https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.
The United Nations Energy Statistics Database (UNSTAT) is a comprehensive collection of international energy and demographic statistics prepared by the United Nations Statistics Division. The 2004 version represents the latest in the series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The database contains comprehensive energy statistics for more than 215 countries or areas for production, trade and intermediate and final consumption (end-use) for primary and secondary conventional, non-conventional and new and renewable sources of energy. Mid-year population estimates are included to enable the computation of per capita data. Annual questionnaires sent to national statistical offices serve as the primary source of information. Supplementary data are also compiled from national, regional and international statistical publications. The Statistics Division prepares estimates where official data are incomplete or inconsistent. The database is updated on a continuous basis as new information and revisions are received. This metadata file represents the population statistics during the expressed time. For more information about the country site codes, click this link to the United Nations "Standard country or area codes for statistical use": https://unstats.un.org/unsd/methodology/m49/overview/
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The Global Population Growth Dataset provides a comprehensive record of population trends across various countries over multiple decades. It includes detailed information such as the country name, ISO3 country code, year-wise population data, population growth, and growth rate. This dataset is valuable for researchers, demographers, policymakers, and data analysts interested in studying population dynamics, demographic trends, and economic development.
Key features of the dataset:
✅ Covers multiple countries and regions worldwide
✅ Includes historical and recent population data
✅ Provides year-wise population growth and growth rate (%)
✅ Categorizes data by country and decade for better trend analysis
This dataset serves as a crucial resource for analyzing global population trends, understanding demographic shifts, and supporting socio-economic research and policy-making.
The dataset consists of structured records related to country-wise population data, compiled from official sources. Each file contains information on yearly population figures, growth trends, and country-specific data. The structured format makes it useful for researchers, economists, and data scientists studying demographic patterns and changes. The file type is CSV.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
Country: Name of the country.
Density (P/Km2): Population density measured in persons per square kilometer.
Abbreviation: Abbreviation or code representing the country.
Agricultural Land (%): Percentage of land area used for agricultural purposes.
Land Area (Km2): Total land area of the country in square kilometers.
Armed Forces Size: Size of the armed forces in the country.
Birth Rate: Number of births per 1,000 population per year.
Calling Code: International calling code for the country.
Capital/Major City: Name of the capital or major city.
CO2 Emissions: Carbon dioxide emissions in tons.
CPI: Consumer Price Index, a measure of inflation and purchasing power.
CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
Currency_Code: Currency code used in the country.
Fertility Rate: Average number of children born to a woman during her lifetime.
Forested Area (%): Percentage of land area covered by forests.
Gasoline_Price: Price of gasoline per liter in local currency.
GDP: Gross Domestic Product, the total value of goods and services produced in the country.
Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
Largest City: Name of the country's largest city.
Life Expectancy: Average number of years a newborn is expected to live.
Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
Minimum Wage: Minimum wage level in local currency.
Official Language: Official language(s) spoken in the country.
Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
Physicians per Thousand: Number of physicians per thousand people.
Population: Total population of the country.
Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
Tax Revenue (%): Tax revenue as a percentage of GDP.
Total Tax Rate: Overall tax burden as a percentage of commercial profits.
Unemployment Rate: Percentage of the labor force that is unemployed.
Urban Population: Percentage of the population living in urban areas.
Latitude: Latitude coordinate of the country's location.
Longitude: Longitude coordinate of the country's location.
Potential Use Cases
Analyze population density and land area to study spatial distribution patterns.
Investigate the relationship between agricultural land and food security.
Examine carbon dioxide emissions and their impact on climate change.
Explore correlations between economic indicators such as GDP and various socio-economic factors.
Investigate educational enrollment rates and their implications for human capital development.
Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
Study labor market dynamics through indicators such as labor force participation and unemployment rates.
Investigate the role of taxation and its impact on economic development.
Explore urbanization trends and their social and environmental consequences.
I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.
Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.
Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.
https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">
You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.
Below is the code that I used to scrape the code from the website
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">
Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.
As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Midyear population estimates and projections for all countries and areas of the world with a population of 5,000 or more // Source: U.S. Census Bureau, Population Division, International Programs Center// Note: Total population available from 1950 to 2100 for 227 countries and areas. Other demographic variables available from base year to 2100. Base year varies by country and therefore data are not available for all years for all countries. For the United States, total population available from 1950-2060, and other demographic variables available from 1980-2060. See methodology at https://www.census.gov/programs-surveys/international-programs/about/idb.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Population by Country - 2020’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/tanuprabhu/population-by-country-2020 on 21 November 2021.
--- Dataset description provided by original source is as follows ---
I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.
Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.
Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.
https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">
You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.
Below is the code that I used to scrape the code from the website
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">
Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.
As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting
--- Original source retains full ownership of the source dataset ---
The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.
This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.
African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.
For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.
References:
Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.
Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.
UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.
WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.
Explore detailed subnational population data including total population, % of total, and more on this dataset webpage.
Population, total, % of total, Subnational
World
Follow data.kapsarc.org for timely data to advance energy economics research.
Note: Many of the data come from the country national statistical offices. Other data come from the NASA Socioeconomic Data and Applications Center (SEDAC) managed by the Center for International Earth Science Information Network (CIESIN), Earth Institute, Columbia University. It is the World Bank Group first subnational population database at a global level and there are data limitations. Series metadata includes methodology and the assumptions made.
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
The dataset has 6 columns described as following:
Rank: Country rank by population
Country: Country name
Region: Country region
Population: Country population
Percentage: Percentage of population worldwide
Date: Date when population was measured
What is the population of each region ? Which country has the most population in each region ? What is the percentage of the first 10 countries ?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Town And Country population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Town And Country across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Town And Country was 11,553, a 0.28% decrease year-by-year from 2022. Previously, in 2022, Town And Country population was 11,585, a decline of 0.46% compared to a population of 11,638 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Town And Country increased by 600. In this period, the peak population was 11,644 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Town And Country Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Hill Country Village population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Hill Country Village across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Hill Country Village was 946, a 0.21% increase year-by-year from 2021. Previously, in 2021, Hill Country Village population was 944, a decline of 0.11% compared to a population of 945 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Hill Country Village decreased by 78. In this period, the peak population was 1,130 in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hill Country Village Population by Year. You can refer the same here
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains the population by each country over the years 1960-2023.
Source: World Bank Group https://data.worldbank.org/indicator/SP.POP.TOTL
Each row correspond to a country. Columns are Country Name, Country Code and the population size by years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution.
This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data.
Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020)
Method - demographic fractions
Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day.
To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as:
\(\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}}\)
Where:
- \(\delta_{year,\ country,age}^{\text{wpp}}\) is the ratio of change in demographic for a given age and and country from the UN WPP dataset.
- \(f_{year,\ country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country, and year.
- \(f_{2010,country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020.
The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4.
For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as:
\(f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}}\)
Where:
- \(f_{year,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for given year, for the grid cell c.
- \(f_{2010,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for 2010, for the grid cell c.
The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model.
Method - demographic totals
Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020.
The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell.
Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050).
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified.
Population densities for Pacific Island Countries and Territories based on mid-year population projections and available informaiton about land area.
Find more Pacific data on PDH.stat.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.