69 datasets found
  1. Global Country Information 2023

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nidula Elgiriyewithana; Nidula Elgiriyewithana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.
  2. List_of_countries_by_population_in_1800

    • kaggle.com
    zip
    Updated Jul 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathurin Aché (2020). List_of_countries_by_population_in_1800 [Dataset]. https://www.kaggle.com/datasets/mathurinache/list-of-countries-by-population-in-1800
    Explore at:
    zip(355 bytes)Available download formats
    Dataset updated
    Jul 17, 2020
    Authors
    Mathurin Aché
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is extracted from https://en.wikipedia.org/wiki/List_of_countries_by_population_in_1800. Context: There s a story behind every dataset and heres your opportunity to share yours.Content: What s inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. Acknowledgements:We wouldn t be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.Inspiration: Your data will be in front of the world s largest data science community. What questions do you want to see answered?

  3. Countries Data by Aadarsh Vani

    • kaggle.com
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aadarsh Vani (2024). Countries Data by Aadarsh Vani [Dataset]. https://www.kaggle.com/datasets/aadarshvani/countries-data-by-aadarsh-vani
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 6, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aadarsh Vani
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Country Information Dataset

    Overview

    Welcome to the Country Information Dataset, meticulously curated by Aadarsh Vani. This dataset serves as an extensive resource for anyone interested in exploring the rich tapestry of countries around the globe, providing detailed information on various aspects of each nation.

    Dataset Description

    This dataset contains valuable insights into countries worldwide, featuring the following attributes:

    • country_name: The name of the country.
    • capital_city: The capital city of the country.
    • currency: The official currency used.
    • official_lang: The main languages spoken.
    • population: The most recent population estimate.
    • area: The total land area (in square kilometers).
    • continent: The continent to which the country belongs (e.g., Asia, Europe).
    • largest_city: The largest city by population.
    • independence_year: The year the country gained independence.
    • landmarks: Notable landmarks and attractions.
    • national_animals: The officially recognized national animals.
    • national_bird: The country's national bird.
    • govt_type: The type of government (e.g., republic, monarchy).
    • dish: A popular traditional dish.
    • Major Religions: The predominant religions practiced.
    • leader: The current political leader or head of state.
    • driving_side: The side of the road on which vehicles drive.
    • national_sport: The recognized national sport.
    • major_fest: Important festivals celebrated in the country.

    Purpose

    The aim of this dataset is to provide a comprehensive and reliable resource for researchers, data scientists, and cultural enthusiasts. It can facilitate analysis and visualizations that reveal global patterns in demographics, cultures, and economies.

    Applications

    • Comparative studies of countries based on population, area, and GDP.
    • Analysis of cultural diversity through languages, foods, and religions.
    • Visualization of geographical data to highlight landmarks and major cities.
    • Research into the historical context of independence and governance.

    Data Format

    • The dataset is available in CSV format, ensuring ease of access and compatibility with data analysis platforms.

    Acknowledgment

    Created by Aadarsh Vani, this dataset is a labor of love aimed at enriching the understanding of our world's countries. I encourage users to share their insights, visualizations, and analyses arising from this dataset. Together, we can foster a deeper appreciation of global diversity!

    Thank you for exploring this dataset, and I hope it inspires your work in studying the fascinating intricacies of countries worldwide.

    Note: This data set will be updated frequently to keep it updated by adding new columns and updating the updated values. Kindly use it for practice and projects only as it has missing values and may have unintentional wrong data in some cells.

  4. T

    GOLD RESERVES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2014). GOLD RESERVES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gold-reserves
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2014
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. Data for "Toward Robust Estimates of Net Ecosystem Exchanges in...

    • zenodo.org
    bin, zip
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lingyu Zhang; Lingyu Zhang (2024). Data for "Toward Robust Estimates of Net Ecosystem Exchanges in Mega-Countries using GOSAT and OCO-2 Observations" [Dataset]. http://doi.org/10.5281/zenodo.11470976
    Explore at:
    bin, zipAvailable download formats
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lingyu Zhang; Lingyu Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains carbon fluxes for the 10 largest countries in the world (here EU27 is treated as a country) using GOSAT and OCO-2 observational constraints for 2017-2019.

  6. T

    GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 29, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  7. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  8. T

    EMPLOYMENT RATE by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 6, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). EMPLOYMENT RATE by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/employment-rate
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Dec 6, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for EMPLOYMENT RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  9. World Bank: International Debt Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: International Debt Data [Dataset]. https://www.kaggle.com/datasets/theworldbank/world-bank-intl-debt
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset contains both national and regional debt statistics captured by over 200 economic indicators. Time series data is available for those indicators from 1970 to 2015 for reporting countries.

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_intl_debt

    https://cloud.google.com/bigquery/public-data/world-bank-international-debt

    Citation: The World Bank: International Debt Statistics

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    What countries have the largest outstanding debt?

    https://cloud.google.com/bigquery/images/outstanding-debt.png" alt="enter image description here"> https://cloud.google.com/bigquery/images/outstanding-debt.png

  10. T

    NAPHTHA by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, NAPHTHA by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/naphtha
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for NAPHTHA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  11. G

    Trade openness by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Mar 21, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Trade openness by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/trade_openness/
    Explore at:
    excel, csv, xmlAvailable download formats
    Dataset updated
    Mar 21, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World, World
    Description

    The average for 2023 based on 154 countries was 95 percent. The highest value was in Luxembourg: 394.22 percent and the lowest value was in Sudan: 2.47 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  12. T

    GDP by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=america
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 30, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  13. T

    GOVERNMENT REVENUES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GOVERNMENT REVENUES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/government-revenues
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOVERNMENT REVENUES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  14. G

    Population Distribution, 1996

    • open.canada.ca
    • datasets.ai
    • +1more
    jp2, zip
    Updated Mar 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Population Distribution, 1996 [Dataset]. https://open.canada.ca/data/dataset/e7c2fac0-8893-11e0-98e7-6cf049291510
    Explore at:
    zip, jp2Available download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Even though Canada is the second largest country in the world in terms of land area, it ranks 33rd in terms of population. Almost all of Canada’s population is concentrated in a narrow band along the country’s southern edge. Nearly 80% of the total population lives within the 25 major metropolitan areas, which represent only 0.79% of the total area of the country.

  15. United States US: Income Share Held by Highest 10%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Highest 10% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-10
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  16. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  17. d

    Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories,...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories, Geographic & Location Intelligence, Regular Updates [Dataset]. https://datarade.ai/data-products/global-point-of-interest-poi-data-230m-locations-5000-c-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    Xverum
    Area covered
    French Polynesia, Costa Rica, Guatemala, Northern Mariana Islands, Kyrgyzstan, Vietnam, Antarctica, Andorra, Mauritania, Bahamas
    Description

    Xverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.

    With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.

    🔥 Key Features:

    Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.

    Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.

    Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.

    Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.

    Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.

    🏆Primary Use Cases:

    Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.

    Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.

    Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.

    Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.

    💡 Why Choose Xverum’s POI Data?

    • 230M+ Verified POI Records – One of the largest & most detailed location datasets available.
    • Global Coverage – POI data from 249+ countries, covering all major business sectors.
    • Regular Updates – Ensuring accurate tracking of business openings & closures.
    • Comprehensive Geographic & Business Data – Coordinates, addresses, categories, and more.
    • Bulk Dataset Delivery – S3 Bucket & cloud storage delivery for full dataset access.
    • 100% Compliant – Ethically sourced, privacy-compliant data.

    Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!

  18. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  19. Remittances - Inward and Outward Flows (World Bank)

    • sdgstoday-sdsn.hub.arcgis.com
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Development Solutions Network (2022). Remittances - Inward and Outward Flows (World Bank) [Dataset]. https://sdgstoday-sdsn.hub.arcgis.com/datasets/remittances-inward-and-outward-flows-world-bank
    Explore at:
    Dataset updated
    Nov 2, 2022
    Dataset authored and provided by
    Sustainable Development Solutions Networkhttps://www.unsdsn.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dashboard is part of SDGs Today. Please see sdgstoday.orgInternational migration has significant implications for countries’ economic growth, and remittances are an important factor on the economy. Typically sent by migrant workers to family and friends in their home countries, remittances are transfers of money that are often a large source of income for recipients. Remittances are comparable to international aid and represent one of the largest financial flows to developing countries, impacting both economic development and poverty alleviation. Compiled by the World Bank, this dataset measures officially-recorded remittance inflows (remittances received) per country in 2020. In 2020, the global remittance inflow was $666,223,000,000. Data is based off of the International Monetary Fund’s (IMF) Balance of Payment Statistics, which are updated annually. Remittance amounts are calculated as the sum of personal transfers, compensation of employees, and migrants’ transfers from IMF data. For some countries, remittance figures may come from central banks or other official sources.

  20. Gini index worldwide 2024, by country

    • statista.com
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini index worldwide 2024, by country [Dataset]. https://www.statista.com/forecasts/1171540/gini-index-by-country
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2024 - Dec 31, 2024
    Area covered
    Albania
    Description

    Comparing the 130 selected regions regarding the gini index , South Africa is leading the ranking (0.63 points) and is followed by Namibia with 0.58 points. At the other end of the spectrum is Slovakia with 0.23 points, indicating a difference of 0.4 points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from 0 (=total equality of incomes) to one (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
Organization logo

Global Country Information 2023

Explore at:
csvAvailable download formats
Dataset updated
Jun 15, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Nidula Elgiriyewithana; Nidula Elgiriyewithana
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Description

This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

Key Features

  • Country: Name of the country.
  • Density (P/Km2): Population density measured in persons per square kilometer.
  • Abbreviation: Abbreviation or code representing the country.
  • Agricultural Land (%): Percentage of land area used for agricultural purposes.
  • Land Area (Km2): Total land area of the country in square kilometers.
  • Armed Forces Size: Size of the armed forces in the country.
  • Birth Rate: Number of births per 1,000 population per year.
  • Calling Code: International calling code for the country.
  • Capital/Major City: Name of the capital or major city.
  • CO2 Emissions: Carbon dioxide emissions in tons.
  • CPI: Consumer Price Index, a measure of inflation and purchasing power.
  • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
  • Currency_Code: Currency code used in the country.
  • Fertility Rate: Average number of children born to a woman during her lifetime.
  • Forested Area (%): Percentage of land area covered by forests.
  • Gasoline_Price: Price of gasoline per liter in local currency.
  • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
  • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
  • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
  • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
  • Largest City: Name of the country's largest city.
  • Life Expectancy: Average number of years a newborn is expected to live.
  • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
  • Minimum Wage: Minimum wage level in local currency.
  • Official Language: Official language(s) spoken in the country.
  • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
  • Physicians per Thousand: Number of physicians per thousand people.
  • Population: Total population of the country.
  • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
  • Tax Revenue (%): Tax revenue as a percentage of GDP.
  • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
  • Unemployment Rate: Percentage of the labor force that is unemployed.
  • Urban Population: Percentage of the population living in urban areas.
  • Latitude: Latitude coordinate of the country's location.
  • Longitude: Longitude coordinate of the country's location.

Potential Use Cases

  • Analyze population density and land area to study spatial distribution patterns.
  • Investigate the relationship between agricultural land and food security.
  • Examine carbon dioxide emissions and their impact on climate change.
  • Explore correlations between economic indicators such as GDP and various socio-economic factors.
  • Investigate educational enrollment rates and their implications for human capital development.
  • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
  • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
  • Investigate the role of taxation and its impact on economic development.
  • Explore urbanization trends and their social and environmental consequences.
Search
Clear search
Close search
Google apps
Main menu