100+ datasets found
  1. World Population Dataset

    • kaggle.com
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amit Kumar Sahu (2022). World Population Dataset [Dataset]. https://www.kaggle.com/datasets/asahu40/world-population-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 2, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Amit Kumar Sahu
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.

    1. Continent Population Characteristics Analysis.
    2. Analysis of Countries.
      • Top 10 Most Populated and Least Populated Countries
      • Top 10 Largest and Smallest Countries as per Area
      • Population Growth From 1970 to 2020 (50 Years)
    3. Countries Represent % Of World Population.
      • Countries that represent below 0.1% of the World Population.
      • Countries that represent above 2% of the world Population
      • Top 10 Over Populated Countries based on Density Per Sq KM.
      • Top 10 Least Populated Countries based on Density Per Sq KM.
  2. World Population

    • kaggle.com
    Updated Dec 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    khaIid (2021). World Population [Dataset]. https://www.kaggle.com/datasets/khaiid/world-population/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 29, 2021
    Dataset provided by
    Kaggle
    Authors
    khaIid
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Area covered
    World
    Description

    Content

    The dataset has 6 columns described as following:

    Rank: Country rank by population

    Country: Country name

    Region: Country region

    Population: Country population

    Percentage: Percentage of population worldwide

    Date: Date when population was measured

    Questions to be answered

    What is the population of each region ? Which country has the most population in each region ? What is the percentage of the first 10 countries ?

  3. e

    The United Nations Population Statistics Database

    • knb.ecoinformatics.org
    • search.dataone.org
    • +1more
    Updated Oct 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K. Kovacs; E. Horvath (2022). The United Nations Population Statistics Database [Dataset]. http://doi.org/10.15485/1464266
    Explore at:
    Dataset updated
    Oct 27, 2022
    Dataset provided by
    ESS-DIVE
    Authors
    K. Kovacs; E. Horvath
    Time period covered
    Jan 1, 1950 - Dec 31, 2004
    Area covered
    United Nations
    Description

    The United Nations Energy Statistics Database (UNSTAT) is a comprehensive collection of international energy and demographic statistics prepared by the United Nations Statistics Division. The 2004 version represents the latest in the series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The database contains comprehensive energy statistics for more than 215 countries or areas for production, trade and intermediate and final consumption (end-use) for primary and secondary conventional, non-conventional and new and renewable sources of energy. Mid-year population estimates are included to enable the computation of per capita data. Annual questionnaires sent to national statistical offices serve as the primary source of information. Supplementary data are also compiled from national, regional and international statistical publications. The Statistics Division prepares estimates where official data are incomplete or inconsistent. The database is updated on a continuous basis as new information and revisions are received. This metadata file represents the population statistics during the expressed time. For more information about the country site codes, click this link to the United Nations "Standard country or area codes for statistical use": https://unstats.un.org/unsd/methodology/m49/overview/

  4. Global Country Information 2023

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nidula Elgiriyewithana; Nidula Elgiriyewithana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.
  5. k

    Population Ranking

    • datasource.kapsarc.org
    Updated Sep 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Population Ranking [Dataset]. https://datasource.kapsarc.org/explore/dataset/worldbank-population/
    Explore at:
    Dataset updated
    Sep 5, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Explore the World Bank Population dataset to access rankings and insights on global population statistics. Click here for extensive data on various countries.

    Rankings

    Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, San Marino, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkmenistan, Tuvalu, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, ZimbabweFollow data.kapsarc.org for timely data to advance energy economics research..

  6. List of Countries and their Population

    • kaggle.com
    Updated Apr 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anah Chukwujekwu (2025). List of Countries and their Population [Dataset]. https://www.kaggle.com/datasets/anahchukwujekwu/list-of-countries-and-their-population/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 12, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Anah Chukwujekwu
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    🌍 Countries and Dependencies by Population (2025)

    This dataset provides a comprehensive list of countries and dependent territories worldwide, along with their most recent population estimates.The data is sourced from the Wikipedia page List of countries and dependencies by population, which compiles figures from national statistical offices and the United Nations Population Division

    📄 Dataset Overview

    • Country/Territory Name Includes sovereign states, dependent territories, and regions with limited recognition.
    • Population Latest available estimates, primarily from national censuses or UN projection.
    • Percentage of World Population Each country's population as a percentage of the global total.
    • Date of Estimate The reference date for the population figure.
    • Notes Additional information, such as inclusion or exclusion of certain region.

    🧠 Potential Use Cases

    • Analyzing global population distribution and trends.- Creating visualizations like choropleth maps.- Normalizing other datasets by population for per capita analysis.- Educational purposes in demographics and geography.

    📌 Notes

    • The dataset includes territories and regions with limited recognition to provide a complete global perspective.
    • Population figures are based on the most recent estimates available as of 225.
    • Data may be subject to revisions as new census information becomes available.
  7. World Population by Country 2023

    • kaggle.com
    Updated Aug 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2023). World Population by Country 2023 [Dataset]. https://www.kaggle.com/datasets/joebeachcapital/world-population-by-country-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 6, 2023
    Dataset provided by
    Kaggle
    Authors
    Joakim Arvidsson
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    This list includes both countries and dependent territories. Data based on the latest United Nations Population Division estimates.

    • Country - Name of countries and dependent territories.
    • Population2023 - Population in the year 2023
    • YearlyChange - Percentage Yearly Change in Population
    • NetChange - Net Change in Population
    • Density(P/Km²)- Population density (population per square km)
    • Land Area(Km²) - Land area of countries / dependent territories.
    • Migrants(net) - Total number of migrants
    • Fert.Rate - Fertility rate
    • Med.Age - Median age of the population
    • UrbanPop%- Percentage of urban population
    • WorldShare - Population share
  8. d

    Africa Population Distribution Database

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deichmann, Uwe; Nelson, Andy (2014). Africa Population Distribution Database [Dataset]. https://search.dataone.org/view/Africa_Population_Distribution_Database.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Deichmann, Uwe; Nelson, Andy
    Time period covered
    Jan 1, 1960 - Dec 31, 1997
    Area covered
    Description

    The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.

    This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.

    African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.

    For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.

    References:

    Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.

    Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.

    UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.

    WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.

  9. World Population by Countries (2025)

    • kaggle.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    Kaggle
    Authors
    Samith Chimminiyan
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Description

    This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

    Attribute Information

    • Rank : Country Rank by Population.
    • Country : Name of the Country.
    • Population(2024) : Current Population of each Country.
    • Yearly Change : Percentage Yearly Change in Population.
    • Net Change : Net change in the Population.
    • Density (P/Km²) : Population density (population per square km)
    • Land Area(Km²) : Total land area of the Country.
    • Migrants (net) : Total number of migrants.
    • Fertility Rate : Fertility rate
    • Median Age : Median age of the population
    • Urban Pop % : Percentage of urban population
    • World Share : Share to the word with population.

    Acknowledgements

    https://www.worldometers.info/world-population/population-by-country/

    Image by Gerd Altmann from Pixabay

  10. A

    ‘Population by Country - 2020’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Population by Country - 2020’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-population-by-country-2020-d553/0140d876/?iid=016-721&v=presentation
    Explore at:
    Dataset updated
    Nov 21, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Population by Country - 2020’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/tanuprabhu/population-by-country-2020 on 21 November 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.

    Content

    Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.

    Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.

    https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">

    You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.

    Below is the code that I used to scrape the code from the website

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">

    Acknowledgements

    Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.

    Inspiration

    As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting

    --- Original source retains full ownership of the source dataset ---

  11. N

    Town And Country, MO Population Breakdown by Gender and Age Dataset: Male...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Town And Country, MO Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e20538d3-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Town and Country
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Town And Country by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Town And Country. The dataset can be utilized to understand the population distribution of Town And Country by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Town And Country. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Town And Country.

    Key observations

    Largest age group (population): Male # 60-64 years (538) | Female # 45-49 years (537). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Town And Country population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Town And Country is shown in the following column.
    • Population (Female): The female population in the Town And Country is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Town And Country for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country Population by Gender. You can refer the same here

  12. Global City Population Estimates - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Mar 23, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). Global City Population Estimates - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/global-city-population-estimates
    Explore at:
    Dataset updated
    Mar 23, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Population of Urban Agglomerations with 300,000 Inhabitants or more in 2014, by city, 1950-2030 (thousands). Data for 1,692 cities contained in the Excel file. Note: Each country has its own definition of what is 'urban' and therefore use exercise caution when comparing cities in different countries. Data available from the United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, CD-ROM Edition. Further detail of population estimates, land area, and population density for world urban areas with over 500,000 people (924 areas) is available with Demographia's World Urban Areas report (2014). Much of this data is based on the UN urban agglomerations, though a range of other sources are also used.

  13. D

    Who fears and who welcomes population decline? [Dataset]

    • dataverse.nl
    application/x-stata +2
    Updated Feb 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    H.P Van Dalen; K. Henkens; H.P Van Dalen; K. Henkens (2023). Who fears and who welcomes population decline? [Dataset] [Dataset]. http://doi.org/10.34894/XAZOO7
    Explore at:
    doc(413696), application/x-stata(396361), docx(40530), doc(41984)Available download formats
    Dataset updated
    Feb 13, 2023
    Dataset provided by
    DataverseNL
    Authors
    H.P Van Dalen; K. Henkens; H.P Van Dalen; K. Henkens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    European countries are experiencing population decline and the tacit assumption in most analyses is that the decline may have detrimental welfare effects. In this paper we use a survey among the population in the Netherlands to discover whether population decline is always met with fear. A number of results stand out: population size preferences differ by geographic proximity: at a global level the majority of respondents favors a (global) population decline, but closer to home one supports a stationary population. Population decline is clearly not always met with fear: 31 percent would like the population to decline at the national level and they generally perceive decline to be accompanied by immaterial welfare gains (improvement environment) as well as material welfare losses (tax increases, economic stagnation). In addition to these driving forces it appears that the attitude towards immigrants is a very strong determinant at all geographical levels: immigrants seem to be a stronger fear factor than population decline.

  14. Population by Country - 2020

    • kaggle.com
    Updated Sep 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanu N Prabhu (2020). Population by Country - 2020 [Dataset]. https://www.kaggle.com/datasets/tanuprabhu/population-by-country-2020/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 3, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tanu N Prabhu
    Description

    Context

    I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.

    Content

    Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.

    Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.

    https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">

    You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.

    Below is the code that I used to scrape the code from the website

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">

    Acknowledgements

    Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.

    Inspiration

    As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting

  15. o

    Ten Most Populous Countries, 2020 to 2050 - Datasets - Open Data Pakistan

    • opendata.com.pk
    Updated May 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Ten Most Populous Countries, 2020 to 2050 - Datasets - Open Data Pakistan [Dataset]. https://opendata.com.pk/dataset/ten-most-populous-countries-2020-to-2050
    Explore at:
    Dataset updated
    May 16, 2023
    Area covered
    Pakistan
    Description

    Ten Most Populous Countries, 2020 to 2050

  16. N

    Town And Country, MO Age Group Population Dataset: A complete breakdown of...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Town And Country, MO Age Group Population Dataset: A complete breakdown of Town And Country age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/5fcbeaf1-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Town and Country, Missouri
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Town And Country population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Town And Country. The dataset can be utilized to understand the population distribution of Town And Country by age. For example, using this dataset, we can identify the largest age group in Town And Country.

    Key observations

    The largest age group in Town And Country, MO was for the group of age 50-54 years with a population of 1,142 (9.98%), according to the 2021 American Community Survey. At the same time, the smallest age group in Town And Country, MO was the 30-34 years with a population of 172 (1.50%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Town And Country is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Town And Country total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country Population by Age. You can refer the same here

  17. T

    POPULATION by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/population?continent=america
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  18. Population by Country of Birth

    • ckan.publishing.service.gov.uk
    • data.europa.eu
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Population by Country of Birth [Dataset]. https://ckan.publishing.service.gov.uk/dataset/population-by-country-of-birth
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This dataset shows different breakdowns of London's resident population by their country of birth. Data used comes from ONS' Annual Population Survey (APS). The APS has a sample of around 320,000 people in the UK (around 28,000 in London). As such all figures must be treated with some caution. 95% confidence interval levels are provided. Numbers have been rounded to the nearest thousand and figures for smaller populations have been suppressed. Four files are available for download: Country of Birth - Borough: Shows country of birth estimates in their broad groups such as European Union, South East Asia, North Africa, etc. broken down to borough level. Detailed Country of Birth - London: Shows country of birth estimates for specific countries such as France, Bangladesh, Nigeria, etc. available for London as a whole Demography Update 09-2015: A GLA Demography report that uses APS data to analyse the trends in London for the period 2004 to 2014. A supporting data file is also provided. Country of Birth Borough 2004-2016 Analysis Tool: A tool produced by GLA Demography that allows users to explore different breakdowns of country of birth data. An accompanying Tableau visualisation tool has also been produced which maps data from 2004 to 2015. Nationality data can be found here: https://data.london.gov.uk/dataset/nationality Nationality refers to that stated by the respondent during the interview. Country of birth is the country in which they were born. It is possible that an individual’s nationality may change, but the respondent’s country of birth cannot change. This means that country of birth gives a more robust estimate of change over time. Data and Resources Country of Birth - Borough Shows estimates of the population by their country/region of birth by Borough

  19. Population by Nationality - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Population by Nationality - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/population-by-nationality
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This dataset shows different breakdowns of London's resident population by their nationality. Data used comes from ONS' Annual Population Survey (APS). The APS has a sample of around 320,000 people in the UK (around 28,000 in London). As such all figures must be treated with some caution. 95% confidence interval levels are provided. Numbers have been rounded to the nearest thousand and figures for smaller populations have been suppressed. Two files are available to download: Nationality - Borough: Shows nationality estimates in their broad groups such as European Union, South East Asia, North Africa, etc. broken down to borough level. Detailed Nationality - London: Shows nationality estimates for specific countries such as France, Bangladesh, Nigeria, etc. available for London as a whole. A Tableau visualisation tool is also available. Country of Birth data can be found here: https://data.london.gov.uk/dataset/country-of-birth Nationality refers to that stated by the respondent during the interview. Country of birth is the country in which they were born. It is possible that an individual’s nationality may change, but the respondent’s country of birth cannot change. This means that country of birth gives a more robust estimate of change over time.

  20. N

    Country Club Hills, MO Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Country Club Hills, MO Age Group Population Dataset: A Complete Breakdown of Country Club Hills Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/country-club-hills-mo-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Country Club Hills
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Country Club Hills population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Country Club Hills. The dataset can be utilized to understand the population distribution of Country Club Hills by age. For example, using this dataset, we can identify the largest age group in Country Club Hills.

    Key observations

    The largest age group in Country Club Hills, MO was for the group of age 25 to 29 years years with a population of 109 (10.72%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Country Club Hills, MO was the 75 to 79 years years with a population of 4 (0.39%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Country Club Hills is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Country Club Hills total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Club Hills Population by Age. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Amit Kumar Sahu (2022). World Population Dataset [Dataset]. https://www.kaggle.com/datasets/asahu40/world-population-dataset
Organization logo

World Population Dataset

Country and Continent Wise World Population Dataset

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Sep 2, 2022
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Amit Kumar Sahu
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
World
Description

This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.

  1. Continent Population Characteristics Analysis.
  2. Analysis of Countries.
    • Top 10 Most Populated and Least Populated Countries
    • Top 10 Largest and Smallest Countries as per Area
    • Population Growth From 1970 to 2020 (50 Years)
  3. Countries Represent % Of World Population.
    • Countries that represent below 0.1% of the World Population.
    • Countries that represent above 2% of the world Population
    • Top 10 Over Populated Countries based on Density Per Sq KM.
    • Top 10 Least Populated Countries based on Density Per Sq KM.
Search
Clear search
Close search
Google apps
Main menu