27 datasets found
  1. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  2. d

    Africa Population Distribution Database

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deichmann, Uwe; Nelson, Andy (2014). Africa Population Distribution Database [Dataset]. https://search.dataone.org/view/Africa_Population_Distribution_Database.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Deichmann, Uwe; Nelson, Andy
    Time period covered
    Jan 1, 1960 - Dec 31, 1997
    Area covered
    Description

    The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.

    This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.

    African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.

    For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.

    References:

    Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.

    Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.

    UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.

    WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.

  3. Total population worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  4. P

    Data from: Coastal proximity of populations in 22 Pacific Island Countries...

    • pacificdata.org
    • palau-data.sprep.org
    • +14more
    html, pdf, xlsx
    Updated Feb 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific Data Hub (2022). Coastal proximity of populations in 22 Pacific Island Countries and Territories [Dataset]. https://pacificdata.org/data/dataset/coastal-proximity-of-populations-in-22-pacific-island-countries9f18b716-d636-4e9a-b628-0e5cd9757dec
    Explore at:
    xlsx, html, pdfAvailable download formats
    Dataset updated
    Feb 11, 2022
    Dataset provided by
    Pacific Data Hub
    License

    https://pacific-data.sprep.org/dataset/data-portal-license-agreements/resource/de2a56f5-a565-481a-8589-406dc40b5588https://pacific-data.sprep.org/dataset/data-portal-license-agreements/resource/de2a56f5-a565-481a-8589-406dc40b5588

    Description

    A recently published paper, titled “Coastal proximity of populations in 22 Pacific Island Countries and Territories” details the methodology used to undertake the analysis and presents the findings. Purpose * This analysis aims to estimate populations settled in coastal areas in 22 Pacific Island Countries and Territories (PICTS) using the data currently available. In addition to the coastal population estimates, the study compares the results obtained from the use of national population datasets (census) with those derived from the use of global population grids. * Accuracy and reliability from national and global datasets derived results have been evaluated to identify the most suitable options to estimate size and location of coastal populations in the region. A collaborative project between the Pacific Community (SPC), WorldFish and the University of Wollongong has produced the first detailed population estimates of people living close to the coast in the 22 Pacific Island Countries and Territories (PICTs).

  5. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Institute for Democracy in South Africa (IDASA)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2000
    Area covered
    Zambia, Botswana, Africa, Namibia, Zimbabwe, South Africa, Lesotho, Malawi
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  6. w

    Afrobarometer Survey 2002-2004, Merged Round 2 Data (16 Countries) -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 2002-2004, Merged Round 2 Data (16 Countries) - Botswana, Cabo Verde, Ghana, Kenya, Lesotho, Mali, Mozambique, Malawi, Namibia, Nigeria, Senegal, Tanzania, Uganda, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/886
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Democracy in South Africa (IDASA)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Michigan State University (MSU)
    Time period covered
    2002 - 2004
    Area covered
    Senegal, Mozambique, Ghana, Cabo Verde, Nigeria, Mali, Botswana, Namibia, Lesotho, Malawi
    Description

    Abstract

    The Afrobarometer project assesses attitudes and public opinion on democracy, markets, and civil society in several sub-Saharan African.This dataset was compiled from the studies in Round 2 of the Afrobarometer, conducted from 2002-2004 in 16 countries, including Botswana, Cape Verde, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Senegal, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe

    Geographic coverage

    The Round 2 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Republic of Cabo Verde, Senegal, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Certain questions in the questionnaires for the Afrobarometer 2 survey addressed country-specific issues, but many of the same questions were asked across surveys. Citizens of the 16 countries were asked questions about their economic and social situations, and their opinions were elicited on recent political and economic changes within their country.

  7. Covid-19 Highest City Population Density

    • kaggle.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2020
    Dataset provided by
    Kaggle
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  8. Afrobarometer Survey 2022 - South Africa

    • microdata.worldbank.org
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Cape Town (UCT, South Africa) (2025). Afrobarometer Survey 2022 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/6751
    Explore at:
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    University of Cape Town (UCT, South Africa)
    Michigan State University (MSU)
    Institute for Empirical Research in Political Economy (IREEP)
    Institute for Development Studies (IDS)
    Ghana Centre for Democratic Development (CDD)
    Time period covered
    2022
    Area covered
    South Africa
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, Round 7 (2016-2018) 34 countries, and Round 8 (2019-2021). The survey covered 39 countries in Round 9 (2021-2023).

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Universe

    Citizens of South Africa who are 18 years and older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    South Africa - Sample size: 1,582 - Sample design: Nationally representative, random, clustered, stratified, multi-stage area probability sample - Stratification: Region and urban-rural location - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 8 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota filled by alternating interviews between men and women; respondents of appropriate gender listed, after which computer randomly selects individual - Weighting: Weighted to account for individual selection probabilities

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Round 9 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.

    The questionnaire consists of three parts: 1. Part 1 captures the steps for selecting households and respondents, and includes the introduction to the respondent and (pp.1-4). This section should be filled in by the Fieldworker. 2. Part 2 covers the core attitudinal and demographic questions that are asked by the Fieldworker and answered by the Respondent (Q1 – Q100). 3. Part 3 includes contextual questions about the setting and atmosphere of the interview, and collects information on the Fieldworker. This section is completed by the Fieldworker (Q101 – Q123).

    Response rate

    Response rate was 85%.

    Sampling error estimates

    The sample size yields country-level results with a margin of error of +/-2.5 percentage points at a 95% confidence level.

  9. Afrobarometer Survey 2019-2021, Merged 34 Country - Africa

    • datafirst.uct.ac.za
    Updated Oct 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Empirical Research in Political Economy (IREEP) (2024). Afrobarometer Survey 2019-2021, Merged 34 Country - Africa [Dataset]. https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/991
    Explore at:
    Dataset updated
    Oct 9, 2024
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    University of Cape Town (UCT)
    Michigan State University (MSU)
    Institute for Empirical Research in Political Economy (IREEP)
    Institute for Development Studies (IDS)
    Ghana Centre for Democratic Development (CDD)
    Time period covered
    2019 - 2021
    Area covered
    Africa
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countires and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, and Round 4 (2008) 20 countries.The survey covered 34 countries in Round 5 (2011-2013), 36 countries in Round 6 (2014-2015), and 34 countries in Round 7 (2016-2018). Round 8 covered 34 African countries. The 34 countries covered in Round 8 (2019-2021) are:

    Angola, Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Côte d'Ivoire, eSwatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Malawi, Mali, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Senegal, Sierra Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Zimbabwe.

    Geographic coverage

    The survey has national coverage in the following 34 African countries: Angola, Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Côte d'Ivoire, eSwatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Malawi, Mali, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Senegal, Sierra Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Zimbabwe.

    Analysis unit

    Households and individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    Kind of data

    Sample survey data

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalised settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewers alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found in Section 5 of the Afrobarometer Round 5 Survey Manual

    Mode of data collection

    Face-to-face

    Research instrument

    The questionnaire for Round 3 addressed country-specific issues, but many of the same questions were asked across surveys. The survey instruments were not standardized across all countries and the following features should be noted:

    • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires.

    • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed.

    • Response options also varied on some questions, and where applicable, these differences are also noted.

  10. Labour productivity by main economic activity - Regions

    • db.nomics.world
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DBnomics (2024). Labour productivity by main economic activity - Regions [Dataset]. https://db.nomics.world/OECD/DSD_REG_ECO@DF_LPR
    Explore at:
    Dataset updated
    Jul 9, 2024
    Authors
    DBnomics
    Description

    This dataset provides statistics on labour productivity, for large regions (TL2) and small regions (TL3).

    Data source and definition

    Labour productivity is measured as gross value added per employment at place of work by main economic activity. Regional gross value added and employment data are collected from Eurostat (reg_eco10) for EU countries and via delegates of the OECD Working Party on Territorial Indicators (WPTI), as well as from national statistical offices' websites. In order to allow comparability over time and across countries, labour productivity data in current prices are transformed into constant prices and PPP measures (link).

    Definition of regions

    Regions are subnational units below national boundaries. OECD countries have two regional levels: large regions (territorial level 2 or TL2) and small regions (territorial level 3 or TL3). The OECD regions are presented in the OECD Territorial grid (pdf) and in the OECD Territorial correspondence table (xlsx).

    Use of economic data on small regions

    When economic analyses are carried out at the TL3 level, it is advisable to aggregate data at the metropolitan region level when several TL3 regions are associated to the same metropolitan region. Metropolitan regions combine TL3 regions when 50% or more of the regional population live in a functionnal urban areas above 250 000 inhabitants. This approach corrects the distortions created by commuting, see the list of OECD metropolitan regions (xlsx) and the EU methodology (link).

    Small regions (TL3) are categorized based on shared characteristics into regional typologies. See the economic indicators aggregated by territorial typology at country level on the access to City typology (link) and by urban-rural typology (link).

    Cite this dataset

    OECD Regions and Cities databases http://oe.cd/geostats

    Further information

    Contact: RegionStat@oecd.org

  11. Coronavirus (covid-19) in Sierra Leone

    • kaggle.com
    Updated Jun 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    todowa2 (2020). Coronavirus (covid-19) in Sierra Leone [Dataset]. https://www.kaggle.com/todowa2/coronaviruscovid19sierraleone/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 10, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    todowa2
    Area covered
    Sierra Leone
    Description

    Coronavirus (covid-19) in Sierra Leone

    This repository contains datasets relating to coronavirus in Sierra Leone, as well as on demographic and other information from the 2015 Population and Household Census (PHC). It also includes mapping shapefiles by district, so that you can map the district-level coronavirus statistics.

    See here for a full description of how the data files have been created from the source data, including the R code.

    Last updated: 10 June 2020.


    Context

    The novel 2019 coronavirus (covid-19) arrived late to West Africa and Sierra Leone in particular. This dataset provides the number of reported cases on a district-by-district basis for Sierra Leone, as well as various additional statistics at the country level. In addition, I provide district-by-district data on demographics and households' main sources of information, both from the 2015 census. For convenience, I also provide shapefiles for mapping the 14 districts of Sierra Leone.

    Content

    The dataset consists of four main files, which are in the output folder. See the column descriptions below for further details.

    1. Coronavirus confirmed cases by district (sl_districts_coronavirus.csv). I found the original data by looking in the static/js/data folder in the source code for covid19.mic.gov.sl, last accessed 10 June 2020. The file contains the cumulative number of confirmed coronavirus cases in the 14 districts of Sierra Leone as a time series. I have used the R tidyverse to reshape the data and ensure naming is consistent with the other data files.

    2. Demographic statistics by district (sl_districts_demographics.csv). Data from the 2015 Population and Housing Census (PHC), sourced from Open Data Sierra Leone. The dataset covers the 14 districts of Sierra Leone, which increased to 16 in 2017. Last accessed 10 June 2020.

    3. Main Sources of Information by district (sl_districts_info_sources.csv). Data from the 2015 Population and Housing Census (PHC), sourced from Open Data Sierra Leone. The dataset presents the main sources of information, such as television or radio, for households in the 14 districts of Sierra Leone. Last accessed 2 June 2020. I note that I have made one correction to the source data (see R code with correction here).

    4. Country-wide coronavirus statistics for Sierra Leone (sl_national_coronavirus.csv). The original data also comes from covid19.mic.gov.sl, last accessed 10 June 2020. The file contains numerous statistics as time series, listed in the Column Description section below. I note that there are various potential issues in the file which I leave the user to decide how to deal with (duplicate datetimes, inconsistent statistics).

    Additionally I include a set of five files with district-by-district mapping (shapefiles) and other data, unchanged from their original source. Each file is labelled in the following way: sl_districts_mapping.*. These files come from Direct Relief Open Data on ArcGIS Hub. The data also include district-level data on maternal child health attributes, which was the original context of the mapping data.

    Column Descriptions

    Coronavirus confirmed cases by district sl_districts_coronavirus.csv:

    1. date: Date of reporting
    2. district: District of Sierra Leone (based on pre-2017 administrative boundaries)
    3. confirmed_cases: Cumulative number of confirmed coronavirus cases; NA if no data reported
    4. decrease: Dummy variable indicating whether the number of reported cases has been revised down. NA if no reported cases on that date; 1 if there is a decrease from the last reported cases; 0 otherwise

    Demographic statistics by district sl_districts_demographics.csv:

    1. district: District of Sierra Leone (based on pre-2017 administrative boundaries)
    2. d_code: District code
    3. d_id: District id
    4. total_pop: Total population in district
    5. pop_share: District's share of total country population
    6. t_male: Total male population
    7. t_female: Total female population
    8. s_ratio: (*) Sex ratio at birth (number of males for every 100 females, under the age of 1)
    9. t_urban: Total urban population
    10. t_rural: Total rural population
    11. prop_urban: Proportion urban
    12. t_h_pop: Sum of h_male and h_female
    13. h_male: (?)
    14. h_female: (?)
    15. t_i_pop: Sum of i_male and i_female
    16. i_male: (?)
    17. i_female: (?)
    18. working_pop: Working population
    19. depend_pop: Dependent population

    ...

  12. e

    World Values Survey Time-Series (1981-2020) Cross-National Data-Set...

    • b2find.eudat.eu
    Updated Jul 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). World Values Survey Time-Series (1981-2020) Cross-National Data-Set WVS1-7v2.0 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/682bba3e-99ce-5f83-abb1-133913c6b7b1
    Explore at:
    Dataset updated
    Jul 26, 2025
    Description

    The World Values Survey (WVS) is an international research program devoted to the scientific and academic study of social, political, economic, religious and cultural values of people in the world. The project’s goal is to assess which impact values stability or change over time has on the social, political and economic development of countries and societies. The project grew out of the European Values Study and was started in 1981 by its Founder and first President (1981-2013) Professor Ronald Inglehart from the University of Michigan (USA) and his team, and since then has been operating in more than 120 world societies. The main research instrument of the project is a representative comparative social survey which is conducted globally every 5 years. Extensive geographical and thematic scope, free availability of survey data and project findings for broad public turned the WVS into one of the most authoritative and widely-used cross-national surveys in the social sciences. At the moment, WVS is the largest non-commercial cross-national empirical time-series investigation of human beliefs and values ever executed. Interview Mode of collection: mixed mode Face-to-face interview: CAPI (Computer Assisted Personal Interview) Face-to-face interview: PAPI (Paper and Pencil Interview) Telephone interview: CATI (Computer Assisted Telephone Interview) Self-administered questionnaire: CAWI (Computer-Assisted Web Interview) Self-administered questionnaire: Paper In all countries, fieldwork was conducted on the basis of detailed and uniform instructions prepared by the WVS Scientific Committee and WVSA secretariat. The main data collection mode in 1981-2012 was face to face (interviewer-administered) interview with the printed questionnaire. Postal surveys (respondent-administered) have been used in Canada, New Zealanda, Japan, Australia. CAPI and online data collection modes have been introduced first in WVS-6 in 2012-2014. The main data collection mode in WVS 2017-2021 is face to face (interviewer-administered). Several countries employed mixed-mode approach to data collection: USA (CAWI; CATI); Australia and Japan (CAWI; postal survey); Hong Kong SAR (PAPI; CAWI); Malaysia (CAWI; PAPI). The WVS Master Questionnaire is always provided in English and each national survey team has to ensure that the questionnaire was translated into all the languages spoken by 15% or more of the population in the country. A central team monitors the translation process. The target population is defined as: individuals aged 18 (16/17 is acceptable in the countries with such voting age) or older (with no upper age limit), regardless of their nationality, citizenship or language, that have been residing in the [country] within private households for the past 6 months prior to the date of beginning of fieldwork (or in the date of the first visit to the household, in case of random-route selection). The sampling procedures differ from country to country; probability Sample: Multistage Sample Probability Sample, Simple Random Sample Representative single stage or multi-stage sampling of the adult population of the country 18 (16) years old and older was used for the WVS 1981-2020. In 1981-2012, the required sample size for each coutnry was N=1000 or above. In 2017-2021, the sample size was set as effective sample size: 1200 for countries with population over 2 million, 1000 for countries with population less than 2 million. As an exception, few surveys with smaller sample sizes have been accepted into the WVS 1981-2020 through the WVSA's history. Sample design and other relevant information about sampling are reviewed by the WVS Scientific Advisory Committee and approved prior to contracting of fieldwork agency or starting of data collection. The sampling is documented using the Survey Design Form delivered by the national teams which included the description of the sampling frame and each sampling stage as well as the calculation of the planned gross and net sample size to achieve the required effective sample. Additionally, it included the analytical description of the inclusion probabilities of the sampling design that are used to calculate design weights.

  13. w

    Afrobarometer Survey 1999-2000, Merged Round 1 Data (12 Countries) -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1999-2000, Merged Round 1 Data (12 Countries) - Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria, Tanzania, Uganda, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/885
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Institute for Democracy in South Africa (IDASA)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2001
    Area covered
    Tanzania, Uganda, Botswana, Namibia, Zimbabwe, Ghana, Nigeria, Mali, Lesotho, Malawi
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics.

    The 12 country datasetis a combined dataset for the 12 African countries surveyed during round 1 of the survey, conducted between 1999-2000 (Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria South Africa, Tanzania, Uganda, Zambia and Zimbabwe), plus data from the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    Geographic coverage

    The Round 1 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Lesotho, Malawi, Mali, Namibia, Nigeria, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Because Afrobarometer Round 1 emerged out of several different survey research efforts, survey instruments were not standardized across all countries, there are a number of features of the questionnaires that should be noted, as follows: • In most cases, the data set only includes those questions/variables that were asked in nine or more countries. Complete Round 1 data sets for each individual country have already been released, and are available from ICPSR or from the Afrobarometer website at www.afrobarometer.org. • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires. • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed. • Response options also varied on some questions, and where applicable, these differences are also noted.

  14. e

    Primary Energy Demand and GDP per Capita for most Countries of the World,...

    • b2find.eudat.eu
    Updated May 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Primary Energy Demand and GDP per Capita for most Countries of the World, 1950-2014 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/7007119a-f78b-5907-8b40-1d59f538f6cc
    Explore at:
    Dataset updated
    May 3, 2023
    Area covered
    World
    Description

    The dataset reports annual estimates for primary energy per capita and GDP per capita for 185 countries for 1950 through 2014. The data allows investigating long-term joint evolution of economic activity and energy demand, which is important for both understanding the past energy needs of economic development, and forming useful baselines for scenario development, especially for integrated assessment modeling around climate change mitigation. Other commonly used datasets only go back to 1971 (International Energy Agency) for worldwide coverage and so extending the data back to 1950 allows analyzing a longer time period than before. The dataset also includes more individual country time series than IEA data thanks to data from the UN. 185 Countries as well as Czechoslovakia, East and West Pakistan, Soviet Union, Yugoslavia prior to their dissolution. Covers upward of 99% of global population after 1970. Data were downloaded from online repositories and then cleaned, harmonized and merged.

  15. Dataset for: Navigating Ecosystem Services Trade-offs: A Global...

    • zenodo.org
    bin, pdf
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Jose Martinez-Harms; Maria Jose Martinez-Harms; Barbara Larrain Barrios; Barbara Larrain Barrios (2024). Dataset for: Navigating Ecosystem Services Trade-offs: A Global Comprehensive Review [Dataset]. http://doi.org/10.5281/zenodo.13249080
    Explore at:
    pdf, binAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Maria Jose Martinez-Harms; Maria Jose Martinez-Harms; Barbara Larrain Barrios; Barbara Larrain Barrios
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 2024
    Description

    Methods

    The dataset is the output of a comprehensive literature-based search that aims to collate all the evidence on where ES relationships have been mentioned and addressed. We applied systematic mapping which is based on the “Guidelines for Systematic Review in Environmental Management” developed by the Centre for Evidence-Based Conservation at Bangor University (Pullin and Stewart 2006).

    The methodological framework followed the standard stages outlined for systematic mapping in environmental sciences (James et al. 2016). Briefly, we defined the scope and objectives:

    · We comprehensively review and further explore the global evidence of ES trade-offs and synergies focusing on all systems including terrestrial, freshwater, and marine.

    · We compiled the evidence on trade-offs and synergies among multiple ES interacting across various ecosystems.

    · We performed a geographical and temporal trend analysis exploring the distribution of studies across the world examining how the focus on various ecosystem types and ES categories has evolved to highlight gaps and biases.

    Then we set the criteria for study inclusion (Table 1), searched the evidence, coded, and produced the database. Extracted article information including the specific criteria is detailed in Table 1.

    The first step was to search the ISI Web of Knowledge core collection (http://apps.webofknowledge.com) database, targeting the search on the ecosystem services literature and studies dealing with trade-offs/synergies, win-win outcomes or bundles when managing different ecosystem services in the landscape/seascape. All peer-reviewed journal articles written in English and Spanish have been considered for review.

    The peer-reviewed literature from 2005 to 2021 was reviewed identifying relevant studies according to specific search terms. The relevant search terms and descriptive words derived from (Howe et al. 2014) adding “bundles” and “co-benefits”. Boolean nomenclatures ‘*’ = all letters were allowed after the *, were used on the root of words where several different endings applied (Figure 1). Search terms used were:

    (“*ecosystem service*” OR “environment* service*” OR “ecosystem* approach*” OR “ecosystem good*” OR “environment* good*”)

    AND

    (“*trade-off*” OR “tradeoff*” OR “synerg*” OR “win-win*” OR “bundle*” OR “cost*and benefit*” OR “co-benefit*”) n=5194

    Papers were preliminarily coded with a semantic analysis using the R package Bibliometrix (http://www.bibliometrix.org).

    In the second step (Figure 1) papers were preliminarily coded with a semantic analysis using the R package Bibliometrix (http://www.bibliometrix.org). Papers were classified according to three systems: terrestrial, marine, and freshwater (Table 1). Papers with multiple systems, transitional habitats or those that could not be classified were classified as “other” (Mazor et al. 2018). Articles were classified based on the occurrence of the most frequent system words in their title, keywords, and abstract (Mazor et al. 2018). The set of system-specific words was determined by extracting the 250 most frequently used keywords from all considered articles and assigning each word to either system (articles could fall into just one of the four categories). Using this technique, we managed to classify 100% of the papers. To further enrich the dataset and make it a useful repository for science and policy, an additional sub-classification was performed, categorizing papers into the following categories: Coastal, Urban, Wetlands, Forest, Mountain, Freshwater, Agroecosystems, and Others that mainly represented multiple ecosystems (Table S1). This comprehensive classification approach enhances the dataset’s utility for various scientific and policy-making applications.

    In the third step (Figure 1), applying the same technique, we classified the papers into four ES categories: habitat (supporting biodiversity related), provisioning, regulating, and cultural services (De Groot et al. 2010; MEA 2005; Sukhdev 2010; Wallace 2007). For the classification into ES categories, articles could fall into one or more of the four categories (see Table 1 for example the keywords used to classify ecosystems, ES categories, and countries). Applying this technique, we excluded 2149 papers that weren’t classified in any of the ecosystem services types categories resulting in 3629 papers (see Figure 1).

    In the fourth step (Figure 1), an initial screening was conducted to identify papers that did not align with the review objectives of assessing ecosystem services trade-offs and synergies to inform policy and management decisions. We manually reviewed the titles of each paper in the dataset, excluding those that were from other fields or did not align with the review objectives. In this initial assessment, we excluded 347 papers, leaving a total of 3,286 papers for further review. A descriptive analysis of this 3286 article dataset was performed to examine the distribution of ES categories within each ecosystem type over the specified period. This analysis allowed us to conclude the prevalence of each ecosystem service category in different ecosystem types, identifying temporal trends and patterns. The number of occurrences was calculated for each ES category within each ecosystem type, expressed as counts. This allowed for the comparison of ecosystem service distributions across the selected ecosystem types.

    In the fifth step (Figure 1), we employed an approach to visually represent the geographical distribution and focus of ES studies across the world. With the classification of studies in ES categories and the types of ecosystems, the papers were coded according to the country where the study was performed. It was possible to assign a specific country to 2636 studies, removing 650 studies that did not specify the country of study. From these 2636 papers classified, a proportion were global studies that consider several countries under study (499 global studies).

    We developed global maps (Figure 1), each offering a unique perspective on the ES research landscape. The first map presents the total number of ES trade-off studies conducted worldwide, illustrating the geographical spread and concentration of research efforts to provide a clear overview of regions that have been extensively studied and those that may require more attention in future research. Additionally, we calculated two key metrics to assess research productivity more comprehensively: the number of research papers per capita and the number of research papers relative to Gross Domestic Product (GDP). For population and GDP, we used the most recent available data from the World Bank (https://data.worldbank.org). These alternative metrics normalize the data based on economic output and population size, providing a more balanced view of research activity across different countries (Figures S3).

    Detailed maps were created featuring pie charts that highlight the different categories of ES and ecosystem types addressed for each country. These charts offer an understanding of how various ES categories and ecosystems are represented in different parts of the world. Finally, we assessed ES trade-off studies to world regions (Africa, Antarctica, Asia, Australasia, Europe, Latin America, and North America) looking at the relationships between the categories of ES. We considered papers that evaluated more than one category of ES and the papers that considered only one category of ES. This country-level analysis offers insights into regional research trends and priorities, contributing to a more localized understanding of ES studies.

    In the sixth step (Figure 1), each publication in this review was critically appraised to evaluate the quality of the papers included in the review. The foundation for our critical appraisal stems from the comprehensive and multidimensional approach of Belcher et al. (2016) that is framed to evaluate research quality, which aligns well with the interdisciplinary nature of our study. Belcher et al. (2016) developed a robust framework that incorporates essential principles and criteria for assessing the quality of transdisciplinary research. This is particularly relevant for ecosystem services science and our review that contributes to advancing current knowledge by systematically synthesizing evidence on relationships among various ES across these diverse systems.

    The Belcher et al. (2016) framework emphasizes four main principles: relevance, credibility (which we have adapted as methodological transparency), legitimacy (generalizability in our context), and effectiveness (significance). A continuous scoring system (ranging from 0 to 1) was applied for the four main criteria to maintain simplicity and consistency across the large number of studies. In this system, a value closer to 0 indicates that the criteria are not met, while a value closer to 1 indicates that the criteria are more closely met. This scoring method was a useful indicator of the overall quality of the paper and how well the article met the review's goals overall.

    Methodological Transparency was assessed based on the clarity and completeness of methodological descriptions, including data availability, the rigor of statistical analyses, methodological detail, and reproducibility of the findings. This criterion assesses the transparency and rigor of the study's methodology, including data collection, analysis, and reporting (Belcher et al. 2016). Relevance was evaluated by the study's alignment with the review's objectives, its importance to the field, and its practical applicability. This includes the extent to which the study addresses pertinent research

  16. f

    Data_Sheet_1_Why Does Child Mortality Decrease With Age? Modeling the...

    • frontiersin.figshare.com
    pdf
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josef Dolejs; Helena Homolková (2023). Data_Sheet_1_Why Does Child Mortality Decrease With Age? Modeling the Age-Associated Decrease in Mortality Rate Using WHO Metadata From 25 Countries.PDF [Dataset]. http://doi.org/10.3389/fped.2021.657298.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Josef Dolejs; Helena Homolková
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Our previous study analyzed the age trajectory of mortality (ATM) in 14 European countries, while this study aimed at investigating ATM in other continents and in countries with a higher level of mortality. Data from 11 Non-European countries were used.Methods: The number of deaths was extracted from the WHO mortality database. The Halley method was used to calculate the mortality rates in all possible calendar years and all countries combined. This method enables us to combine more countries and more calendar years in one hypothetical population.Results: The age trajectory of total mortality (ATTM) and also ATM due to specific groups of diseases were very similar in the 11 non-European countries and in the 14 European countries. The level of mortality did not affect the main results found in European countries. The inverse proportion was valid for ATTM in non-European countries with two exceptions.Slower or no mortality decrease with age was detected in the first year of life, while the inverse proportion model was valid for the age range (1, 10) years in most of the main chapters of ICD10.Conclusions: The decrease in child mortality with age may be explained as the result of the depletion of individuals with congenital impairment. The majority of deaths up to the age of 10 years were related to congenital impairments, and the decrease in child mortality rate with age was a demonstration of population heterogeneity. The congenital impairments were latent and may cause death even if no congenital impairment was detected.

  17. N

    Hill Country Village, TX Population Breakdown by Gender

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Hill Country Village, TX Population Breakdown by Gender [Dataset]. https://www.neilsberg.com/research/datasets/64ab959c-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hill Country Village, Texas
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Hill Country Village by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Hill Country Village across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 52.89% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Hill Country Village is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Hill Country Village total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Hill Country Village Population by Gender. You can refer the same here

  18. w

    Integrated Survey of Living Standards 2001 - Armenia

    • microdata.worldbank.org
    • microdata.armstat.am
    • +2more
    Updated Apr 24, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Service of the Republic of Armenia (NSS RA) (2018). Integrated Survey of Living Standards 2001 - Armenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/2950
    Explore at:
    Dataset updated
    Apr 24, 2018
    Dataset authored and provided by
    National Statistical Service of the Republic of Armenia (NSS RA)
    Time period covered
    2001
    Area covered
    Armenia
    Description

    Abstract

    The Integrated Survey of Living Standards (ISLS), renamed in 2004 to Integrated Survey of Living Conditions Survey (ILCS) is conducted annually by the NSS National Statistical Service of the Republic of Armenia, formed the basis for monitoring living conditions in Armenia. The ILCS is a universally recognized best-practice survey for collecting data to inform about the living standards of households. The ILCS comprises comprehensive and valuable data on the welfare of households and separate individuals which gives the NSS an opportunity to provide the public with up to date information on the population’s income, expenditures, the level of poverty and the other changes in living standards on an annual basis.

    Geographic coverage

    Urban and rural communities

    Analysis unit

    • Households;
    • Individuals.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    During the 2001-2003 surveys two-stage random sample was used; the first stage covered the selection of settlements - cities and villages, while the second stage was focused on the selection of households in these settlements. The surveys were conducted on the principle of monthly rotation of households by clusters (sample units). In 2002 and 2003 the number of households was 387 with the sample covering 14 cities and 30 villages in 2002 and 17 cities and 20 villages in 2003.

    During the 2004-2006 surveys the sampling frame for the ILCS was built using the database of addresses for the 2001 Population Census; the database was developed with the World Bank technical assistance. The database of addresses of all households in Armenia was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to the following three categories: big towns with 15,000 and more population; villages, and other towns. Big towns formed 16 strata (the only exception was the Vayots Dzor marz where there are no big towns). The villages and other towns formed 10 strata each. According to this division, a random, two-step sample stratified at marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of population residing in those settlements as percent to the total population in the country. In the first step, the settlements, i.e. primary sample units, were selected: 43 towns out of 48 or 90 percent of all towns in Armenia were surveyed during the year; also 216 villages out of 951 or 23 percent of all villages in the country were covered by the survey. In the second step, the respondent households were selected: 6,816 households (5,088 from urban and 1,728 from rural settlements). As a result, for the first time since 1996 survey data were representative at the marz level.

    During the 2007-2012 surveys the sampling frame for ILCS was designed according to the database of addresses for the 2001 Population Census, which was developed with the World Bank technical assistance. The sample consisted of two parts: core sample and oversample.

    1) For the creation of core sample, the sample frame (database of addresses of all households in Armenia) was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to three categories: large towns (with population of 15000 and higher), villages and other towns. Large towns formed by 16 groups (strata), while the villages and towns formed by 10 strata each. According to that division, a random, two-step sample stratified at the marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of households residing in those settlements as percent to the total households in the country. In the first step, using the PPS method the enumeration units (i.e., primary sample units to be surveyed during the year) were selected. 2007 sample includes 48 urban and 18 rural enumeration areas per month. 2) The oversample was drawn from the list of villages included in MCA-Armenia Rural Roads Rehabilitation Project. The enumeration areas of villages that were already in the core sample were excluded from that list. From the remaining enumeration areas 18 enumeration areas were selected per month. Thus, the rural sample size was doubled. 3) After merging the core sample and oversample, the survey households were selected in the second step. 656 households were surveyed per month, from which 368 from urban and 288 from rural settlements. Each month 82 interviewers had conducted field work, and their workload included 8 households per month. In 2007 number of surveyed households was 7,872 (4,416 from urban and 3,456 from rural areas).

    For the survey 2013 the sample frame for ILCS was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2001 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample. For the purpose of drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2013 sample included 32 enumeration areas in urban and 16 enumeration areas in rural communities per month. The households to be surveyed were selected in the second round. A total of 432 households were surveyed per month, of which 279 and 153 households from urban and rural communities, respectively. Every month 48 interviewers went on field work with a workload of 9 households per month.

    The sample frame for 2014-2016 was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2011 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample.
    For drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2014 sample included 30 enumeration areas in urban and 18 enumeration areas in rural communities per month. The method of representative probability sampling was used to frame the sample. At regional level, all communities were grouped into two categories - towns and villages. According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all rural and urban communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration districts - that is primary sample units to be surveyed during the year - were selected. The ILCS 2015 sample included 30 enumeration districts in urban and 18 enumeration districts in rural communities per month.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Questionnaire is filled in by the interviewer during the least five visits to households per month. During face-to-face interviews with the household head or another knowledgeable adult member, the interviewer collects information on the composition and housing conditions of the household, the employment status, educational level and health condition of the members, availability and use of land, livestock, and agricultural machinery, monetary and commodity flows between households, and other information.

    The 2001 survey questionnaire had the following sections: (1) "List of Household Members", (2) "Housing Facilities", (3) "Migration", (4) "Education", (5) "Agriculture", (6) "Monetary and Commodity Flows between Households", (7) "Health (General) and Healthcare", (8) "Savings and Debts", (9) "Social Assistance".

    The Diary is completed directly by the household for one month. Every day the household would record all its expenditures on food, non-food products and services, also giving a detailed description of such purchases; e.g. for food products the name, quantity, cost, and place of purchase of the product is recorded. Besides, the household records its consumption of food products received and used from its own land and livestock, as well as from other sources (e.g. gifts, humanitarian aid). Non-food products and services purchased or received for free are also recorded in the diary. Then, the household records its income received during the month. At the end of the month, information on rarely used food products, durable goods and ceremonies is recorded, as well. The records in the diary are verified by the interviewer in the course of 5 mandatory visits to the household during the survey month.

    The Survey Diary has the following sections: (1) food purchased during the day, (2) food consumed at home

  19. N

    Country Club Heights, IN Population Breakdown by Gender

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Country Club Heights, IN Population Breakdown by Gender [Dataset]. https://www.neilsberg.com/research/datasets/644a28c2-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Country Club Heights
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Country Club Heights by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Country Club Heights across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a majority of male population, with 58.08% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Country Club Heights is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Country Club Heights total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Club Heights Population by Gender. You can refer the same here

  20. N

    Town And Country, MO Population Breakdown by Gender

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Town And Country, MO Population Breakdown by Gender [Dataset]. https://www.neilsberg.com/research/datasets/65b38591-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Town and Country, Missouri
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Town And Country by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Town And Country across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 50.14% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Town And Country is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Town And Country total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country Population by Gender. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228

Global Country Information 2023

Explore at:
Dataset updated
Jun 15, 2024
Dataset authored and provided by
Elgiriyewithana, Nidula
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Description

This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

Key Features

Country: Name of the country.

Density (P/Km2): Population density measured in persons per square kilometer.

Abbreviation: Abbreviation or code representing the country.

Agricultural Land (%): Percentage of land area used for agricultural purposes.

Land Area (Km2): Total land area of the country in square kilometers.

Armed Forces Size: Size of the armed forces in the country.

Birth Rate: Number of births per 1,000 population per year.

Calling Code: International calling code for the country.

Capital/Major City: Name of the capital or major city.

CO2 Emissions: Carbon dioxide emissions in tons.

CPI: Consumer Price Index, a measure of inflation and purchasing power.

CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

Currency_Code: Currency code used in the country.

Fertility Rate: Average number of children born to a woman during her lifetime.

Forested Area (%): Percentage of land area covered by forests.

Gasoline_Price: Price of gasoline per liter in local currency.

GDP: Gross Domestic Product, the total value of goods and services produced in the country.

Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

Largest City: Name of the country's largest city.

Life Expectancy: Average number of years a newborn is expected to live.

Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

Minimum Wage: Minimum wage level in local currency.

Official Language: Official language(s) spoken in the country.

Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

Physicians per Thousand: Number of physicians per thousand people.

Population: Total population of the country.

Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

Tax Revenue (%): Tax revenue as a percentage of GDP.

Total Tax Rate: Overall tax burden as a percentage of commercial profits.

Unemployment Rate: Percentage of the labor force that is unemployed.

Urban Population: Percentage of the population living in urban areas.

Latitude: Latitude coordinate of the country's location.

Longitude: Longitude coordinate of the country's location.

Potential Use Cases

Analyze population density and land area to study spatial distribution patterns.

Investigate the relationship between agricultural land and food security.

Examine carbon dioxide emissions and their impact on climate change.

Explore correlations between economic indicators such as GDP and various socio-economic factors.

Investigate educational enrollment rates and their implications for human capital development.

Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

Study labor market dynamics through indicators such as labor force participation and unemployment rates.

Investigate the role of taxation and its impact on economic development.

Explore urbanization trends and their social and environmental consequences.

Search
Clear search
Close search
Google apps
Main menu