23 datasets found
  1. 🌍 Country Comparison Dataset (USA & More) 🌍

    • kaggle.com
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Waqar Ali (2024). 🌍 Country Comparison Dataset (USA & More) 🌍 [Dataset]. https://www.kaggle.com/datasets/waqi786/country-comparison-dataset-usa-and-more
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Waqar Ali
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset offers a detailed comparison of key global players like USA, Russia, China, India, Canada, Australia, and others across various economic, social, and environmental metrics. By comparing countries on indicators such as GDP, population, healthcare access, education levels, internet penetration, military spending, and much more, this dataset provides valuable insights for researchers, policymakers, and analysts.

    🔍 Key Comparisons:

    Economic Indicators: GDP, inflation rates, unemployment rates, etc. Social Indicators: Literacy rates, healthcare quality, life expectancy, etc. Environmental Indicators: CO2 emissions, renewable energy usage, protected areas, etc. Technological Advancements: Internet users, mobile subscriptions, tech exports, etc. Military Spending: Defense budgets, military personnel numbers, etc. This dataset is perfect for those who want to compare countries in terms of development, growth, and global standing. It can be used for data analysis, policy planning, research, and even education.

    ✨ Key Features:

    Comprehensive Coverage: Includes multiple countries with key metrics. Multiple Domains: Economic, social, environmental, technological, and military data. Up-to-date Information: Covers data from the last decade to provide recent insights. Research Ready: Suitable for academic research, visualizations, and analysis.

  2. world_population

    • kaggle.com
    zip
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
    Explore at:
    zip(16061 bytes)Available download formats
    Dataset updated
    Feb 8, 2023
    Authors
    farzam ajili
    Area covered
    World
    Description

    Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

  3. T

    GOLD RESERVES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GOLD RESERVES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gold-reserves
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. C

    China CN: Import: Russia

    • ceicdata.com
    Updated Dec 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). China CN: Import: Russia [Dataset]. https://www.ceicdata.com/en/china/trade-annual/cn-import-russia
    Explore at:
    Dataset updated
    Dec 15, 2019
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2007 - Dec 1, 2018
    Area covered
    China
    Variables measured
    Merchandise Trade
    Description

    China Import: Russia data was reported at 59.082 USD bn in 2018. This records an increase from the previous number of 41.390 USD bn for 2017. China Import: Russia data is updated yearly, averaging 7.959 USD bn from Dec 1984 (Median) to 2018, with 35 observations. The data reached an all-time high of 59.082 USD bn in 2018 and a record low of 711.030 USD mn in 1984. China Import: Russia data remains active status in CEIC and is reported by General Administration of Customs. The data is categorized under Global Database’s China – Table CN.JA: Trade: Annual.

  5. Global Zip Code Dataset (9M+) | Address Data | Country, Regions, Lat/Long,...

    • datarade.ai
    Updated Jun 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Zip Code Dataset (9M+) | Address Data | Country, Regions, Lat/Long, City | Weekly Updated [Dataset]. https://datarade.ai/data-products/geopostcodes-zip-code-data-global-coverage-8-6-m-zip-code-geopostcodes
    Explore at:
    .csv, .geojson, .kmlAvailable download formats
    Dataset updated
    Jun 14, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    A global self-hosted location dataset containing all administrative divisions, cities, and zip codes for 247 countries. All geospatial data is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.

    Use cases for the Global Zip Code Database (Geospatial data)

    • Address capture and validation

    • Map and visualization

    • Reporting and Business Intelligence (BI)

    • Master Data Mangement

    • Logistics and Supply Chain Management

    • Sales and Marketing

    Data export methodology

    Our location data packages are offered in variable formats, including .csv. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Fully and accurately geocoded

    • Administrative areas with a level range of 0-4

    • Multi-language support including address names in local and foreign languages

    • Comprehensive city definitions across countries

    For additional insights, you can combine the map data with:

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Times

    Why do companies choose our location databases

    • Enterprise-grade service

    • Reduce integration time and cost by 30%

    • Weekly updates for the highest quality

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  6. f

    Data_Sheet_2_Health System Outcomes in BRICS Countries and Their Association...

    • frontiersin.figshare.com
    • figshare.com
    xlsx
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piotr Romaniuk; Angelika Poznańska; Katarzyna Brukało; Tomasz Holecki (2023). Data_Sheet_2_Health System Outcomes in BRICS Countries and Their Association With the Economic Context.XLSX [Dataset]. http://doi.org/10.3389/fpubh.2020.00080.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Piotr Romaniuk; Angelika Poznańska; Katarzyna Brukało; Tomasz Holecki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The aim of the article is to compare health system outcomes in the BRICS countries, assess the trends of their changes in 2000−2017, and verify whether they are in any way correlated with the economic context. The indicators considered were: nominal and per capita current health expenditure, government health expenditure, gross domestic product (GDP) per capita, GDP growth, unemployment, inflation, and composition of GDP. The study covered five countries of the BRICS group over a period of 18 years. We decided to characterize countries covered with a dataset of selected indicators describing population health status, namely: life expectancy at birth, level of immunization, infant mortality rate, maternal mortality ratio, and tuberculosis case detection rate. We constructed a unified synthetic measure depicting the performance of individual health systems in terms of their outcomes with a single numerical value. Descriptive statistical analysis of quantitative traits consisted of the arithmetic mean (xsr), standard deviation (SD), and, where needed, the median. The normality of the distribution of variables was tested with the Shapiro–Wilk test. Spearman's rho and Kendall tau rank coefficients were used for correlation analysis between measures. The correlation analyses have been supplemented with factor analysis. We found that the best results in terms of health care system performance were recorded in Russia, China, and Brazil. India and South Africa are noticeably worse. However, the entire group performs visibly worse than the developed countries. The health system outcomes appeared to correlate on a statistically significant scale with health expenditures per capita, governments involvement in health expenditures, GDP per capita, and industry share in GDP; however, these correlations are relatively weak, with the highest strength in the case of government's involvement in health expenditures and GDP per capita. Due to weak correlation with economic background, other factors may play a role in determining health system outcomes in BRICS countries. More research should be recommended to find them and determine to what extent and how exactly they affect health system outcomes.

  7. d

    Dataset for: How happy is happy enough? A cross-cultural comparison of...

    • demo-b2find.dkrz.de
    Updated Sep 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dataset for: How happy is happy enough? A cross-cultural comparison of optimal cut points for the Positive Mental Health Scale. - Dataset - B2FIND [Dataset]. http://demo-b2find.dkrz.de/dataset/9eedacf3-3f3d-5dd2-894c-ed9275d30746
    Explore at:
    Dataset updated
    Sep 21, 2025
    Description

    As positive mental health (PMH) has a significant impact on general and mental health, it is an important target for interventions. Cut points are a useful basis for identifying participants with a greater need for such interventions. Representative (n = 9,440) and student (n = 22,833) samples from Germany, Russia, the US, and China were reanalyzed. Two different anchors were used to determine optimal cut points for the PMH-scale: (1) a combined measure of PMH-related questionnaires and (2) the Global Assessment of Functioning Scale (GAF). A kernel-based method to determine optimal cut points and bootstrapping to identify potential cross-cultural differences were used. Acceptable to excellent levels of classification accuracy were found regarding the combined measure (AUCs between .75 and .87) across all samples. Using the GAF resulted in poor discriminatory power (AUC = .69). Optimal cut points varied systematically between countries and samples. Country and sample-specific cut points for the PMH scale should be used to identify individuals with high versus low levels of PMH. Specifically, we suggest using cut points of 21, 22, and 24 in Germany, Russia, and the US, respectively. For student samples, we recommend cut points of 18, 19, and 20 in Germany, Russia, and China, respectively.

  8. B

    International Cigarette Consumption Database v1.3

    • borealisdata.ca
    • search.dataone.org
    Updated Apr 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu JP Poirier; G Emmanuel Guindon; Lathika Sritharan; Steven J Hoffman (2022). International Cigarette Consumption Database v1.3 [Dataset]. http://doi.org/10.5683/SP2/AOVUW7
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    Borealis
    Authors
    Mathieu JP Poirier; G Emmanuel Guindon; Lathika Sritharan; Steven J Hoffman
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP2/AOVUW7https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP2/AOVUW7

    Time period covered
    1970 - 2015
    Dataset funded by
    Research Council of Norway
    Canadian Institutes of Health Research
    Description

    This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the world’s population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limited—either inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero López (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Iranian Tobacco Co. Institut National de la Statistique (Tunisia) HM Revenue & Customs (UK) Eidgenössisches Finanzdepartement EFD/Département...

  9. The International Communications Market Report - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Sep 15, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2015). The International Communications Market Report - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/the-international-communications-market-report
    Explore at:
    Dataset updated
    Sep 15, 2015
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This annual report provides comparative international data on the communications sector. The aim of the report is to benchmark the UK communications sector against a range of comparator countries in order to assess how the UK is performing in an international context. The report compares the availability, take-up and use of services in the UK and 17 comparator countries - France, Germany, Italy, the US, Japan, Australia, Spain, the Netherlands, Sweden, Poland, Singapore, South Korea, Brazil, Russia, India, China and Nigeria, although we focus on a smaller subset of comparator countries for some of our analysis. This report is intended to be used in a number of ways: to benchmark the UK’s communications sector, to learn from market and regulatory developments in other countries, and to provide the context for Ofcom’s regulatory initiatives. It also contributes to the richness of the information we draw upon, better enabling us to understand how our actions and priorities can influence outcomes for citizens and consumers, and for communications markets generally. The sectors covered include television and radio broadcasting; internet on-demand content; telecommunications and (since 2012) the postal market. The final edition of the ICMR was in 2017.

  10. Research on Early Life and Aging Trends and Effects (RELATE): A...

    • search.gesis.org
    Updated Mar 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McEniry, Mary (2021). Research on Early Life and Aging Trends and Effects (RELATE): A Cross-National Study - Archival Version [Dataset]. http://doi.org/10.3886/ICPSR34241
    Explore at:
    Dataset updated
    Mar 11, 2021
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    GESIS search
    Authors
    McEniry, Mary
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289

    Description

    Abstract (en): The Research on Early Life and Aging Trends and Effects (RELATE) study compiles cross-national data that contain information that can be used to examine the effects of early life conditions on older adult health conditions, including heart disease, diabetes, obesity, functionality, mortality, and self-reported health. The complete cross sectional/longitudinal dataset (n=147,278) was compiled from major studies of older adults or households across the world that in most instances are representative of the older adult population either nationally, in major urban centers, or in provinces. It includes over 180 variables with information on demographic and geographic variables along with information about early life conditions and life course events for older adults in low, middle and high income countries. Selected variables were harmonized to facilitate cross national comparisons. In this first public release of the RELATE data, a subset of the data (n=88,273) is being released. The subset includes harmonized data of older adults from the following regions of the world: Africa (Ghana and South Africa), Asia (China, India), Latin America (Costa Rica, major cities in Latin America), and the United States (Puerto Rico, Wisconsin). This first release of the data collection is composed of 19 downloadable parts: Part 1 includes the harmonized cross-national RELATE dataset, which harmonizes data from parts 2 through 19. Specifically, parts 2 through 19 include data from Costa Rica (Part 2), Puerto Rico (Part 3), the United States (Wisconsin) (Part 4), Argentina (Part 5), Barbados (Part 6), Brazil (Part 7), Chile (Part 8), Cuba (Part 9), Mexico (Parts 10 and 15), Uruguay (Part 11), China (Parts 12, 18, and 19), Ghana (Part 13), India (Part 14), Russia (Part 16), and South Africa (Part 17). The Health and Retirement Study (HRS) was also used in the compilation of the larger RELATE data set (HRS) (N=12,527), and these data are now available for public release on the HRS data products page. To access the HRS data that are part of the RELATE data set, please see the collection notes below. The purpose of this study was to compile and harmonize cross-national data from both the developing and developed world to allow for the examination of how early life conditions are related to older adult health and well being. The selection of countries for this study was based on their diversity but also on the availability of comprehensive cross sectional/panel survey data for older adults born in the early to mid 20th century in low, middle and high income countries. These data were then utilized to create the harmonized cross-national RELATE data (Part 1). Specifically, data that are being released in this version of the RELATE study come from the following studies: CHNS (China Health and Nutrition Study) CLHLS (Chinese Longitudinal Healthy Longevity Survey) CRELES (Costa Rican Study of Longevity and Healthy Aging) PREHCO (Puerto Rican Elderly: Health Conditions) SABE (Study of Aging Survey on Health and Well Being of Elders) SAGE (WHO Study on Global Ageing and Adult Health) WLS (Wisconsin Longitudinal Study) Note that the countries selected represent a diverse range in national income levels: Barbados and the United States (including Puerto Rico) represent high income countries; Argentina, Cuba, Uruguay, Chile, Costa Rica, Brazil, Mexico, and Russia represent upper middle income countries; China and India represent lower middle income countries; and Ghana represents a low income country. Users should refer to the technical report that accompanies the RELATE data for more detailed information regarding the study design of the surveys used in the construction of the cross-national data. The Research on Early Life and Aging Trends and Effects (RELATE) data includes an array of variables, including basic demographic variables (age, gender, education), variables relating to early life conditions (height, knee height, rural/urban birthplace, childhood health, childhood socioeconomic status), adult socioeconomic status (income, wealth), adult lifestyle (smoking, drinking, exercising, diet), and health outcomes (self-reported health, chronic conditions, difficulty with functionality, obesity, mortality). Not all countries have the same variables. Please refer to the technical report that is part of the documentation for more detail regarding the variables available across countries. Sample weights are applicable to all countries exc...

  11. 16kHz Conversational Speech Data | 35,000 Hours | Large Language Model(LLM)...

    • data.nexdata.ai
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2024). 16kHz Conversational Speech Data | 35,000 Hours | Large Language Model(LLM) Data | Speech AI Datasets |Multilingual Language Data [Dataset]. https://data.nexdata.ai/products/nexdata-multilingual-conversational-speech-data-16khz-mob-nexdata
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset authored and provided by
    Nexdata
    Area covered
    Hong Kong, Ukraine, Pakistan, Bulgaria, Egypt, Switzerland, Syrian Arab Republic, Brazil, Malaysia, Italy
    Description

    Nexdata has off-the-shelf 35,000 hours Multilingual Language Data of 16kHz conversational speech, covering 100+ countries including English, German, French, Spanish, Italian, Portuguese, Korean, Japanese, Hindi, Russia and etc.

  12. Address & ZIP Validation Dataset | Mobility Data | Geospatial Checks +...

    • datarade.ai
    .csv
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Address & ZIP Validation Dataset | Mobility Data | Geospatial Checks + Coverage Flags (Global) [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-zip-code-data-address-vali-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Cabo Verde, Bolivia (Plurinational State of), Ireland, Kazakhstan, South Africa, Mongolia, Sint Maarten (Dutch part), Colombia, French Guiana, Korea (Republic of)
    Description

    Our location data powers the most advanced address validation solutions for enterprise backend and frontend systems.

    A global, standardized, self-hosted location dataset containing all administrative divisions, cities, and zip codes for 247 countries.

    All geospatial data for address data validation is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.

    Use cases for the Address Validation at Zip Code Level Database (Geospatial data)

    • Address capture and address validation

    • Address autocomplete

    • Address verification

    • Reporting and Business Intelligence (BI)

    • Master Data Mangement

    • Logistics and Supply Chain Management

    • Sales and Marketing

    Product Features

    • Dedicated features to deliver best-in-class user experience

    • Multi-language support including address names in local and foreign languages

    • Comprehensive city definitions across countries

    Data export methodology

    Our location data packages are offered in variable formats, including .csv. All geospatial data for address validation are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why do companies choose our location databases

    • Enterprise-grade service

    • Full control over security, speed, and latency

    • Reduce integration time and cost by 30%

    • Weekly updates for the highest quality

    • Seamlessly integrated into your software

    Note: Custom address validation packages are available. Please submit a request via the above contact button for more details.

  13. d

    Soil and Physiographic Database for North and Central Eurasia (1:5 Million...

    • search.dataone.org
    • dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization of the United Nations (FAO); International Institute for Applied Systems Analysis (IIASA) (2014). Soil and Physiographic Database for North and Central Eurasia (1:5 Million Scale) [Dataset]. https://search.dataone.org/view/Soil_and_Physiographic_Database_for_North_and_Central_Eurasia_(1_5_Million_Scale).xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Food and Agriculture Organization of the United Nations (FAO); International Institute for Applied Systems Analysis (IIASA)
    Time period covered
    Jan 1, 1972
    Area covered
    Description

    The Soil and Physiographic Database for Northern and Central Eurasia (1:5 Million Scale) CD-ROM contains reports, databases, and digital maps for North and Central Eurasia region [covering China (including the Taiwan Province of China), Mongolia, and all countries of the former Soviet Union (CIS and Baltic States)]. The database was prepared by the Food and Agriculture Organization of the United Nations (FAO) and the International Institute for Applied Systems Analysis (IIASA) in co-operation with the Dokuchaiev Institute of Soil Science, Moscow, Russia and the Institute of Soil Science, Academia Sinica, Nanjing, China. The preparation of this database is part of a larger FAO programme that aims to produce a systematic update of the soil and terrain database for the whole world. This effort is supported by a number of international institutes and organizations such as the United Nations Environment Programme (UNEP), the International Soil Resources Information Centre (ISRIC), and the European Soil Bureau (ESB), and is only possible through contribution of national soil institutes worldwide.

    The soil information in this database has been derived from several sources, in particular the 1:2.5 Million Soil Map of the Former Soviet Union prepared by Friedland in the Dokuchaiev Institute, Moscow, and the Soil Map of China at 1:4 million scale prepared by the Institute of Soil Science of the Academia Sinica in Nanjing. All soil information has been correlated with the Revised Legend of the Soil Map of the World.

    For Mongolia and the countries of the CIS and Baltic States, the physiographic coverage was prepared by the Dokuchaiev Institute according to the principles developed for soil and terrain databases (SOTER) by ISRIC, FAO and UNEP. For China, the physiographic layer was prepared as part of a larger project assessing land degradation in Asia according to the same principles.

    For the Russian Federation and China, an integration of the soil and physiographic layer has been carried out; for the other areas, both layers have been prepared separately and no correlation has been attempted.

    Apart from selected examples in the report on soils of China, the database does not contain any soil profile description nor soil analytical results. Documentation on the soils of the Russian Federation, the physiography of the CIS and Baltic States, and on soils of China is included on the CD-ROM.

    The results presented on the CD-ROM are in part provisional, as efforts are under way to produce a full SOTER database for Eastern Europe at 1:2.5 million scale. This will improve the information available for the European part of the Russian Federation, Ukraine, and Belarus (Byelarus). In addition, more recent and more detailed regional soil information exists on the Russian Federation and on China.

    Soil and Physiographic Database for North and Central Eurasia at 1:5 Million Scale is provided on CD-ROM by the FAO, Land and Water Digital Media Series (Number 7). The CD-ROM can be purchased (Price: US$40) from FAO, Sales and Marketing Group, Viale delle Terme di Caracalla 0100 Rome, Italy (Fax: +39-06-5705-3360 E-mail: publications-sales@fao.org).

  14. Dataset for Democracy and Foreign Direct Investment in BRICS TM countries

    • figshare.com
    xlsx
    Updated Mar 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmet KESER; İbrahim CUTCU (2023). Dataset for Democracy and Foreign Direct Investment in BRICS TM countries [Dataset]. http://doi.org/10.6084/m9.figshare.21701966.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 17, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ahmet KESER; İbrahim CUTCU
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The study, first of all, tested the hypothesis of “there is a relationship between democracy and FDI” to answer the research question raised at the beginning. The research sample was selected as BRICS-TM (Brazil, Russia, India, China, South Africa, Türkiye, Mexico) countries that have come to the fore in the world economy in recent years and whose strategic importance and power are expected to increase in the upcoming years. These countries were preferred because of their potential to attract FDI. FDI (LNFDI) was modeled as the dependent variable in this study. The democracy variable (DEMOC) was fictionalized as the independent variable. In addition, inflation (INF) and per capita income (PGDP) variables affecting FDI were added to the model as control variables based on the literature. First of all, the data on the indices of "political rights" and "civil liberties", which are accepted as indicators of "democracy" in the literature, were collected from the Freedom House database, and then the means of these indices were included in the analysis as values ​​for the variable of democracy. The index takes a value between 1 and 7; 1 is the best state of the level of democracy and 7 is the worst state of the level of democracy. Index values were attached to the model by scaling so that the minimum was 0 and the maximum was 100 in case of problems in analyses, calculation, and interpretation. In this study, inflation and income per capita variables were preferred in terms of both being the most preferred variables in the literature (details are given in Literature Review) and being the variables that affect foreign direct capital as the most inclusive in terms of macroeconomics.

  15. Gallup World Poll 2013, June - Afghanistan, Angola, Albania...and 183 more

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup, Inc. (2022). Gallup World Poll 2013, June - Afghanistan, Angola, Albania...and 183 more [Dataset]. https://datacatalog.ihsn.org/catalog/8494
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Gallup, Inc.http://gallup.com/
    Time period covered
    2005 - 2012
    Area covered
    Afghanistan, Albania, Angola
    Description

    Abstract

    Gallup Worldwide Research continually surveys residents in more than 150 countries, representing more than 98% of the world's adult population, using randomly selected, nationally representative samples. Gallup typically surveys 1,000 individuals in each country, using a standard set of core questions that has been translated into the major languages of the respective country. In some regions, supplemental questions are asked in addition to core questions. Face-to-face interviews are approximately 1 hour, while telephone interviews are about 30 minutes. In many countries, the survey is conducted once per year, and fieldwork is generally completed in two to four weeks. The Country Dataset Details spreadsheet displays each country's sample size, month/year of the data collection, mode of interviewing, languages employed, design effect, margin of error, and details about sample coverage.

    Gallup is entirely responsible for the management, design, and control of Gallup Worldwide Research. For the past 70 years, Gallup has been committed to the principle that accurately collecting and disseminating the opinions and aspirations of people around the globe is vital to understanding our world. Gallup's mission is to provide information in an objective, reliable, and scientifically grounded manner. Gallup is not associated with any political orientation, party, or advocacy group and does not accept partisan entities as clients. Any individual, institution, or governmental agency may access the Gallup Worldwide Research regardless of nationality. The identities of clients and all surveyed respondents will remain confidential.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING AND DATA COLLECTION METHODOLOGY With some exceptions, all samples are probability based and nationally representative of the resident population aged 15 and older. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population of the entire country. Exceptions include areas where the safety of interviewing staff is threatened, scarcely populated islands in some countries, and areas that interviewers can reach only by foot, animal, or small boat.

    Telephone surveys are used in countries where telephone coverage represents at least 80% of the population or is the customary survey methodology (see the Country Dataset Details for detailed information for each country). In Central and Eastern Europe, as well as in the developing world, including much of Latin America, the former Soviet Union countries, nearly all of Asia, the Middle East, and Africa, an area frame design is used for face-to-face interviewing.

    The typical Gallup Worldwide Research survey includes at least 1,000 surveys of individuals. In some countries, oversamples are collected in major cities or areas of special interest. Additionally, in some large countries, such as China and Russia, sample sizes of at least 2,000 are collected. Although rare, in some instances the sample size is between 500 and 1,000. See the Country Dataset Details for detailed information for each country.

    FACE-TO-FACE SURVEY DESIGN

    FIRST STAGE In countries where face-to-face surveys are conducted, the first stage of sampling is the identification of 100 to 135 ultimate clusters (Sampling Units), consisting of clusters of households. Sampling units are stratified by population size and or geography and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size, otherwise simple random sampling is used. Samples are drawn independent of any samples drawn for surveys conducted in previous years.

    There are two methods for sample stratification:

    METHOD 1: The sample is stratified into 100 to 125 ultimate clusters drawn proportional to the national population, using the following strata: 1) Areas with population of at least 1 million 2) Areas 500,000-999,999 3) Areas 100,000-499,999 4) Areas 50,000-99,999 5) Areas 10,000-49,999 6) Areas with less than 10,000

    The strata could include additional stratum to reflect populations that exceed 1 million as well as areas with populations less than 10,000. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 8

    METHOD 2:

    A multi-stage design is used. The country is first stratified by large geographic units, and then by smaller units within geography. A minimum of 33 Primary Sampling Units (PSUs), which are first stage sampling units, are selected. The sample design results in 100 to 125 ultimate clusters.

    SECOND STAGE

    Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day, and where possible, on different days. If an interviewer cannot obtain an interview at the initial sampled household, he or she uses a simple substitution method. Refer to Appendix C for a more in-depth description of random route procedures.

    THIRD STAGE

    Respondents are randomly selected within the selected households. Interviewers list all eligible household members and their ages or birthdays. The respondent is selected by means of the Kish grid (refer to Appendix C) in countries where face-to-face interviewing is used. The interview does not inform the person who answers the door of the selection criteria until after the respondent has been identified. In a few Middle East and Asian countries where cultural restrictions dictate gender matching, respondents are randomly selected using the Kish grid from among all eligible adults of the matching gender.

    TELEPHONE SURVEY DESIGN

    In countries where telephone interviewing is employed, random-digit-dial (RDD) or a nationally representative list of phone numbers is used. In select countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day. Appointments for callbacks that fall within the survey data collection period are made.

    PANEL SURVEY DESIGN

    Prior to 2009, United States data were collected using The Gallup Panel. The Gallup Panel is a probability-based, nationally representative panel, for which all members are recruited via random-digit-dial methodology and is only used in the United States. Participants who elect to join the panel are committing to the completion of two to three surveys per month, with the typical survey lasting 10 to 15 minutes. The Gallup Worldwide Research panel survey is conducted over the telephone and takes approximately 30 minutes. No incentives are given to panel participants. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 9

    Research instrument

    QUESTION DESIGN

    Many of the Worldwide Research questions are items that Gallup has used for years. When developing additional questions, Gallup employed its worldwide network of research and political scientists1 to better understand key issues with regard to question development and construction and data gathering. Hundreds of items were developed, tested, piloted, and finalized. The best questions were retained for the core questionnaire and organized into indexes. Most items have a simple dichotomous ("yes or no") response set to minimize contamination of data because of cultural differences in response styles and to facilitate cross-cultural comparisons.

    The Gallup Worldwide Research measures key indicators such as Law and Order, Food and Shelter, Job Creation, Migration, Financial Wellbeing, Personal Health, Civic Engagement, and Evaluative Wellbeing and demonstrates their correlations with world development indicators such as GDP and Brain Gain. These indicators assist leaders in understanding the broad context of national interests and establishing organization-specific correlations between leading indexes and lagging economic outcomes.

    Gallup organizes its core group of indicators into the Gallup World Path. The Path is an organizational conceptualization of the seven indexes and is not to be construed as a causal model. The individual indexes have many properties of a strong theoretical framework. A more in-depth description of the questions and Gallup indexes is included in the indexes section of this document. In addition to World Path indexes, Gallup Worldwide Research questions also measure opinions about national institutions, corruption, youth development, community basics, diversity, optimism, communications, religiosity, and numerous other topics. For many regions of the world, additional questions that are specific to that region or country are included in surveys. Region-specific questions have been developed for predominantly Muslim nations, former Soviet Union countries, the Balkans, sub-Saharan Africa, Latin America, China and India, South Asia, and Israel and the Palestinian Territories.

    The questionnaire is translated into the major conversational languages of each country. The translation process starts with an English, French, or Spanish version, depending on the region. One of two translation methods may be used.

    METHOD 1: Two independent translations are completed. An independent third party, with some knowledge of survey research methods, adjudicates the differences. A professional translator translates the final version back into the source language.

    METHOD 2: A translator

  16. World Population Live Dataset 2022

    • kaggle.com
    zip
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
    Explore at:
    zip(10169 bytes)Available download formats
    Dataset updated
    Sep 10, 2022
    Authors
    Aman Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

    Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

    Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

    Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

    ColumnsDescription
    CCA33 Digit Country/Territories Code
    NameName of the Country/Territories
    2022Population of the Country/Territories in the year 2022.
    2020Population of the Country/Territories in the year 2020.
    2015Population of the Country/Territories in the year 2015.
    2010Population of the Country/Territories in the year 2010.
    2000Population of the Country/Territories in the year 2000.
    1990Population of the Country/Territories in the year 1990.
    1980Population of the Country/Territories in the year 1980.
    1970Population of the Country/Territories in the year 1970.
    Area (km²)Area size of the Country/Territories in square kilometer.
    Density (per km²)Population Density per square kilometer.
    Grow...
  17. H

    Worldwide Mobile App User Behavior Dataset

    • dataverse.harvard.edu
    • kaggle.com
    Updated Sep 28, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soo Ling Lim (2014). Worldwide Mobile App User Behavior Dataset [Dataset]. http://doi.org/10.7910/DVN/27459
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 28, 2014
    Dataset provided by
    Harvard Dataverse
    Authors
    Soo Ling Lim
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2012
    Area covered
    Worldwide
    Description

    We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.

  18. k

    International Macroeconomic Dataset (2015 Base)

    • datasource.kapsarc.org
    Updated Oct 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). International Macroeconomic Dataset (2015 Base) [Dataset]. https://datasource.kapsarc.org/explore/dataset/international-macroeconomic-data-set-2015/
    Explore at:
    Dataset updated
    Oct 26, 2025
    Description

    TThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.

    Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.

    Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI

    Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:

    Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America

    Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada

    Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;

    Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;

    Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore

    BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies

    Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union

    USMCA/8 Canada, Mexico, United States

    Europe and Central Asia/9 Europe, Former Soviet Union

    Middle East and North Africa/10 Middle East and North Africa

    Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam

    Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay

    Indicator Source

    Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.

    Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.

    GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.

    Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.

    Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.

  19. Monthly global cement production data

    • zenodo.org
    csv, json
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robbie Andrew; Robbie Andrew (2025). Monthly global cement production data [Dataset]. http://doi.org/10.5281/zenodo.17270962
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Robbie Andrew; Robbie Andrew
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is a machine-readable (CSV+JSON) collation of available reported monthly cement and cement clinker production data from both national sources and the (now discontinued) UN Monthly Bulletin of Statistics. In total, 175 time series are present in the production dataset, of which 46 are from the UN bulletin. Chinese provincial clinker production is available for the period 2013-2020. Currently 70 of the monthly time-series representing 24 countries are connected to live sources and will be updated in future.

    In this release the most recent data are for August 2025 (China, Colombia, India, Poland, Russia, Saudi Arabia, Viet Nam). All sources are detailed in the accompanying JSON metadata file. The earliest data are for Taiwan, which start in 1982, Thailand in 1987, and Japan in 1989.

    The time-series are necessarily incomplete. I have included the data that are available from each source. In some cases the sources also provide data on lime production, and this has been included since its production generates emissions in the same way as does the production of cement clinker. No interpolation or estimation has been used to generate this dataset: data are directly as reported from primary sources. These data are not production capacity, but actual production.

    This update:

    • New monthly cement series for Egypt, Sri Lanka, and Viet Nam
    • Added 16 years of earlier cement data for Japan, as well as new series for lime production
    • Added some additional data for Iran
    • Clinker trade data from UN COMTRADE removed to separate files
    • All data updated to the most recent available

    The countries for which monthly data sources are regularly updated are:

    • Argentina, Bolivia, Brazil, China, Colombia, Germany, Egypt, Spain, India, Japan, Kenya, Malaysia, Mexico, Pakistan, Poland, Russia, Saudi Arabia, South Korea, Sri Lanka, Taiwan, Thailand, Turkey, USA, Viet Nam

    If you intend to use this dataset in your own research, I would appreciate being contacted to discuss whether co-authorship is appropriate.

    If you are aware of countries that publish monthly cement statistics that are not included in this dataset, please let me know. Note that some countries publish monthly industrial production statistics for cement that are indices, but these are most often not directly convertible to physical production.

    Always make sure to check the Zenodo page for possible updates to the dataset.

    See also: Global CO2 emissions from cement production (https://zenodo.org/doi/10.5281/zenodo.831454). The monthly cement activity dataset presented here is one data source for the annual emissions dataset.

  20. Market Research Data | Global Map data | Geographic data | Address and Zip...

    • datarade.ai
    .csv
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Market Research Data | Global Map data | Geographic data | Address and Zip Code Database | Geocoded [Dataset]. https://datarade.ai/data-products/geopostcodes-market-research-data-map-data-geographic-dat-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Oct 19, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Saint Barthélemy, Monaco, Papua New Guinea, South Sudan, Poland, Korea (Democratic People's Republic of), Tokelau, Slovenia, Sierra Leone, Christmas Island
    Description

    A global self-hosted Market Research dataset containing all administrative divisions, cities, addresses, and zip codes for 247 countries. All geospatial data is updated weekly to maintain the highest data quality, including challenging countries such as China, Brazil, Russia, and the United Kingdom.

    Use cases for the Global Zip Code Database (Market Research data)

    • Address capture and validation

    • Map and visualization

    • Reporting and Business Intelligence (BI)

    • Master Data Mangement

    • Logistics and Supply Chain Management

    • Sales and Marketing

    Data export methodology

    Our map data packages are offered in variable formats, including .csv. All geographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Fully and accurately geocoded

    • Administrative areas with a level range of 0-4

    • Multi-language support including address names in local and foreign languages

    • Comprehensive city definitions across countries

    For additional insights, you can combine the map data with:

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Times

    Why do companies choose our Market Research databases

    • Enterprise-grade service

    • Reduce integration time and cost by 30%

    • Weekly updates for the highest quality

    Note: Custom geographic data packages are available. Please submit a request via the above contact button for more details.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Waqar Ali (2024). 🌍 Country Comparison Dataset (USA & More) 🌍 [Dataset]. https://www.kaggle.com/datasets/waqi786/country-comparison-dataset-usa-and-more
Organization logo

🌍 Country Comparison Dataset (USA & More) 🌍

In-depth comparison of major world countries across economic, social, etc.

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Sep 10, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Waqar Ali
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Area covered
United States
Description

This dataset offers a detailed comparison of key global players like USA, Russia, China, India, Canada, Australia, and others across various economic, social, and environmental metrics. By comparing countries on indicators such as GDP, population, healthcare access, education levels, internet penetration, military spending, and much more, this dataset provides valuable insights for researchers, policymakers, and analysts.

🔍 Key Comparisons:

Economic Indicators: GDP, inflation rates, unemployment rates, etc. Social Indicators: Literacy rates, healthcare quality, life expectancy, etc. Environmental Indicators: CO2 emissions, renewable energy usage, protected areas, etc. Technological Advancements: Internet users, mobile subscriptions, tech exports, etc. Military Spending: Defense budgets, military personnel numbers, etc. This dataset is perfect for those who want to compare countries in terms of development, growth, and global standing. It can be used for data analysis, policy planning, research, and even education.

✨ Key Features:

Comprehensive Coverage: Includes multiple countries with key metrics. Multiple Domains: Economic, social, environmental, technological, and military data. Up-to-date Information: Covers data from the last decade to provide recent insights. Research Ready: Suitable for academic research, visualizations, and analysis.

Search
Clear search
Close search
Google apps
Main menu