36 datasets found
  1. C

    Violence Reduction - Victim Demographics - Aggregated

    • data.cityofchicago.org
    • s.cnmilf.com
    • +1more
    csv, xlsx, xml
    Updated Aug 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Violence Reduction - Victim Demographics - Aggregated [Dataset]. https://data.cityofchicago.org/Public-Safety/Violence-Reduction-Victim-Demographics-Aggregated/gj7a-742p
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Aug 24, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.

    This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.

    The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.

    How does this dataset classify victims?

    The methodology by which this dataset classifies victims of violent crime differs by victimization type:

    Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.

    To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.

    For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:

    1. In instances where a homicide victimization does not correspond to an IUCR code 0110 or 0130, we set the IUCR code to "01XX" to indicate that the victimization was a homicide but we do not know whether it was a first-degree murder (IUCR code = 0110) or a second-degree murder (IUCR code = 0130).
    2. When a non-fatal shooting victimization does not correspond to an IUCR code that signifies a criminal sexual assault, robbery, or aggravated battery, we enter “UNK” in the IUCR column, “YES” in the GUNSHOT_I column, and “NON-FATAL” in the PRIMARY column to indicate that the victim was non-fatally shot, but the precise IUCR code is unknown.

    Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:

    1. When there is an incident that is associated with no victim with a matching IUCR code, we assume that this is an error. Every crime should have at least 1 victim with a matching IUCR code. In these cases, we change the IUCR code to reflect the incident IUCR code because CPD's incident table is considered to be more reliable than the victim table.

    Note: All businesses identified as victims in CPD data have been removed from this dataset.

    Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”

    Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).

    Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

  2. Number, percentage and rate of persons accused of homicide, by racialized...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Number, percentage and rate of persons accused of homicide, by racialized identity group, gender and region [Dataset]. http://doi.org/10.25318/3510020701-eng
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number, percentage and rate (per 100,000 population) of persons accused of homicide, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2024.

  3. Reported violent crime rate in the U.S. 1990-2023

    • statista.com
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Reported violent crime rate in the U.S. 1990-2023 [Dataset]. https://www.statista.com/statistics/191219/reported-violent-crime-rate-in-the-usa-since-1990/
    Explore at:
    Dataset updated
    Nov 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the violent crime rate in the United States was 363.8 cases per 100,000 of the population. Even though the violent crime rate has been decreasing since 1990, the United States tops the ranking of countries with the most prisoners. In addition, due to the FBI's transition to a new crime reporting system in which law enforcement agencies voluntarily submit crime reports, data may not accurately reflect the total number of crimes committed in recent years. Reported violent crime rate in the United States The United States Federal Bureau of Investigation tracks the rate of reported violent crimes per 100,000 U.S. inhabitants. In the timeline above, rates are shown starting in 1990. The rate of reported violent crime has fallen since a high of 758.20 reported crimes in 1991 to a low of 363.6 reported violent crimes in 2014. In 2023, there were around 1.22 million violent crimes reported to the FBI in the United States. This number can be compared to the total number of property crimes, roughly 6.41 million that year. Of violent crimes in 2023, aggravated assaults were the most common offenses in the United States, while homicide offenses were the least common. Law enforcement officers and crime clearance Though the violent crime rate was down in 2013, the number of law enforcement officers also fell. Between 2005 and 2009, the number of law enforcement officers in the United States rose from around 673,100 to 708,800. However, since 2009, the number of officers fell to a low of 626,900 officers in 2013. The number of law enforcement officers has since grown, reaching 720,652 in 2023. In 2023, the crime clearance rate in the U.S. was highest for murder and non-negligent manslaughter charges, with around 57.8 percent of murders being solved by investigators and a suspect being charged with the crime. Additionally, roughly 46.1 percent of aggravated assaults were cleared in that year. A statistics report on violent crime in the U.S. can be found here.

  4. Crime in England and Wales: Annual Trend and Demographic Tables

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Crime in England and Wales: Annual Trend and Demographic Tables [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/datasets/crimeinenglandandwalesannualtrendanddemographictables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Data from the Crime Survey for England and Wales (CSEW) showing breakdowns of victimisation over time and by various demographic characteristics.

  5. Uniform Crime Reporting Program Data: Offenses Known and Clearances by...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Dec 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Federal Bureau of Investigation (2023). Uniform Crime Reporting Program Data: Offenses Known and Clearances by Arrest, United States, 2020 [Dataset]. http://doi.org/10.3886/ICPSR38791.v1
    Explore at:
    delimited, stata, ascii, sas, r, spssAvailable download formats
    Dataset updated
    Dec 11, 2023
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Federal Bureau of Investigation
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38791/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38791/terms

    Time period covered
    2020
    Area covered
    United States
    Description

    The UNIFORM CRIME REPORTING PROGRAM DATA: OFFENSES KNOWN AND CLEARANCES BY ARREST, 2020 dataset is a compilation of offenses reported to law enforcement agencies in the United States. Due to the vast number of categories of crime committed in the United States, the FBI has limited the type of crimes included in this compilation to those crimes which people are most likely to report to police and those crimes which occur frequently enough to be analyzed across time. Crimes included are criminal homicide, forcible rape, robbery, aggravated assault, burglary, larceny-theft, and motor vehicle theft. Much information about these crimes is provided in this dataset. The number of times an offense has been reported, the number of reported offenses that have been cleared by arrests, and the number of cleared offenses which involved offenders under the age of 18 are the major items of information collected.

  6. Police-reported hate crime, by type of motivation, selected regions and...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Police-reported hate crime, by type of motivation, selected regions and Canada (selected police services) [Dataset]. http://doi.org/10.25318/3510006601-eng
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Police-reported hate crime, by type of motivation (race or ethnicity, religion, sexual orientation, language, disability, sex, age), selected regions and Canada (selected police services), 2014 to 2024.

  7. Data from: Drugs, Alcohol, and Student Crime in the United States, April-May...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • icpsr.umich.edu
    • +1more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Drugs, Alcohol, and Student Crime in the United States, April-May 1989 [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/drugs-alcohol-and-student-crime-in-the-united-states-april-may-1989-9c20a
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    This project examined different aspects of campus crime -- specifically, the prevalence of crimes among college students, whether the crime rate was increasing or decreasing on college campuses, and the factors related to campus crime. Researchers made the assumption that crimes committed by and against college students were likely to be related to drug and alcohol use. Specific questions designed to be answered by the data include: (1) Do students who commit crimes differ in their use of drugs and alcohol from students who do not commit crimes? (2) Do students who are victims of crimes differ in their use of drugs and alcohol from students who are not victims? (3) How do multiple offenders differ from single offenders in their use of drugs and alcohol? (4) How do victims of violent crimes differ from victims of nonviolent crimes in their use of drugs and alcohol? (5) What types of student crimes are more strongly related to drug or alcohol use than others? (6) Other than drug and alcohol use, in what ways can victims and perpetrators of crimes be differentiated from students who have had no direct experiences with crime? Variables include basic demographic information, academic information, drug use information, and experiences with crime since becoming a student.

  8. Prison Inmates in India

    • kaggle.com
    Updated Jan 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Prison Inmates in India [Dataset]. https://www.kaggle.com/datasets/thedevastator/prison-inmates-in-india-demographics-crimes-and
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 4, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Prison Inmates in India

    Demographics, Age, Education, Caste, Wages, Rehabilitation, Technical Info

    By Rajanand Ilangovan [source]

    About this dataset

    This dataset provides a detailed view of prison inmates in India, including their age, caste, and educational background. It includes information on inmates from all states/union territories for the year 2019 such as the number of male and female inmates aged 16-18 years, 18-30 year old inmates and those above 50 years old. The data also covers total number of penalized prisoners sentenced to death sentence, life imprisonment or executed by the state authorities. Additionally, it provides information regarding the crimehead (type) committed by an inmate along with its grand total across different age groups. This dataset not only sheds light on India’s criminal justice system but also highlights prevelance of crimes in different states and union territories as well as providing insight into crime trends across Indian states over time

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a comprehensive look at the demographics, crimes and sentences of Indian prison inmates in 2019. The data is broken down by state/union territory, year, crime head, age groups and gender.

    This dataset can be used to understand the demographic composition of the prison population in India as well as the types of crimes committed. It can also be used to gain insight into any changes or trends related to sentencing patterns in India over time. Furthermore, this data can provide valuable insight into potential correlations between different demographic factors (such as gender and caste) and specific types of crimes or length of sentences handed out.

    To use this dataset effectively there are a few important things to keep in mind: •State/UT - This column refers to individual states or union territories in India where prisons are located •Year – This column indicates which year(s) the data relates to •Both genders - Female columns refer only to female prisoners while male columns refers only to male prisoners •Age Groups – 16-18 years old = 21-30 years old = 31-50 years old = 50+ years old •Crime Head – A broad definition for each type of crime that inmates have been convicted for •No Capital Punishment – The total number sentenced with capital punishment No Life Imprisonment – The total number sentenced with life imprisonment No Executed– The total number executed from death sentence Grand Total–The overall totals for each category

    By using this information it is possible to answer questions regarding topics such as sentencing trends, types of crimes committed by different age groups or genders and state-by-state variation amongst other potential queries

    Research Ideas

    • Using the age and gender information to develop targeted outreach strategies for prisons in order to reduce recidivism rates.
    • Creating an AI-based predictive model to predict crime trends by analyzing crime head data from a particular region/state and correlating it with population demographics, economic activity, etc.
    • Analyzing the caste of inmates across different states in India in order to understand patterns of discrimination within the criminal justice system

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original.

    Columns

    File: SLL_Crime_headwise_distribution_of_inmates_who_convicted.csv | Column name | Description | |:--------------------------|:---------------------------------------------------------------------------------------------------| | STATE/UT | Name of the state or union territory where the jail is located. (String) | | YEAR | Year when the inmate population data was collected. (Integer) ...

  9. Incident-based crime statistics, by detailed violations, police services in...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +3more
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Incident-based crime statistics, by detailed violations, police services in Ontario [Dataset]. http://doi.org/10.25318/3510018001-eng
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Ontario, Canada
    Description

    Incident-based crime statistics (actual incidents, rate per 100,000 population, percentage change in rate, unfounded incidents, percent unfounded, total cleared, cleared by charge, cleared otherwise, persons charged, adults charged, youth charged / not charged), by detailed violations (violent, property, traffic, drugs, other Federal Statutes), police services in Ontario, 1998 to 2024.

  10. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Aug 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 23, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Aug 1, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 8:10 AM EASTERN ON AUG. 23

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  11. s

    Hate Crimes

    • data.sandiego.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hate Crimes [Dataset]. https://data.sandiego.gov/datasets/police-hate-crimes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Description

    Hate crimes reported to the San Diego Police Department. A hate crime is a criminal act or attempted criminal act motivated by hatred based on race, ethnicity, religion, gender, sexual orientation, national origin, physical or mental disability or association with a person or group with one or more of these actual or perceived characteristics.

  12. v

    Data from: Variations in Criminal Patterns Among Narcotic Addicts in...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • icpsr.umich.edu
    • +1more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Variations in Criminal Patterns Among Narcotic Addicts in Baltimore and New York City, 1983-1984 [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/variations-in-criminal-patterns-among-narcotic-addicts-in-baltimore-and-new-york-city-1983-58c6e
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    Baltimore, New York
    Description

    This data collection was undertaken to develop a typology of narcotic addicts according to the kind, frequency, and seriousness of their crimes and to identify the most serious criminal offenders, thereby determining which individuals were best suited to rehabilitation. The following questions are addressed by the data: (1) What "types" of narcotic addicts can be distinguished in terms of their criminal behavior? Which of these types are amenable to rehabilitation? (2) At what time during their addiction careers do addicts commit the most crime? Do narcotic addicts "mature" out of addiction? (3) What is the relationship between individuals' involvement in crime prior to addiction and their criminal activity and drug use over their addiction career? (4) Which demographic, personality, or other factors are associated with serious crime committed during periods of narcotic addiction? (5) What are the contributions of situational and dispositional factors to the relationship between addiction and crime? Part 1 of the collection details the subjects' addiction careers, the age they first used various drugs, the age they first became addicted to narcotics, the amount of time they were addicted/not addicted to narcotics, and the total length of their addiction careers. Part 2 contains variables generated by cluster analysis, including cluster assignment or "type." Part 3 includes the educational, occupational, and arrest histories of the subjects, as well as the drug use and arrest histories of their families. The Part 4 file consists of Minnesota Multiphasic Personality Inventory and Raven Progressive Matrix scores. The frequency and types of crime that subjects committed during the preaddiction period comprise Part 5, while the frequency and nature of drug use during the preaddiction period comprise Part 6. Parts 7 and 8 contain crime variables and drug use variables, respectively, across all nonaddiction periods. Finally, Part 9 contains data characterizing crime across all addiction periods, and Part 10 contains variables regarding drug use across total addiction periods.

  13. An Overview of Sexual Offending in England and Wales

    • gov.uk
    • cloud.csiss.gmu.edu
    • +4more
    Updated Jan 10, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2013). An Overview of Sexual Offending in England and Wales [Dataset]. https://www.gov.uk/government/statistics/an-overview-of-sexual-offending-in-england-and-wales
    Explore at:
    Dataset updated
    Jan 10, 2013
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    This is an Official Statistics bulletin produced by statisticians in the Ministry of Justice, Home Office and the Office for National Statistics. It brings together, for the first time, a range of official statistics from across the crime and criminal justice system, providing an overview of sexual offending in England and Wales. The report is structured to highlight: the victim experience; the police role in recording and detecting the crimes; how the various criminal justice agencies deal with an offender once identified; and the criminal histories of sex offenders.

    Providing such an overview presents a number of challenges, not least that the available information comes from different sources that do not necessarily cover the same period, the same people (victims or offenders) or the same offences. This is explained further in the report.

    Victimisation through to police recording of crimes

    Based on aggregated data from the ‘Crime Survey for England and Wales’ in 2009/10, 2010/11 and 2011/12, on average, 2.5 per cent of females and 0.4 per cent of males said that they had been a victim of a sexual offence (including attempts) in the previous 12 months. This represents around 473,000 adults being victims of sexual offences (around 404,000 females and 72,000 males) on average per year. These experiences span the full spectrum of sexual offences, ranging from the most serious offences of rape and sexual assault, to other sexual offences like indecent exposure and unwanted touching. The vast majority of incidents reported by respondents to the survey fell into the other sexual offences category.

    It is estimated that 0.5 per cent of females report being a victim of the most serious offences of rape or sexual assault by penetration in the previous 12 months, equivalent to around 85,000 victims on average per year. Among males, less than 0.1 per cent (around 12,000) report being a victim of the same types of offences in the previous 12 months.

    Around one in twenty females (aged 16 to 59) reported being a victim of a most serious sexual offence since the age of 16. Extending this to include other sexual offences such as sexual threats, unwanted touching or indecent exposure, this increased to one in five females reporting being a victim since the age of 16.

    Around 90 per cent of victims of the most serious sexual offences in the previous year knew the perpetrator, compared with less than half for other sexual offences.

    Females who had reported being victims of the most serious sexual offences in the last year were asked, regarding the most recent incident, whether or not they had reported the incident to the police. Only 15 per cent of victims of such offences said that they had done so. Frequently cited reasons for not reporting the crime were that it was ‘embarrassing’, they ‘didn’t think the police could do much to help’, that the incident was ‘too trivial or not worth reporting’, or that they saw it as a ‘private/family matter and not police business’

    In 2011/12, the police recorded a total of 53,700 sexual offences across England and Wales. The most serious sexual offences of ‘rape’ (16,000 offences) and ‘sexual assault’ (22,100 offences) accounted for 71 per cent of sexual offences recorded by the police. This differs markedly from victims responding to the CSEW in 2011/12, the majority of whom were reporting being victims of other sexual offences outside the most serious category.

    This reflects the fact that victims are more likely to report the most serious sexual offences to the police and, as such, the police and broader criminal justice system (CJS) tend to deal largely with the most serious end of the spectrum of sexual offending. The majority of the other sexual crimes recorded by the police related to ‘exposure or voyeurism’ (7,000) and ‘sexual activity with minors’ (5,800).

    Trends in recorded crime statistics can be influenced by whether victims feel able to and decide to report such offences to the police, and by changes in police recording practices. For example, while there was a 17 per cent decrease in recorded sexual offences between 2005/06 and 2008/09, there was a seven per cent increase between 2008/09 and 2010/11. The latter increase may in part be due to greater encouragement by the police to victims to come forward and improvements in police recording, rather than an increase in the level of victimisation.

    After the initial recording of a crime, the police may later decide that no crime took place as more details about the case emerge. In 2011/12, there were 4,155 offences initially recorded as sexual offences that the police later decided were not crimes. There are strict guidelines that set out circumstances under which a crime report may be ‘no crimed’. The ‘no-crime’ rate for sexual offences (7.2 per cent) compare

  14. Property crime tables, England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Property crime tables, England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/datasets/focusonpropertycrimeappendixtables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Annual data from the Crime Survey for England and Wales (CSEW) and metal theft offences recorded by the police, including demographic and offence type breakdowns and time series data.

  15. Data from: Desistance from Crime Over the Life Course, South Carolina,...

    • catalog.data.gov
    • icpsr.umich.edu
    • +1more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Desistance from Crime Over the Life Course, South Carolina, 2005-2017 [Dataset]. https://catalog.data.gov/dataset/desistance-from-crime-over-the-life-course-south-carolina-2005-2017-7d6fc
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    South Carolina
    Description

    The current study focused on 479 men and women from South Carolina who were enrolled as participants in the Serious and Violent Offender Reentry Initiative (SVORI) multi-site program evaluation shortly before prison release in 2004 or 2005. The original SVORI data suggested that the South Carolina respondents were similar to the multi-site sample with "committed to not going back to prison" as the most common reason for desisting and using drugs or alcohol as the most common reason for persisting. The goals of the current study were to (1) update information on the current status of these individuals across multiple domains (e.g., housing, employment, substance use); (2) gather additional administrative recidivism data to examine long-term offending; and (3) acquire information about the factors individuals associated with their decisions to desist from criminal activity, as well as circumstances associated with renewed criminal activity or desistence. Interviews were conducted with those that the study team were able to locate and additional administrative arrest and incarceration data were acquired for the full sample, providing recidivism follow-up over at least a 10-year period. Official administrative data were obtained from the South Carolina Law Enforcement Division (rearrests) and South Carolina Department of Corrections (reincarcerations). Arrest data span the entire arrest history (from first arrest through December 2015); reincarceration data span the period between the SVORI study prison release in 2005 and 2006 through June 2014. These data were obtained for the full sample of 479 South Carolina SVORI participants. Three components of interview data were collected. Desistance study interview data: 1 wave of in-person interviews was conducted with 208 study subjects who consented to participate in an interview. The research team used computer-assisted personal interviewing (CAPI) to administer the survey, and interviews were conducted from September 2016 through March 2017. Life event data: The Life Events Calendar (LEC) is a tool used in qualitative and quantitative research to gather retrospective information about a person's life, experiences, and history. The approach is based on autobiographical memory and how entering events on a calendar or page help facilitate memory recall. LECs typically encompass periods of 5 years or less; this study's LEC covered a 10- to 12-year span to allow analysis since last contact with the study cohort. Data were collected from the 208 subjects who consented to be interviewed. SVORI interview data: This inventory includes files with select baseline and outcome data (e.g., self-reported employment, drug use, criminal behavior) for desistance study subjects who responded to follow-up interviews at Wave 2 (3-month), Wave 3 (9-month), and Wave 4 (15-month). This collection of administrative and interview data is organized into 14 data parts. Demographic data includes information on age, gender, race, and education.

  16. Domestic abuse prevalence and victim characteristics

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Domestic abuse prevalence and victim characteristics [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/datasets/domesticabuseprevalenceandvictimcharacteristicsappendixtables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Domestic abuse numbers, prevalence, types and victim characteristics, based upon findings from the Crime Survey for England and Wales and police recorded crime.

  17. Data from: Assessing Identity Theft Offenders' Strategies and Perceptions of...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Assessing Identity Theft Offenders' Strategies and Perceptions of Risk in the United States, 2006-2007 [Dataset]. https://catalog.data.gov/dataset/assessing-identity-theft-offenders-strategies-and-perceptions-of-risk-in-the-united-s-2006-24942
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    The purpose of this study was to examine the crime of identity theft from the offenders' perspectives. The study employed a purposive sampling strategy. Researchers identified potential interview subjects by examining newspapers (using Lexis-Nexis), legal documents (using Lexis-Nexis and Westlaw), and United States Attorneys' Web sites for individuals charged with, indicted, and/or sentenced to prison for identity theft. Once this list was generated, researchers used the Federal Bureau of Prisons (BOP) Inmate Locator to determine if the individuals were currently housed in federal facilities. Researchers visited the facilities that housed the largest number of inmates on the list in each of the six regions in the United States as defined by the BOP (Western, North Central, South Central, North Eastern, Mid-Atlantic, and South Eastern) and solicited the inmates housed in these prisons. A total of 14 correctional facilities were visited and 65 individuals incarcerated for identity theft or identity theft related crimes were interviewed between March 2006 and February 2007. Researchers used semi-structured interviews to explore the offenders' decision-making processes. When possible, interviews were audio recorded and then transcribed verbatim. Part 1 (Quantitative Data) includes the demographic variables age, race, gender, number of children, highest level of education, and socioeconomic class while growing up. Other variables include prior arrests or convictions and offense type, prior drug use and if drug use contributed to identity theft, if employment facilitated identity theft, if they went to trial or plead to charges, and sentence length. Part 2 (Qualitative Data), includes demographic questions such as family situation while growing up, highest level of education, marital status, number of children, and employment status while committing identity theft crimes. Subjects were asked about prior criminal activity and drug use. Questions specific to identity theft include the age at which the person became involved in identity theft, how many identities he or she had stolen, if they had worked with other people to steal identities, why they had become involved in identity theft, the skills necessary to steal identities, and the perceived risks involved in identity theft.

  18. Incident-based crime statistics, by detailed violations, police services in...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Incident-based crime statistics, by detailed violations, police services in Manitoba [Dataset]. http://doi.org/10.25318/3510018101-eng
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Manitoba, Canada
    Description

    Incident-based crime statistics (actual incidents, rate per 100,000 population, percentage change in rate, unfounded incidents, percent unfounded, total cleared, cleared by charge, cleared otherwise, persons charged, adults charged, youth charged / not charged), by detailed violations (violent, property, traffic, drugs, other Federal Statutes), police services in Manitoba, 1998 to 2024.

  19. Stalking: findings from the Crime Survey for England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Stalking: findings from the Crime Survey for England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/datasets/stalkingfindingsfromthecrimesurveyforenglandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Stalking experienced by women and men, including numbers, type and personal characteristics, based upon annual findings from the Crime Survey for England and Wales.

  20. Number of religious hate crimes U.S. 2023, by religion

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of religious hate crimes U.S. 2023, by religion [Dataset]. https://www.statista.com/statistics/737660/number-of-religious-hate-crimes-in-the-us-by-religion/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    Anti-Jewish attacks were the most common form of anti-religious group hate crimes in the United States in 2023, with ***** cases. Anti-Islamic hate crimes were the second most common anti-religious hate crimes in that year, with *** incidents.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Chicago (2025). Violence Reduction - Victim Demographics - Aggregated [Dataset]. https://data.cityofchicago.org/Public-Safety/Violence-Reduction-Victim-Demographics-Aggregated/gj7a-742p

Violence Reduction - Victim Demographics - Aggregated

Explore at:
xml, xlsx, csvAvailable download formats
Dataset updated
Aug 24, 2025
Dataset authored and provided by
City of Chicago
Description

This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.

This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.

The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.

How does this dataset classify victims?

The methodology by which this dataset classifies victims of violent crime differs by victimization type:

Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.

To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.

For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:

  1. In instances where a homicide victimization does not correspond to an IUCR code 0110 or 0130, we set the IUCR code to "01XX" to indicate that the victimization was a homicide but we do not know whether it was a first-degree murder (IUCR code = 0110) or a second-degree murder (IUCR code = 0130).
  2. When a non-fatal shooting victimization does not correspond to an IUCR code that signifies a criminal sexual assault, robbery, or aggravated battery, we enter “UNK” in the IUCR column, “YES” in the GUNSHOT_I column, and “NON-FATAL” in the PRIMARY column to indicate that the victim was non-fatally shot, but the precise IUCR code is unknown.

Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:

  1. When there is an incident that is associated with no victim with a matching IUCR code, we assume that this is an error. Every crime should have at least 1 victim with a matching IUCR code. In these cases, we change the IUCR code to reflect the incident IUCR code because CPD's incident table is considered to be more reliable than the victim table.

Note: All businesses identified as victims in CPD data have been removed from this dataset.

Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”

Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).

Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.

Search
Clear search
Close search
Google apps
Main menu