features / Columns in the Dataset: - Country: The name of the country (e.g., "Pakistan", "France").

    • Capital: The capital city of the country.

    • Region: Broad geographical region (e.g., "Asia", "Europe").

    • Subregion: More specific geographical grouping (e.g., "Southern Asia").

    • Population: Total population of the country.

    • Area (sq. km): Total land area in square kilometers.

    • Population Density: Number of people per square kilometer.

    • GDP (USD): Gross Domestic Product (in U.S. dollars).

    • GDP per Capita: GDP divided by the population.

    • Official Languages: Officially recognized language(s) spoken.

    • Currency: Name of the currency used.

    • Timezones: Timezones in which the country falls.

    • Borders: List of bordering countries (if any).

    • Landlocked: Whether the country is landlocked (Yes/No).

    • Latitude / Longitude: Coordinates for geographical plotting.

  9. r

    Corine Land Cover map 1

    • opendata.rcmrd.org
    Updated Aug 8, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Environment Agency (2013). Corine Land Cover map 1 [Dataset]. https://opendata.rcmrd.org/maps/6866b2f3a44c4ee3bde8edd1b0782fb2
    Explore at:
    Dataset updated
    Aug 8, 2013
    Dataset authored and provided by
    European Environment Agency
    Area covered
    Description

    Most of the countries of Europe are encompassed in this land cover map, which provides dynamic access to data from the three layers of Corine Land Cover (1990, 2000 and 2006). Choose a layer for each of the two maps from the map legend pull-down menu (open and close from the triangular icons). Zoom into your area of interest and use the slider bar to see land cover changes.Data are available as 100 meter pixel raster images at small scales up to 1:800.000 and at higher scales as vectors. A seperate dataset and map showing only Corine Land Cover 2000-2006 changes is also available. CORINE Land Cover (CLC) is a geographic land cover/land use database encompassing most of the countries of Europe. In 1985 the Corine programme was initiated in the European Union. Corine means 'coordination of information on the environment' and it was a prototype project working on many different environmental issues. The Corine databases and several of its programmes have been taken over by the EEA. One of these is an inventory of land cover in 44 classes organised hierarchically in three levels, and presented as a cartographic product, at a scale of 1:100 000. The first level (5 classes) corresponds to the main categories of the land cover/land use (artificial areas, agricultural land, forests and semi-natural areas, wetlands, water surfaces). The second level (15 classes) covers physical and physiognomic entities at a higher level of detail (urban zones, forests, lakes, etc), finally level 3 is composed of 44 classes. CLC was elaborated based on the visual interpretation of satellite images (SPOT, LANDSAT TM and MSS). Ancillary data (aerial photographs, topographic or vegetation maps, statistics, local knowledge) were used to refine interpretation and the assignment of the territory into the categories of the CORINE Land Cover nomenclature. The smallest surfaces mapped (minimum mapping units) correspond to 25 hectares. Linear features less than 100 m in width are not considered. The scale of the output product was fixed at 1:100.000. Thus, the location precision of the CLC database is 100 m. This database is operationally available for most areas of Europe. Original inventories, based on and interpreted from satellite imagery as well as ancillary information sources, are stored within national institutions. One of the major tasks undertaken in the framework of the Corine programme has been the establishment of a computerised inventory on the land cover. Data on land cover is necessary for the environment policy as well as for other policies such as regional development and agriculture. At the same time it provides one of the basic inputs for the production of more complex information on other themes (soil erosion, pollutant emission into the air by the vegetation, etc.). The objectives of the land cover project are: - to provide those responsible for and interested in the European policy on the environment with quantitative data on land cover, consistent and comparable across Europe. Geographical coverage: Varies depending on layer:Corine Land Cover 1990 raster data - version 16 (04/2012)Corine Land Cover 2000 seamless vector data - version 16 (04/2012)Corine Land Cover 2006 seamless vector data - version 16 (04/2012)

  10. d

    North American Land Change Monitoring System (NALCMS) Products

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). North American Land Change Monitoring System (NALCMS) Products [Dataset]. https://catalog.data.gov/dataset/north-american-land-change-monitoring-system-nalcms-products
    Explore at:
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The 2020 North American Land Cover 30-meter dataset was produced as part of the North American Land Change Monitoring System (NALCMS), a trilateral effort between Natural Resources Canada, the United States Geological Survey, and three Mexican organizations including the National Institute of Statistics and Geography (Instituto Nacional de Estadística y Geografía), National Commission for the Knowledge and Use of the Biodiversity (Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad), and the National Forestry Commission of Mexico (Comisión Nacional Forestal). The collaboration is facilitated by the Commission for Environmental Cooperation, an international organization created by the Canada, Mexico, and United States governments under the North American Agreement on Environmental Cooperation to promote environmental collaboration between the three countries. The general objective of NALCMS is to devise, through collective effort, a harmonized multi-scale land cover monitoring approach which ensures high accuracy and consistency in monitoring land cover changes at the North American scale and which meets each country’s specific requirements. This 30-meter dataset of North American Land Cover reflects land cover information for 2020 from Mexico and Canada, 2019 over the conterminous United States and 2021 over Alaska. Each country developed its own classification method to identify Land Cover classes and then provided an input layer to produce a continental Land Cover map across North America. Canada, Mexico, and the United States developed their own 30-meter land cover products; see specific sections on data generation below. The main inputs for image classification were 30-meter Landsat 8 Collection 2 Level 1 data in the three countries (Canada, the United States and Mexico). Image selection processes and reduction to specific spectral bands varied among the countries due to study-site-specific requirements. While Canada selected most images from the year 2020 with a few from 2019 and 2021, the Conterminous United States employed mainly images from 2019, while Alaska land cover maps are mainly based on the use of images from 2021. The land cover map for Mexico was based on land cover change detection between 2015 and 2020 Mexico Landsat 8 mosaics. In order to generate a seamless and consistent land cover map of North America, national maps were generated for Canada by the CCRS; for Mexico by CONABIO, INEGI, and CONAFOR; and for the United States by the USGS. Each country chose their own approaches, ancillary data, and land cover mapping methodologies to create national datasets. This North America dataset was produced by combining the national land cover datasets. The integration of the three national products merged four Land Cover map sections, Alaska, Canada, the conterminous United States and Mexico.

  11. Land Cover 2050 - Country

    • africageoportal.com
    • republiqueducongo.africageoportal.com
    Updated May 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Country [Dataset]. https://www.africageoportal.com/datasets/3cce97cba8394287bcaf60f7618a5500
    Explore at:
    Dataset updated
    May 14, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This item is in mature support as of June 2026 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.Use this country model layer when performing analysis within a single country. This layer displays a single global land cover map that is modeled by country for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create these predictions.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: GlobalCell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.”This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.What these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegionsSlopeTemperature Qualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil Texture Were small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican City Index to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover.1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  12. Number of data centers worldwide 2025, by country or territory

    • statista.com
    Updated Nov 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of data centers worldwide 2025, by country or territory [Dataset]. https://www.statista.com/statistics/1228433/data-centers-worldwide-by-country/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    As of November 2025, there were a reported 4,165 data centers in the United States, the most of any country worldwide. A further 499 were located in the United Kingdom, while 487 were located in Germany. What is a data center? Data centers are facilities designed to store and compute vast amounts of data efficiently and securely. Growing in importance amid the rise of cloud computing and artificial intelligence, data centers form the core infrastructure powering global digital transformation. Modern data centers consist of critical computing hardware such as servers, storage systems, and networking equipment organized into racks, alongside specialized secondary infrastructure providing power, cooling, and security. AI data centers Data centers are vital for artificial intelligence, with the world’s leading technology companies investing vast sums in new facilities across the globe. Purpose-built AI data centers provide the immense computing power required to train the most advanced AI models, as well as to process user requests in real time, a task known as inference. Increasing attention has therefore turned to the location of these powerful facilities, as governments grow more concerned with AI sovereignty. At the same time, rapid data center expansion has sparked a global debate over resource use, including land, energy, and water, as modern facilities begin to strain local infrastructure.

  13. G

    Percent agricultural land by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Apr 24, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Percent agricultural land by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/Percent_agricultural_land/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Apr 24, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2022
    Area covered
    World
    Description

    The average for 2022 based on 189 countries was 38.55 percent. The highest value was in Turkmenistan: 84.55 percent and the lowest value was in Suriname: 0.45 percent. The indicator is available from 1961 to 2022. Below is a chart for all countries where data are available.

  14. T

    1:100,000 land use dataset of Xinjiang Uygur Autonomous Region (1980s)

    • casearthpoles.tpdc.ac.cn
    • poles.tpdc.ac.cn
    • +2more
    zip
    Updated Jun 22, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiyuan LIU; Dafang ZHUANG; Jianhua WANG; Wancun ZHOU; Shixin WU (2013). 1:100,000 land use dataset of Xinjiang Uygur Autonomous Region (1980s) [Dataset]. http://doi.org/10.11888/Geogra.tpdc.270647
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 22, 2013
    Dataset provided by
    TPDC
    Authors
    Jiyuan LIU; Dafang ZHUANG; Jianhua WANG; Wancun ZHOU; Shixin WU
    Area covered
    Description

    This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.

  15. d

    Data from: Total and Partial Factor Productivity in Developing Countries

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Food Policy Research Institute (IFPRI) (2023). Total and Partial Factor Productivity in Developing Countries [Dataset]. http://doi.org/10.7910/DVN/2S8BZ6
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    International Food Policy Research Institute (IFPRI)
    Time period covered
    Jan 1, 1990 - Jan 1, 2013
    Description

    Total factor productivity (TFP) is the ratio of total output (crop and livestock products) to total production inputs (land, labor, capital and materials). An increase in TFP implies that more output is being produced from a constant amount of resources used in the production process. In the long run, TFP is the main driver of growth in agriculture and can be affected by policies and investment. Partial factor productivity (PFP) measures, such as labor and land productivity, are often used to measure agricultural prodcution performance because they are easy to estimate. These measures of productivity normally show higher rates of growth than TFP because growth in land and labor productivity could result from more intensive use of inputs, including fertilizer and machinery, rather than TFP increase. If productivity increases without the addition of more inputs, then the only source of growth is TFP. The data file provides estimates of IFPRI's TFP and PFP measures for developing countries for three-sub-periods between 1990 and 2011(1991-2000,2001-2007 and 2008-2013). These TFP and PFP estimates were generated using data from the Food and Agriculture Organization of the United Nations (FAO) on outputs and inputs. The output values are the FAO-constructed gross agricultural outputs, measured in constant 2004-2006 US dollars and smoothed using the Hodrick-Prescott filter. Each output v alue is a composite of 190 crop and livestock commodities aggregated using a constant set of global average prices from 2004-2006. Inputs include agricultural land, measured by the sum, in hectares, of cropland and permanent pasture; labor, measured by the number of animals in cattle equivalents; machinery, measured by the total amount of horsepower available from four-wheel tractors, pedestrian-operated tractors, and combine-threshers in use; and fertilizer, measured by tons of fertilizer nutrients used. The dataset of outputs and inputs was checked and cleaned using different statistical techniques. TFP estimates were obtained using Data Envelopment Analysis (DEA) techniques. These techniques have been extensively used because they make TFPs easy to compute, do not involve restrictive assumptions regarding economic behavior, such as cost minimization or profit maximization. On the other hand, DEA productivity estimates are sensitive to data noise and outliers and can suffer from the probel of ""unusual"" weights that are higher or lower than expected when aggregating inputs to meas ure TFP. Given these limitations, outlier detection methods were used to determine influential observations in the dataset and input weights were allowed to vary only within a certain range of expected values because specific lower and upper bounds were imposed for each input in different regions. Results are also afected by data characteristics and quality issues. In particular, the data series on fertilizer and machinery show high volatility and could result in high variablity of TFP estimates for some countries.

  16. P

    Land areas of Pacific Island Countries and Territories

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Aug 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). Land areas of Pacific Island Countries and Territories [Dataset]. https://pacificdata.org/data/dataset/land-areas-of-pacific-island-countries-and-territories-df-land-use
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 19, 2025
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 1961 - Dec 31, 2023
    Area covered
    Pacific Ocean
    Description

    Statistics on land areas from the Food and Agriculture Organization of the United Nations (FAO) for Pacific Islands Countries and Territories.

    Find more Pacific data on PDH.stat.

  17. T

    1:100,000 land use dataset of Sichuan province (1995)

    • poles.tpdc.ac.cn
    • data.tpdc.ac.cn
    zip
    Updated Nov 21, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jianhua WANG; Jiyuan LIU; Dafang ZHUANG; Wancun ZHOU; Shixin WU (2013). 1:100,000 land use dataset of Sichuan province (1995) [Dataset]. http://doi.org/10.11888/Socioeco.tpdc.270656
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 21, 2013
    Dataset provided by
    TPDC
    Authors
    Jianhua WANG; Jiyuan LIU; Dafang ZHUANG; Wancun ZHOU; Shixin WU
    Area covered
    Sichuan,
    Description

    This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.

  18. G

    Property rights by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 17, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Property rights by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/herit_property_rights/
    Explore at:
    excel, csv, xmlAvailable download formats
    Dataset updated
    Jan 17, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1995 - Dec 31, 2025
    Area covered
    World
    Description

    The average for 2025 based on 182 countries was 53 points. The highest value was in Finland: 100 points and the lowest value was in Somalia: 0 points. The indicator is available from 1995 to 2025. Below is a chart for all countries where data are available.

  19. Country's Actual Area Dataset

    • kaggle.com
    zip
    Updated Dec 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpit Singh (2024). Country's Actual Area Dataset [Dataset]. https://www.kaggle.com/arpitsinghaiml/countrys-actual-area-dataset
    Explore at:
    zip(4583 bytes)Available download formats
    Dataset updated
    Dec 14, 2024
    Authors
    Arpit Singh
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset provides a comprehensive list of countries and their respective land and water areas. It includes a detailed comparison of country sizes as depicted on the Mercator projection versus their true geographic proportions. This dataset is inspired by the limitations of traditional map projections and aims to provide a more accurate representation of global land masses.

    File Information: - true-size-of-countries-2024.csv: A CSV file containing a list of countries, their land area, water area, total area, and percentage of water area.

  20. n

    Jurisdictional Unit (Public) - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Jurisdictional Unit (Public) - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/jurisdictional-unit-public
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Jurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nidula Elgiriyewithana ⚡ (2023). Global Country Information Dataset 2023 [Dataset]. https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023
Organization logo

Global Country Information Dataset 2023

A Comprehensive Dataset Empowering In-Depth Analysis and Cross-Country Insights

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
zip(24063 bytes)Available download formats
Dataset updated
Jul 8, 2023
Authors
Nidula Elgiriyewithana ⚡
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Description

This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

DOI

Key Features

  • Country: Name of the country.
  • Density (P/Km2): Population density measured in persons per square kilometer.
  • Abbreviation: Abbreviation or code representing the country.
  • Agricultural Land (%): Percentage of land area used for agricultural purposes.
  • Land Area (Km2): Total land area of the country in square kilometers.
  • Armed Forces Size: Size of the armed forces in the country.
  • Birth Rate: Number of births per 1,000 population per year.
  • Calling Code: International calling code for the country.
  • Capital/Major City: Name of the capital or major city.
  • CO2 Emissions: Carbon dioxide emissions in tons.
  • CPI: Consumer Price Index, a measure of inflation and purchasing power.
  • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
  • Currency_Code: Currency code used in the country.
  • Fertility Rate: Average number of children born to a woman during her lifetime.
  • Forested Area (%): Percentage of land area covered by forests.
  • Gasoline_Price: Price of gasoline per liter in local currency.
  • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
  • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
  • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
  • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
  • Largest City: Name of the country's largest city.
  • Life Expectancy: Average number of years a newborn is expected to live.
  • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
  • Minimum Wage: Minimum wage level in local currency.
  • Official Language: Official language(s) spoken in the country.
  • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
  • Physicians per Thousand: Number of physicians per thousand people.
  • Population: Total population of the country.
  • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
  • Tax Revenue (%): Tax revenue as a percentage of GDP.
  • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
  • Unemployment Rate: Percentage of the labor force that is unemployed.
  • Urban Population: Percentage of the population living in urban areas.
  • Latitude: Latitude coordinate of the country's location.
  • Longitude: Longitude coordinate of the country's location.

Potential Use Cases

  • Analyze population density and land area to study spatial distribution patterns.
  • Investigate the relationship between agricultural land and food security.
  • Examine carbon dioxide emissions and their impact on climate change.
  • Explore correlations between economic indicators such as GDP and various socio-economic factors.
  • Investigate educational enrollment rates and their implications for human capital development.
  • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
  • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
  • Investigate the role of taxation and its impact on economic development.
  • Explore urbanization trends and their social and environmental consequences.

Data Source: This dataset was compiled from multiple data sources

If this was helpful, a vote is appreciated ❤️ Thank you 🙂

Search
Clear search
Close search
Google apps
Main menu