100+ datasets found
  1. H

    Global Subnational Atlas of Poverty

    • dataverse.harvard.edu
    • dataone.org
    Updated Jan 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai-Anh H. Dang; Minh Cong Nguyen; Trong-Anh Trinh (2023). Global Subnational Atlas of Poverty [Dataset]. http://doi.org/10.7910/DVN/MLHFAF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 14, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Hai-Anh H. Dang; Minh Cong Nguyen; Trong-Anh Trinh
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The database (version August 2022) is built upon the released Global Subnational Atlas of Poverty (GSAP) (World Bank, 2021). In this database, we assemble a new panel dataset that provides (headcount) poverty rates using the daily poverty lines of US $1.90, $3.20, and $5.50 (based on the revised 2011 Purchasing Power Parity (PPP) dollars). This database is generated using household income and consumption surveys from the World Bank’s Global Monitoring Database (GMD), which underlie country official poverty statistics, and offers the most detailed subnational poverty data on a global scale to date. The Global Subnational Atlas of Poverty (GSAP) is produced by the World Bank’s Poverty and Equity Global Practice, coordinated by the Data for Goals (D4G) team, and supported by the six regional statistics teams in the Poverty and Equity Global Practice, and Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) at the World Bank. The Global Monitoring Database (GMD) is the World Bank’s repository of multitopic income and expenditure household surveys used to monitor global poverty and shared prosperity. The household survey data are typically collected by national statistical offices in each country, and then compiled, processed, and harmonized. The process is coordinated by the Data for Goals (D4G) team and supported by the six regional statistics teams in the Poverty and Equity Global Practice. Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) also contributed historical data from before 1990, and recent survey data from Luxemburg Income Studies (LIS). Selected variables have been harmonized to the extent possible such that levels and trends in poverty and other key sociodemographic attributes can be reasonably compared across and within countries over time. The GMD’s harmonized microdata are currently used in Poverty and Inequality Platform (PIP), World Bank’s Multidimensional Poverty Measures (WB MPM), the Global Database of Shared Prosperity (GDSP), and Poverty and Shared Prosperity Reports. Reference: World Bank. (2021). World Bank estimates based on data from the Global Subnational Atlas of Poverty, Global Monitoring Database. World Bank: Washington. https://datacatalog.worldbank.org/search/dataset/0042041

  2. World Bank Subnational Poverty Data

    • kaggle.com
    zip
    Updated Feb 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brooke Watson (2018). World Bank Subnational Poverty Data [Dataset]. https://www.kaggle.com/brookewatson/worldbank-subnational-poverty
    Explore at:
    zip(89676 bytes)Available download formats
    Dataset updated
    Feb 28, 2018
    Authors
    Brooke Watson
    Description

    Context

    This dataset was uploaded to support the Data Science For Good Kiva crowdfunding challenge. In particular, in uploading this dataset, I intend to assist with mapping subnational locations in the Kiva dataset to more accurate geocodes.

    Content

    This dataset contains poverty data at the administrative unit level 1, based on national poverty line(s). Administrative unit level 1 refers to the highest subnational unit level (examples include ‘state’, ‘governorate’, ‘province’). This dataset also provides data and methodology for distinguishing between poverty rates in urban and rural regions.

    This dataset includes one main .csv file: Subnational-PovertyData.csv, which includes a set of poverty indicators at the national and subnational level between the years 1996-2013. Many countries are missing data for multiple years, and no country has data for the years 1997-1999.

    It also includes three metadata .csv files: 1. Subnational-PovertyCountry.csv, which describes the country codes and subregions. 2.Subnational-PovertySeries.csv, which describes the three series indicators for national, urban, and rural poverty headcount ratios. This metadata file also including limitations, statistical methodologies, and development relevance for these metrics. 3. Subnational-Povertyfootnote.csv, which describes the years and sources for all of the country-series combinations.

    Acknowledgements

    This dataset is provided openly by the World Bank. Individual sources for the different data series are available in Subnational-Povertyfootnote.csv.

    This dataset is classified as Public under the Access to Information Classification Policy. Users inside and outside the World Bank can access this dataset. It is licensed under CC-BY 4.0.

    Metadata

    Type: Time Series Topics: Economic Growth Poverty Economy Coverage: IBRD Languages Supported: English Number of Economies: 60 Geographical Coverage: World Access Options: Download, Query Tool Temporal Coverage: 1996 - 2013 Last Updated: April 27, 2015

  3. w

    Learning Poverty Global Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Learning Poverty Global Database [Dataset]. https://data360.worldbank.org/en/dataset/WB_LPGD
    Explore at:
    Dataset updated
    Apr 18, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2001 - 2023
    Area covered
    Vietnam, Bangladesh, Luxembourg, Ireland, Ukraine, Georgia, Uganda, Thailand, Lesotho, Uzbekistan
    Description

    Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary school—generally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countries’ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this “learning poverty” rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of “learning poverty” and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bank’s work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10.

    For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf

  4. Extreme poverty as share of global population in Africa 2025, by country

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Extreme poverty as share of global population in Africa 2025, by country [Dataset]. https://www.statista.com/statistics/1228553/extreme-poverty-as-share-of-global-population-in-africa-by-country/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Africa
    Description

    In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.

  5. d

    Global Subnational Inequality

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai-Anh H. Dang; Minh Cong Nguyen; Trong-Anh Trinh (2023). Global Subnational Inequality [Dataset]. http://doi.org/10.7910/DVN/IOGOYE
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Hai-Anh H. Dang; Minh Cong Nguyen; Trong-Anh Trinh
    Description

    The database (version August 2022) is built upon the released Global Subnational Atlas of Poverty (GSAP) (World Bank, 2021). In this database, we assemble a new panel dataset that provides different measures of inequality. This database is generated using household income and consumption surveys from the World Bank’s Global Monitoring Database (GMD), which underlie country official poverty statistics, and offers the most detailed subnational poverty data on a global scale to date. The Global Subnational Atlas of Poverty (GSAP) is produced by the World Bank’s Poverty and Equity Global Practice, coordinated by the Data for Goals (D4G) team, and supported by the six regional statistics teams in the Poverty and Equity Global Practice, and Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) at the World Bank. The Global Monitoring Database (GMD) is the World Bank’s repository of multitopic income and expenditure household surveys used to monitor global poverty and shared prosperity. The household survey data are typically collected by national statistical offices in each country, and then compiled, processed, and harmonized. The process is coordinated by the Data for Goals (D4G) team and supported by the six regional statistics teams in the Poverty and Equity Global Practice. Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) also contributed historical data from before 1990, and recent survey data from Luxemburg Income Studies (LIS). Selected variables have been harmonized to the extent possible such that levels and trends in poverty and other key sociodemographic attributes can be reasonably compared across and within countries over time. The GMD’s harmonized microdata are currently used in Poverty and Inequality Platform (PIP), World Bank’s Multidimensional Poverty Measures (WB MPM), the Global Database of Shared Prosperity (GDSP), and Poverty and Shared Prosperity Reports. Reference: World Bank. (2021). World Bank estimates based on data from the Global Subnational Atlas of Poverty, Global Monitoring Database. World Bank: Washington. https://datacatalog.worldbank.org/search/dataset/0042041

  6. World Bank Indicators (1960‑Present)

    • kaggle.com
    zip
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    George DiNicola (2025). World Bank Indicators (1960‑Present) [Dataset]. https://www.kaggle.com/datasets/georgejdinicola/world-bank-indicators
    Explore at:
    zip(52559856 bytes)Available download formats
    Dataset updated
    May 29, 2025
    Authors
    George DiNicola
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Overview

    This dataset provides a comprehensive collection of time series data sourced from the World Bank Open Data Platform, covering a wide range of global indicators from 1960 to the most recently published year. It includes economic, social, environmental, and demographic metrics, making it an ideal resource for researchers, data scientists, and policymakers interested in global development trends, economic forecasting, or socio-economic analysis.

    A tutorial on how to combined the dataset topics together into one large dataset can be found here

    Why this Dataset?

    My motivation for this project was to curate a high-quality collection of datasets for World Bank indicators organized by topics and structured in time-series, making them more accessible for data science projects. Since the World Bank’s Kaggle datasets have not been updated since 2019 https://www.kaggle.com/organizations/theworldbank, I saw an opportunity to provide more current data for the data analysis community.

    Dataset Collection Contents

    This collection brings together more than 800 World Bank indicators organized into 18 topic‑specific CSV files. Each file is structured as a country‑year panel: every row represents a unique combination of year (1960‑present) and ISO‑3 country code, while the columns hold the topic’s indicators.

    The collection includes datasets with a variety of indicators, such as: - Economic Metrics: GDP growth (%), GDP per capita, consumer price inflation, merchandise trade, gross capital formation, and more.
    - Social Metrics: School enrollment (primary, secondary, tertiary), infant mortality rate, maternal mortality rate, poverty headcount, and more.
    - Environmental Metrics: Forest area, renewable energy consumption, food production indices, and more.
    - Demographic Metrics: Urban population, life expectancy, net migration, and more.

    Usage

    This dataset is ideal for a variety of applications, including: - Economic forecasting and trend analysis (e.g., GDP growth, inflation).
    - Socio-economic studies (e.g., education, health, poverty).
    - Environmental impact analysis (e.g., renewable energy adoption).
    - Demographic research (e.g., population trends, migration).

    Topic datasets can be merged with each other using year and country code. This tutorial with notebook code can help you get started quickly.

    Collection Methodology

    The data is collected via a custom software application that discovers and groups high-quality indicators with rules-based logic & artificial intelligence, generates metadata, and performs ETL for the data from the World Bank API. The result is a clean, up‑to‑date collection of World Bank indicators in time-series format that is ready for analysis—no manual downloads or data wrangling required.

    Modifications

    The original World Bank data has been aggregated and transformed for ease of use. Missing values have been preserved as provided by the World Bank, and no significant transformations have been applied beyond formatting and aggregation into a single file.

    Source & Attribution

    The World Bank: World Development Indicators

    This dataset is publicly available and sourced from the World Bank Open Data Platform and is made available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. When using this data, please attribute the World Bank as follows: "Data sourced from the World Bank, licensed under CC BY 4.0." For more details on the World Bank’s terms of use, visit: https://www.worldbank.org/en/about/legal/terms-of-use-for-datasets.

    License

    This dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    Feel free to use this data in Kaggle notebooks, academic research, or policy analysis. If you create a derived dataset or analysis, I encourage you to share it with the Kaggle community.

  7. World Bank Poverty Report

    • kaggle.com
    Updated Feb 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan Ofer (2018). World Bank Poverty Report [Dataset]. https://www.kaggle.com/danofer/wb-poverty/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 28, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Dan Ofer
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    Context

    Poverty data from the World bank Data includes country and subnational level.

    Content

    Poverty data available at the administrative unit level 1, based on national poverty line(s). Administrative unit level 1 is the highest subnational unit level, e.g. state or province level.

    Annual Coverage: 1999 - 2013 Cite:

    Acknowledgements

    Data from the world bank. Some descriptions from data.world. This dataset is subject to these license terms, including attribution requirements and linking the license terms to: http://web.worldbank.org/WBSITE/EXTERNAL/0,,contentMDK:22547097~pagePK:50016803~piPK:50016805~theSitePK:13,00.html

    Source: http://data.worldbank.org/data-catalog/sub-national-poverty-data

    Inspiration

    • linkage to kiva dataset
    • Differences from Oxford subnational deprivation index (requires matching the geographic regions).
    • Connect with other world bank time-series and try to see if any predictors for change in poverty levels over time can be found (despite the short time-scale).
    • What causes worsening (rather than a generic improvement/poverty reduction) in some cases/countries/ regions? Especially when the overall country may be doing better, but some regions get worse/poorer?
  8. U.S. poverty rate 1990-2024

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate 1990-2024 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, approximately 10.6 percent of the population was living below the national poverty line in the United States. This reflected a 0.5 percentage point decrease from the previous year. Most recently, poverty levels in the country peaked in 2010 at just over 15 percent. Poverty in the U.S. States The number of people living in poverty in the U.S. as well as poverty rates, vary greatly from state to state. With their large populations, California and Texas led that charts in terms of the size of their impoverished residents. On the other hand, Louisiana had the highest rates of poverty, standing at 20 percent in 2024. The state with the lowest poverty rate was New Hampshire at 5.9 percent. Vulnerable populations The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the highest levels of poverty in 2024, with about 19 percent earning an income below the official threshold. In comparison, only about 7.5 percent of the White (non-Hispanic) and Asian populations were living below the poverty line. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2024. Child poverty peaked in 1993 with 22.7 percent of children living in poverty. Despite fluctuations, in 2024, poverty among minors reached its lowest level in decades, falling to 14.3 percent.

  9. U

    United States US: Income Share Held by Highest 10%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Highest 10% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-10
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  10. Share of population living in extreme poverty

    • kaggle.com
    zip
    Updated Sep 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Hidden Layer (2025). Share of population living in extreme poverty [Dataset]. https://www.kaggle.com/datasets/isaaclopgu/share-of-population-living-in-extreme-poverty
    Explore at:
    zip(478652 bytes)Available download formats
    Dataset updated
    Sep 21, 2025
    Authors
    The Hidden Layer
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    ** Content**

    % of population living in households with an income or consumption per person below $10 a day.

    The data is measured in international-$ at 2021 prices – this adjusts for inflation and for differences in living costs between countries.

    Depending on the country and year, the data relates to income (measured after taxes and benefits) or to consumption, per capita. 'Per capita' means that the incomes of each household are attributed equally to each member of the household (including children).

    Non-market sources of income, including food grown by subsistence farmers for their own consumption, are taken into account.

    Regional and global estimates are extrapolated up until the year of the data release using GDP growth estimates and forecasts

    For most countries in the PIP dataset, estimates relate to either disposable income or consumption, for all available years. A number of countries, however, have a mix of income and consumption data points, with both data types sometimes available for particular years.

  11. C

    Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate [Dataset]. https://www.ceicdata.com/en/colombia/social-poverty-and-inequality/co-survey-mean-consumption-or-income-per-capita-bottom-40-of-population-annualized-average-growth-rate
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2021
    Area covered
    Colombia
    Description

    Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -2.590 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -2.590 % in 2021 and a record low of -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.

  12. Additional resources for Kiva Crowdfunding

    • kaggle.com
    zip
    Updated Apr 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luke (2018). Additional resources for Kiva Crowdfunding [Dataset]. https://www.kaggle.com/datasets/lucian18/mpi-on-regions
    Explore at:
    zip(104671314 bytes)Available download formats
    Dataset updated
    Apr 12, 2018
    Authors
    Luke
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset contains the locations found in the Kiva datasets included in an administrative or geographical region. You can also find poverty data about this region. This facilitates answering some of the tough questions about a region's poverty.

    Content

    In the interest of preserving the original names and spelling for the locations/countries/regions all the data is in Excel format and has no preview (I think only the Kaggle recommended file types have preview - if anyone can show me how to do this for an xlsx file, it will be greatly appreciated)

    The Tables datasets contain the most recent analysis of the MPI on countries and regions. These datasets are updated regularly. In unique regions_names_from_google_api you will find 3 levels of inclusion for every geocode provided in Kiva datasets. (village/town, administrative region, sub-national region - which can be administrative or geographical). These are the results from the Google API Geocoding process.

    Files:

    • all_kiva_loans.csv

    Dropped multiple columns, kept all the rows from loans.csv with names, tags, descriptions and got a csv file of 390MB instead of 2.13 GB. Basically is a simplified version of loans.csv (originally included in the analysis by beluga)

    • country_stats.csv
    1. population source: https://en.wikipedia.org/wiki/List_of_countries_by_population_(United_Nations)
    2. population_below_poverty_line: Percentage
    3. hdi: Human Development Index
    4. life_expectancy: Life expectancy at birth
    5. expected_years_of_schooling: Expected years of schooling
    6. mean_years_of_schooling: Mean years of schooling
    7. gni: Gross national income (GNI) per capita This dataset was originally created by [beluga][1].
    • all_loan_theme_merged_with_geo_mpi_regions.xlsx

    This is the loan_themes_by_region left joined with Tables_5.3_Contribution_of_Deprivations. (all the original entries from loan_themes and only the entries that match from Tables_5; for the regions that lack MPI data, you will find Nan)

    These are the columns in the database:

    1. Partner ID
    2. Field Partner
    3. Name
    4. sector
    5. Loan Theme ID
    6. Loan Theme Type
    7. Country
    8. forkiva
    9. number
    10. amount
    11. geo
    12. rural_pct
    13. City
    14. Administrative region
    15. Sub-national region
    16. ISO
    17. World region
    18. Population Share of the Region (%)
    19. region MPI
    20. Education (%)
    21. Health (%)
    22. Living standards (%)
    23. Schooling (%)
    24. Child school attendance (%)
    25. Child Mortality (%)
    26. Nutrition (%)
    27. Electricity (%)
    28. Improved sanitation (%)
    29. Drinking water (%)
    30. Floor (%)
    31. Cooking fuel (%)
    32. Asset ownership (%)
    • mpi_on_regions.xlsx

    Matched the loans in loan_themes_by_region with the regions that have info regarding MPI. This dataset brings together the amount invested in a region and the biggest problems the said region has to deal with. It is a join between the loan_themes_by_region provided by Kiva and Tables 5.3 Contribution_of_Deprivations.

    It is a subset of the all_loan_theme_merged_with_geo_mpi_regions.xlsx, which contains only the entries that I could match with poverty decomposition data. It has the same columns.

    • Tables_5_SubNational_Decomposition_MPI_2017-18.xlsx

    Multidimensional poverty index decomposition for over 1000 regions part of 79 countries.

    Table 5.3: Contribution of deprivations to the MPI, by sub-national regions
    This table shows which dimensions and indicators contribute most to a region's MPI, which is useful for understanding the major source(s) of deprivation in a sub-national region.

    Source: http://ophi.org.uk/multidimensional-poverty-index/global-mpi-2016/

    • Tables_7_MPI_estimations_country_levels.xlsx

    MPI decomposition for 120 countries.

    Table 7 All Published MPI Results since 2010
    The table presents an archive of all MPI estimations published over the past 5 years, together with MPI, H, A and censored headcount ratios. For comparisons over time please use Table 6, which is strictly harmonised. The full set of data tables for each year published (Column A), is found on the 'data tables' page under 'Archive'.

    The data in this file is shown in interactive plots on Oxford Poverty and Human Development Initiative website. http://www.dataforall.org/dashboard/ophi/index.php/

    • unique_regions_from_kiva_loan_themes.xlsx

    These are all the regions corresponding to the geocodes found in Kiva's loan_themes_by_region. There are 718 unique entries, that you can join with any database from Kiva that has either a coordinates or region column.
    Columns:

    • geo: pair of Lat, Lon (from loan_themes_by_region)

    • City: name of the city (has the most NaN's)

    • Administrative region: first level of administrative inclusion for the city/location; (the equivalent of county for US)

    • Sub-national region: second lev...

  13. w

    Income Distribution Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Income Distribution Database [Dataset]. https://data360.worldbank.org/en/dataset/OECD_IDD
    Explore at:
    Dataset updated
    Apr 18, 2025
    Time period covered
    1974 - 2023
    Area covered
    Iceland, Portugal, Denmark, Belgium, Lithuania, Romania, Hungary, Luxembourg, Slovak Republic, Croatia
    Description

    The OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.

    Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.

    Small changes in estimates between years should be treated with caution as they may not be statistically significant.

    Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm

  14. N

    Norway Poverty Headcount Ratio at Societal Poverty Lines: % of Population

    • ceicdata.com
    Updated Dec 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2017). Norway Poverty Headcount Ratio at Societal Poverty Lines: % of Population [Dataset]. https://www.ceicdata.com/en/norway/social-poverty-and-inequality/poverty-headcount-ratio-at-societal-poverty-lines--of-population
    Explore at:
    Dataset updated
    Dec 15, 2017
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Norway
    Description

    Norway Poverty Headcount Ratio at Societal Poverty Lines: % of Population data was reported at 9.400 % in 2019. This records an increase from the previous number of 9.000 % for 2018. Norway Poverty Headcount Ratio at Societal Poverty Lines: % of Population data is updated yearly, averaging 7.950 % from Dec 1979 (Median) to 2019, with 22 observations. The data reached an all-time high of 9.700 % in 2016 and a record low of 5.700 % in 2000. Norway Poverty Headcount Ratio at Societal Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank.WDI: Social: Poverty and Inequality. The poverty headcount ratio at societal poverty line is the percentage of a population living in poverty according to the World Bank's Societal Poverty Line. The Societal Poverty Line is expressed in purchasing power adjusted 2017 U.S. dollars and defined as max($2.15, $1.15 + 0.5*Median). This means that when the national median is sufficiently low, the Societal Poverty line is equivalent to the extreme poverty line, $2.15. For countries with a sufficiently high national median, the Societal Poverty Line grows as countries’ median income grows.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  15. P

    Sustainable Development Goal 01 - No Poverty

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). Sustainable Development Goal 01 - No Poverty [Dataset]. https://pacificdata.org/data/dataset/sustainable-development-goal-01-no-poverty-df-sdg-01
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 21, 2025
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 1996 - Dec 31, 2023
    Description

    End poverty in all its forms everywhere : Poverty in the Pacific is focused on hardship and lack of economic opportunity and social exclusion. While food and extreme poverty remains relatively low, an estimated one in four Pacific islanders are likely to be living below their country’s basic-needs poverty line (BNPL). Children are especially vulnerable to poverty and inequality because of their dependency on adults for care and protection, and for food. Deprivation and lost opportunities in childhood can have detrimental effects that may persist throughout a child’s life. If a child does not receive adequate nutrition, stunting may result, and intellectual development may be impaired. Poorly nourished children are more vulnerable to disease, tend to perform worse in school, and less likely to be productive adults.

    Find more Pacific data on PDH.stat.

  16. Israel-Palestine Trade Hostilities

    • kaggle.com
    zip
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). Israel-Palestine Trade Hostilities [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/israel-palestine-trade-hostilities
    Explore at:
    zip(99844 bytes)Available download formats
    Dataset updated
    Oct 19, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Israel, Palestine
    Description

    Trade is a crucial instrument for combating poverty and advancing the Millennium Development Goals, particularly by improving access to international markets for developing countries and fostering a transparent, rules-based, and predictable trading system. To support these goals, the World Bank, in collaboration with international development partners, initiated the Transparency in Trade (TiT) Initiative. This initiative aims to provide free and easily accessible data on trade policies specific to individual countries, allowing policymakers, researchers, and businesses to make informed decisions. Such transparency in trade policy is vital for creating equitable market conditions and ensuring that developing nations can participate in global trade more effectively, thereby contributing to their economic growth and poverty alleviation.

    Israel, like many countries, is an active participant in this initiative, which provides a comprehensive understanding of its trade dynamics. The availability of trade-related data from the World Bank’s portal ensures that the nation’s trading policies are part of the broader international effort to make trade more accessible, especially for countries striving to improve their economic standing through global trade.

    In contrast to the global trade discussions, the situation in the State of Palestine highlights a different form of crisis—one that pertains to internal displacements caused by conflict and disaster. Conflict and disaster-induced population movements, or "flows," for the State of Palestine are monitored closely due to the region's instability and the ongoing conflict. The most recent data available covers a 180-day period and provides insights into the scale and frequency of these displacements.

    Internally displaced persons (IDPs) are defined based on the 1998 Guiding Principles, which describe them as individuals or groups forced to flee or leave their homes due to various causes, including armed conflict, generalized violence, violations of human rights, or natural and human-made disasters. These people remain within their country’s borders, distinguishing them from refugees who cross international boundaries.

    The Internal Displacement Monitoring Centre (IDMC) offers event-based data through its Internal Displacement Updates (IDU), which provide initial assessments of internal displacements occurring within the last 180 days. This data is provisional and subject to continuous updates as new information becomes available. The IDU dataset reflects displacement trends from conflicts or disasters and aggregates preliminary estimates from various sources. As more accurate data is compiled and validated, it is made available through the Global Internal Displacement Database (GIDD), which offers a carefully curated and finalized understanding of displacement patterns. This continuous monitoring is essential for understanding the immediate needs of displaced populations and for forming long-term strategies to address internal displacement, particularly in conflict-affected regions like Palestine, where displacements are frequent and complex.

  17. The World Bank's Poverty and Equity Metrics

    • kaggle.com
    zip
    Updated Feb 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carrie (2018). The World Bank's Poverty and Equity Metrics [Dataset]. https://www.kaggle.com/carrie1/the-world-banks-poverty-and-equity-metrics
    Explore at:
    zip(64496 bytes)Available download formats
    Dataset updated
    Feb 28, 2018
    Authors
    Carrie
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is from The World Bank's DataBank, which houses a variety of databases. It contains 44 series on 184 counties over the past five years. Topics range from income distribution, annualized growth per capita, poverty headcount, and much more. Please note that some countries do not have data for particular series and/or years due to data collection challenges. This data can be applied to the Kiva Crowdfunding Data Science for Good challenge by providing insight into what countries are in greatest need of funding.

    More about The World Bank: With 189 member countries, staff from more than 170 countries, and offices in over 130 locations, the World Bank Group is a unique global partnership: five institutions working for sustainable solutions that reduce poverty and build shared prosperity in developing countries.

    The image is from unsplash.com.

  18. w

    Globalization and Income Distribution Dataset 1975-2002 - Aruba,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Branko L. Milanovic (2023). Globalization and Income Distribution Dataset 1975-2002 - Aruba, Afghanistan, Angola...and 188 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/1786
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Branko L. Milanovic
    Time period covered
    1975 - 2002
    Area covered
    Angola
    Description

    Abstract

    Dataset used in World Bank Policy Research Working Paper #2876, published in World Bank Economic Review, No. 1, 2005, pp. 21-44.

    The effects of globalization on income distribution in rich and poor countries are a matter of controversy. While international trade theory in its most abstract formulation implies that increased trade and foreign investment should make income distribution more equal in poor countries and less equal in rich countries, finding these effects has proved elusive. The author presents another attempt to discern the effects of globalization by using data from household budget surveys and looking at the impact of openness and foreign direct investment on relative income shares of low and high deciles. The author finds some evidence that at very low average income levels, it is the rich who benefit from openness. As income levels rise to those of countries such as Chile, Colombia, or Czech Republic, for example, the situation changes, and it is the relative income of the poor and the middle class that rises compared with the rich. It seems that openness makes income distribution worse before making it better-or differently in that the effect of openness on a country's income distribution depends on the country's initial income level.

    Kind of data

    Aggregate data [agg]

  19. f

    Relative poverty lines by country.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Aug 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hu, Peiqi; Huang, Wei; Ding, Shiyu; Han, Yue; Gao, Shuhui (2024). Relative poverty lines by country. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001406036
    Explore at:
    Dataset updated
    Aug 2, 2024
    Authors
    Hu, Peiqi; Huang, Wei; Ding, Shiyu; Han, Yue; Gao, Shuhui
    Description

    As the primary goal of the 17 Sustainable Development Goals (SDGs), poverty eradication is still one of the major challenges faced by countries around the world, and relative poverty is a comprehensive poverty pattern triggered by the superposition of economic, social, and environmental dimensions. Therefore, Therefore, this paper introduces the perspective of coupled coordination to consider the formation of relative poverty, constructs indicators in three major dimensions: economic, social, and environmental, proposes a fast and more accurate method of identifying relative poverty in a region by using machine learning, measures the degree of coupled coordination of China’s relatively poor provinces using a coupled coordination model and analyzes the relationship with the level of relative poverty, and puts forward suggestions for poverty management on this basis using typology classification. The results of the study show that: 1) the fusion of data crawlers, remote sensing space, and other multi-source data to construct the dataset and propose a fast and efficient regional relative poverty identification method based on big data with low comprehensive cost and high identification accuracy of 0.914. 2) Currently, 70.83% of the economic-social-environmental systems of the relatively poor regions are in the dysfunctional type and are in a state of disordered development and malignant constraints. The regions showing coupling disorders are mainly clustered in the three southern prefectures of Xinjiang, Qinghai, Gansu, Yunnan, and Sichuan, and their spatial distribution is relatively concentrated. 3) The types of poverty and their coupled and coordinated development in each region show large spatial variability, requiring differentiated poverty eradication countermeasures tailored to local conditions to achieve sustainable regional economic-social-environmental development.

  20. a

    Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data.lojic.org
    • +3more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/HUD::racially-or-ethnically-concentrated-areas-of-poverty-r-ecaps
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    To assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent.

    Data Source: American Community Survey (ACS), 2009-2013; Decennial Census (2010); Brown Longitudinal Tract Database (LTDB) based on decennial census data, 1990, 2000 & 2010.

    Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17. Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.

    References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.

    To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 11/2017

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hai-Anh H. Dang; Minh Cong Nguyen; Trong-Anh Trinh (2023). Global Subnational Atlas of Poverty [Dataset]. http://doi.org/10.7910/DVN/MLHFAF

Global Subnational Atlas of Poverty

Explore at:
25 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 14, 2023
Dataset provided by
Harvard Dataverse
Authors
Hai-Anh H. Dang; Minh Cong Nguyen; Trong-Anh Trinh
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

The database (version August 2022) is built upon the released Global Subnational Atlas of Poverty (GSAP) (World Bank, 2021). In this database, we assemble a new panel dataset that provides (headcount) poverty rates using the daily poverty lines of US $1.90, $3.20, and $5.50 (based on the revised 2011 Purchasing Power Parity (PPP) dollars). This database is generated using household income and consumption surveys from the World Bank’s Global Monitoring Database (GMD), which underlie country official poverty statistics, and offers the most detailed subnational poverty data on a global scale to date. The Global Subnational Atlas of Poverty (GSAP) is produced by the World Bank’s Poverty and Equity Global Practice, coordinated by the Data for Goals (D4G) team, and supported by the six regional statistics teams in the Poverty and Equity Global Practice, and Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) at the World Bank. The Global Monitoring Database (GMD) is the World Bank’s repository of multitopic income and expenditure household surveys used to monitor global poverty and shared prosperity. The household survey data are typically collected by national statistical offices in each country, and then compiled, processed, and harmonized. The process is coordinated by the Data for Goals (D4G) team and supported by the six regional statistics teams in the Poverty and Equity Global Practice. Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) also contributed historical data from before 1990, and recent survey data from Luxemburg Income Studies (LIS). Selected variables have been harmonized to the extent possible such that levels and trends in poverty and other key sociodemographic attributes can be reasonably compared across and within countries over time. The GMD’s harmonized microdata are currently used in Poverty and Inequality Platform (PIP), World Bank’s Multidimensional Poverty Measures (WB MPM), the Global Database of Shared Prosperity (GDSP), and Poverty and Shared Prosperity Reports. Reference: World Bank. (2021). World Bank estimates based on data from the Global Subnational Atlas of Poverty, Global Monitoring Database. World Bank: Washington. https://datacatalog.worldbank.org/search/dataset/0042041

Search
Clear search
Close search
Google apps
Main menu