43 datasets found
  1. Global Country Information 2023

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nidula Elgiriyewithana; Nidula Elgiriyewithana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.
  2. Large Scale International Boundaries

    • catalog.data.gov
    • geodata.state.gov
    • +1more
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the

  3. World's Top Military Power

    • kaggle.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Durgesh Rao (2023). World's Top Military Power [Dataset]. http://doi.org/10.34740/kaggle/ds/3377078
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Durgesh Rao
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    World
    Description

    The World's Top Military Strength Dataset is a comprehensive compilation of data gathered from various reliable sources, providing a detailed analysis and comparison of the military capabilities of countries worldwide. This dataset serves as a valuable resource for policymakers, researchers, defense analysts, and military enthusiasts, enabling them to assess and understand the relative strength and capacities of different nations' armed forces.

    The dataset encompasses a wide range of parameters that are crucial in evaluating military power. It includes both quantitative and qualitative metrics, capturing factors such as defense budget, personnel strength, equipment inventory, technological advancements, research and development investments, logistical capabilities, and more. By incorporating multiple dimensions, the dataset offers a comprehensive view of a country's military prowess.

    Data within the dataset has been meticulously scraped and curated from reputable websites, government publications, defense journals, and international reports. Rigorous efforts have been made to ensure data accuracy and consistency, minimizing errors and biases to provide users with reliable information.

  4. T

    GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 29, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  6. o

    Country Codes

    • public.opendatasoft.com
    • data.smartidf.services
    • +6more
    csv, excel, geojson +1
    Updated Aug 25, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Country Codes [Dataset]. https://public.opendatasoft.com/explore/dataset/countries-codes/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Aug 25, 2015
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Description

    Country codes: ISO 2ISO 3UNLANGLABEL (EN, FR, SP)

  7. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  8. f

    datasheet1_Causal Datasheet for Datasets: An Evaluation Guide for Real-World...

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Butcher; Vincent S. Huang; Christopher Robinson; Jeremy Reffin; Sema K. Sgaier; Grace Charles; Novi Quadrianto (2023). datasheet1_Causal Datasheet for Datasets: An Evaluation Guide for Real-World Data Analysis and Data Collection Design Using Bayesian Networks.pdf [Dataset]. http://doi.org/10.3389/frai.2021.612551.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Bradley Butcher; Vincent S. Huang; Christopher Robinson; Jeremy Reffin; Sema K. Sgaier; Grace Charles; Novi Quadrianto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Developing data-driven solutions that address real-world problems requires understanding of these problems’ causes and how their interaction affects the outcome–often with only observational data. Causal Bayesian Networks (BN) have been proposed as a powerful method for discovering and representing the causal relationships from observational data as a Directed Acyclic Graph (DAG). BNs could be especially useful for research in global health in Lower and Middle Income Countries, where there is an increasing abundance of observational data that could be harnessed for policy making, program evaluation, and intervention design. However, BNs have not been widely adopted by global health professionals, and in real-world applications, confidence in the results of BNs generally remains inadequate. This is partially due to the inability to validate against some ground truth, as the true DAG is not available. This is especially problematic if a learned DAG conflicts with pre-existing domain doctrine. Here we conceptualize and demonstrate an idea of a “Causal Datasheet” that could approximate and document BN performance expectations for a given dataset, aiming to provide confidence and sample size requirements to practitioners. To generate results for such a Causal Datasheet, a tool was developed which can generate synthetic Bayesian networks and their associated synthetic datasets to mimic real-world datasets. The results given by well-known structure learning algorithms and a novel implementation of the OrderMCMC method using the Quotient Normalized Maximum Likelihood score were recorded. These results were used to populate the Causal Datasheet, and recommendations could be made dependent on whether expected performance met user-defined thresholds. We present our experience in the creation of Causal Datasheets to aid analysis decisions at different stages of the research process. First, one was deployed to help determine the appropriate sample size of a planned study of sexual and reproductive health in Madhya Pradesh, India. Second, a datasheet was created to estimate the performance of an existing maternal health survey we conducted in Uttar Pradesh, India. Third, we validated generated performance estimates and investigated current limitations on the well-known ALARM dataset. Our experience demonstrates the utility of the Causal Datasheet, which can help global health practitioners gain more confidence when applying BNs.

  9. Major Cities of The World

    • johnsnowlabs.com
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs, Major Cities of The World [Dataset]. https://www.johnsnowlabs.com/marketplace/ai-in-health-care-trends-and-challenges-in-2022/
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    John Snow Labs
    Area covered
    World, World
    Description

    This dataset lists cities which consists of above 15,000 inhabitants. Each city is associated with its country and sub-country to reduce the number of ambiguities. Subcountry can be the name of a state (eg in the United Kingdom or the United States of America) or the major administrative section (eg "region" in "France").

  10. G

    LSIB 2017: Large Scale International Boundary Polygons, Detailed

    • developers.google.com
    Updated Dec 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSIB 2017: Large Scale International Boundary Polygons, Detailed [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/USDOS_LSIB_2017
    Explore at:
    Dataset updated
    Dec 29, 2017
    Dataset provided by
    United States Department of State, Office of the Geographer
    Time period covered
    Dec 29, 2017
    Area covered
    Earth
    Description

    The United States Office of the Geographer provides the Large Scale International Boundary (LSIB) dataset. It is derived from two other datasets: a LSIB line vector file and the World Vector Shorelines (WVS) from the National Geospatial-Intelligence Agency (NGA). The interior boundaries reflect U.S. government policies on boundaries, boundary disputes, and sovereignty. The exterior boundaries are derived from the WVS; however, the WVS coastline data is outdated and generally shifted from between several hundred meters to over a kilometer. Each feature is the polygonal area enclosed by interior boundaries and exterior coastlines where applicable, and many countries consist of multiple features, one per disjoint region. Each of the 180,741 features is a part of the geometry of one of the 284 countries described in this dataset.

  11. n

    Potential Impacts of Climate Change on World Food Supply: Datasets from a...

    • earthdata.nasa.gov
    • catalog.data.gov
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2025). Potential Impacts of Climate Change on World Food Supply: Datasets from a Major Crop Modeling Study [Dataset]. http://doi.org/10.7927/H43R0QR1
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    ESDIS
    Area covered
    World
    Description

    The Potential Impacts of Climate Change on World Food Supply: Datasets from a Major Crop Modeling Study contain projected country and regional changes in grain crop yields due to global climate change. Equilibrium and transient scenarios output from General Circulation Models (GCMs) with three levels of farmer adaptations to climate change were utilized to generate crop yield estimates of wheat, rice, coarse grains (barley and maize), and protein feed (soybean) at 125 agricultural sites representing major world agricultural regions. Projected yields at the agricultural sites were aggregated to major trading regions, and fed into the Basic Linked Systems (BLS) global trade model to produce country and regional estimates of potential price increases, food shortages, and risk of hunger. These datasets are produced by the Goddard Institute for Space Studies (GISS) and are distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  12. T

    GOLD RESERVES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2014). GOLD RESERVES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gold-reserves
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2014
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  13. Large Scale International Boundaries (LSIB)

    • data.amerigeoss.org
    shp
    Updated Jan 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2024). Large Scale International Boundaries (LSIB) [Dataset]. https://data.amerigeoss.org/dataset/large-scale-international-boundaries-lsib
    Explore at:
    shp(46321649)Available download formats
    Dataset updated
    Jan 17, 2024
    Dataset provided by
    United Nationshttp://un.org/
    Description

    Large Scale International Boundaries

    Version 11.1 Release Date: August 22, 2022

    Overview

    The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. These data and their derivatives are the only international boundary lines approved for U.S. Government use. They reflect U.S. Government policy, and not necessarily de facto limits of control. This dataset is a National Geospatial Data Asset.

    Details

    Sources for these data include treaties, relevant maps, and data from boundary commissions and national mapping agencies. Where available, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery of the data involves analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.

    Attributes

    The dataset uses the following attributes: Attribute Name Explanation Country Code Country-level codes are from the Geopolitical Entities, Names, and Codes Standard (GENC). The Q2 code denotes a line representing a boundary associated with an area not in GENC. Country Names Names approved by the U.S. Board on Geographic Names (BGN). Names for lines associated with a Q2 code are descriptive and are not necessarily BGN-approved. Label Required text label for the line segment where scale permits Rank/Status Rank 1: International Boundary Rank 2: Other Line of International Separation Rank 3: Special Line Notes Explanation of any applicable special circumstances Cartographic Usage Depiction of the LSIB requires a visual differentiation between the three categories of boundaries: International Boundaries (Rank 1), Other Lines of International Separation (Rank 2), and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Additional cartographic information can be found in Guidance Bulletins (https://hiu.state.gov/data/cartographic_guidance_bulletins/) published by the Office of the Geographer and Global Issues. Please direct inquiries to internationalboundaries@state.gov.

    Credits

    The lines in the LSIB dataset are the product of decades of collaboration between geographers at the Department of State and the National Geospatial-Intelligence Agency with contributions from the Central Intelligence Agency and the UK Defence Geographic Centre. Attribution is welcome: U.S. Department of State, Office of the Geographer and Global Issues.

    Changes from Prior Release

    This version of the LSIB contains changes and accuracy refinements for the following line segments. These changes reflect improvements in spatial accuracy derived from newly available source materials, an ongoing review process, or the publication of new treaties or agreements. Changes to lines include: • Akrotiri (UK) / Cyprus • Albania / Montenegro • Albania / Greece • Albania / North Macedonia • Armenia / Turkey • Austria / Czechia • Austria / Slovakia • Austria / Hungary • Austria / Slovenia • Austria / Germany • Austria / Italy • Austria / Switzerland • Azerbaijan / Turkey • Azerbaijan / Iran • Belarus / Latvia • Belarus / Russia • Belarus / Ukraine • Belarus / Poland • Bhutan / India • Bhutan / China • Bulgaria / Turkey • Bulgaria / Romania • Bulgaria / Serbia • Bulgaria / Romania • China / Tajikistan • China / India • Croatia / Slovenia • Croatia / Hungary • Croatia / Serbia • Croatia / Montenegro • Czechia / Slovakia • Czechia / Poland • Czechia / Germany • Finland / Russia • Finland / Norway • Finland / Sweden • France / Italy • Georgia / Turkey • Germany / Poland • Germany / Switzerland • Greece / North Macedonia • Guyana / Suriname • Hungary / Slovenia • Hungary / Serbia • Hungary / Romania • Hungary / Ukraine • Iran / Turkey • Iraq / Turkey • Italy / Slovenia • Italy / Switzerland • Italy / Vatican City • Italy / San Marino • Kazakhstan / Russia • Kazakhstan / Uzbekistan • Kosovo / north Macedonia • Kosovo / Serbia • Kyrgyzstan / Tajikistan • Kyrgyzstan / Uzbekistan • Latvia / Russia • Latvia / Lithuania • Lithuania / Poland • Lithuania / Russia • Moldova / Ukraine • Moldova / Romania • Norway / Russia • Norway / Sweden • Poland / Russia • Poland / Ukraine • Poland / Slovakia • Romania / Ukraine • Romania / Serbia • Russia / Ukraine • Syria / Turkey • Tajikistan / Uzbekistan

    This release also contains topology fixes, land boundary terminus refinements, and tripoint adjustments.

    Copyright Notice and Disclaimer

    While U.S. Government works prepared by employees of the U.S. Government as part of their official duties are not subject to Federal copyright protection (see 17 U.S.C. § 105), copyrighted material incorporated in U.S. Government works retains its copyright protection. The works on or made available through download from the U.S. Department of State’s website may not be used in any manner that infringes any intellectual property rights or other proprietary rights held by any third party. Use of any copyrighted material beyond what is allowed by fair use or other exemptions may require appropriate permission from the relevant rightsholder. With respect to works on or made available through download from the U.S. Department of State’s website, neither the U.S. Government nor any of its agencies, employees, agents, or contractors make any representations or warranties—express, implied, or statutory—as to the validity, accuracy, completeness, or fitness for a particular purpose; nor represent that use of such works would not infringe privately owned rights; nor assume any liability resulting from use of such works; and shall in no way be liable for any costs, expenses, claims, or demands arising out of use of such works.

  14. Data from: World Mineral Statistics Dataset

    • data.europa.eu
    • metadata.bgs.ac.uk
    • +2more
    html, unknown
    Updated Nov 22, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (BGS) (2008). World Mineral Statistics Dataset [Dataset]. https://data.europa.eu/data/datasets/world-mineral-statistics-dataset2?locale=en
    Explore at:
    html, unknownAvailable download formats
    Dataset updated
    Nov 22, 2008
    Dataset provided by
    British Geological Surveyhttps://www.bgs.ac.uk/
    Authors
    British Geological Survey (BGS)
    Description

    The British Geological Survey has one of the largest databases in the world on the production and trade of minerals. The dataset contains annual production statistics by mass for more than 70 mineral commodities covering the majority of economically important and internationally-traded minerals, metals and mineral-based materials. For each commodity the annual production statistics are recorded for individual countries, grouped by continent. Import and export statistics are also available for years up to 2002. Maintenance of the database is funded by the Science Budget and output is used by government, private industry and others in support of policy, economic analysis and commercial strategy. As far as possible the production data are compiled from primary, official sources. Quality assurance is maintained by participation in such groups as the International Consultative Group on Non-ferrous Metal Statistics. Individual commodity and country tables are available for sale on request.

  15. d

    Shopping Malls Database by Country

    • datarade.ai
    .csv, .xls, .txt
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geodatindustry (2022). Shopping Malls Database by Country [Dataset]. https://datarade.ai/data-products/shopping-malls-database-by-country-geodataindustry
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 9, 2022
    Dataset authored and provided by
    Geodatindustry
    Area covered
    Canada, France, United States
    Description

    To this day, the Geodatindustry database is the world's most complete and accurate in the retail, commercial and industry area, with 25 years of experience and a qualified teams.

    Geodatindustry Database is the perfect tool to lead your decision making, market analytics, strategy building, prospecting, advertizing compaigns, etc.

    By purchasing this dataset, you gain access to more than 18,000 shopping malls all over the World, hosting millions of stores and welcoming millions of visitors each year.

    Included Points of Interest in this dataset : -Shopping Malls and Centers -Outlets -Big Supermakets and Hypermarkets.

    Information (if known) : shopping mall's name, physical address, number of shops, x,y coordinates, annual visitors counts (in millions), owner and managers, global area and GLA (in ranges), the website.

    Global area and GLA Ranges : A = 0-2 500 m² B = 2 500-5 000 m² C = 5 000-10 000 m² D = 10 000-25 000 m²
    E = 25 000-50 000 m² F = 50 000-75 000 m² G = 75 000-100 000 m² H = 100 000-1M m² I = 1M-10M m² J = 10M m² and +

    Prices depend on the amount of Shopping Malls for each country. It goes from 59€ to 3990€ per country.

  16. w

    World Economic Outlook (WEO)

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). World Economic Outlook (WEO) [Dataset]. https://data360.worldbank.org/en/dataset/IMF_WEO
    Explore at:
    Dataset updated
    Apr 18, 2025
    Time period covered
    1980 - 2029
    Description

    The World Economic Outlook (WEO) database contains selected macroeconomic data series from the statistical appendix of the World Economic Outlook report, which presents the IMF staff's analysis and projections of economic developments at the global level, in major country groups and individual countries. The WEO dataset is released twice a year: April and September/October. Please fill out this online form for access to the confidential version--not for redistribution or transfer to any unauthorized third party. The public version is available on the IMF website.

    The IMF's World Economic Outlook uses a "bottom-up" approach in producing its forecasts; that is, country teams within the IMF generate projections for individual countries. These are then aggregated, and through a series of iterations where the aggregates feed back into individual countries' forecasts, forecasts converge to the projections reported in the WEO.

    Because forecasts are made by the individual country teams, the methodology can vary from country to country and series to series depending on many factors. To get more information on a specific country and series forecast, you may contact the country teams directly; from the Countries tab on the IMF website. (From: https://www.imf.org/en/Publications/WEO/frequently-asked-questions#:~:text=%2Ddatabase%2FDisclaimer.-,Q.,generate%20projections%20for%20individual%20countries.)

  17. m

    AI & Big Data Global Surveillance Index

    • data.mendeley.com
    Updated Dec 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Feldstein (2020). AI & Big Data Global Surveillance Index [Dataset]. http://doi.org/10.17632/gjhf5y4xjp.1
    Explore at:
    Dataset updated
    Dec 15, 2020
    Authors
    Steven Feldstein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This index compiles empirical data on AI and big data surveillance use for 179 countries around the world between 2012 and 2020— although the bulk of the sources stem from between 2017 and 2020. The index does not distinguish between legitimate and illegitimate uses of AI and big data surveillance. Rather, the purpose of the research is to show how new surveillance capabilities are transforming governments’ ability to monitor and track individuals or groups. Last updated April 2020.

    This index addresses three primary questions: Which countries have documented AI and big data public surveillance capabilities? What types of AI and big data public surveillance technologies are governments deploying? And which companies are involved in supplying this technology?

    The index measures AI and big data public surveillance systems deployed by state authorities, such as safe cities, social media monitoring, or facial recognition cameras. It does not assess the use of surveillance in private spaces (such as privately-owned businesses in malls or hospitals), nor does it evaluate private uses of this technology (e.g., facial recognition integrated in personal devices). It also does not include AI and big data surveillance used in Automated Border Control systems that are commonly found in airport entry/exit terminals. Finally, the index includes a list of frequently mentioned companies – by country – which source material indicates provide AI and big data surveillance tools and services.

    All reference source material used to build the index has been compiled into an open Zotero library, available at https://www.zotero.org/groups/2347403/global_ai_surveillance/items. The index includes detailed information for seventy-seven countries where open source analysis indicates that governments have acquired AI and big data public surveillance capabilities. The index breaks down AI and big data public surveillance tools into the following categories: smart city/safe city, public facial recognition systems, smart policing, and social media surveillance.

    The findings indicate that at least seventy-seven out of 179 countries are actively using AI and big data technology for public surveillance purposes:

    • Smart city/safe city platforms: fifty-five countries • Public facial recognition systems: sixty-eight countries • Smart policing: sixty-one countries • Social media surveillance: thirty-six countries

  18. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  19. d

    Replication Data for The Complex Crises Database: 70 years of Macroeconomic...

    • search.dataone.org
    Updated Nov 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Betin, Manuel; Umberto Collodel (2023). Replication Data for The Complex Crises Database: 70 years of Macroeconomic Crises [Dataset]. http://doi.org/10.7910/DVN/OCSCVL
    Explore at:
    Dataset updated
    Nov 13, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Betin, Manuel; Umberto Collodel
    Description

    .xlsx file for the replication of the Paper The Complex Crises Database: 70 years of Macroeconomic Crises. It contains the term frequencies of 20 crises sentiment indexes computed from the IMF country report for the period 1956-2016 for 181 countries. (2021-07-02)

  20. Shrubs covered area - GLC-SHARE

    • data.amerigeoss.org
    pdf, png, wms, zip
    Updated Jun 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2024). Shrubs covered area - GLC-SHARE [Dataset]. https://data.amerigeoss.org/dataset/0373fd19-3d72-4b63-900b-3483ce18c3f9
    Explore at:
    pdf, zip, png, wmsAvailable download formats
    Dataset updated
    Jun 11, 2024
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    This dataset is a raster format GeoTIFF representing the percentage of density in each pixel of the shrubs coverage. It is part of the Global Land Cover-SHARE (GLC-SHARE) database at the global level created by FAO, Land and Water Division in partnership and with contribution from various partners and institutions.

    The shrubs covered area dataset includes any geographical area dominated by natural shrubs having a cover of 10% or more. Trees can be present in scattered form if their cover is less than 10%. Herbaceous plants can also be present at any density. The class includes shrub covered areas permanently or regularly flooded by inland fresh water. It excludes shrubs flooded by salt or brackish water in coastal areas (>07).

    Supplemental Information:

    GLC-SHARE provides a set of major thematic land cover layers resulting by a combination of "best available" high resolution national, regional and/or sub-national land cover databases with the weighted average land cover information derived from large-scale available datasets. The database is produced with a resolution of 30 arc second (1km). The approach implemented is based on the utilization of the Land Cover Classification System (LCCS) and SEEA (System of Environmental-Economic Accounting) legend systems for the harmonization of the various global, regional and national land cover legends. The major benefit of the GLC-SHARE product is its capacity to preserve the existing and available high resolution land cover information at the regional and country level obtained by spatial and multi-temporal source data, integrating them with the best synthesis of global datasets.

    Preliminary validation campaign was performed using 1000 random points statistically distributed over each land cover classes. The database is distributed in the following eleven layers, in raster format (GeoTIFF ), whose pixel values represent the percentage of density coverage in each pixel of the land cover type. The dominant layer, representing the value of the dominant land cover type, is also available along with a legend in LYR ESRI format. Finally, information on each layer's source is retrievable in sources layer, by joining the raster values with an Excel table. 01-Artificial Surfaces 02-CropLand 03-Grassland 04-Tree Covered Area 05-Shrubs Covered Area 06-Herbaceous vegetation, aquatic or regularly flooded 07-Mangroves 08-Sparse vegetation 09-BareSoil 10-Snow and glaciers 11-Waterbodies

    Contact points:

    Metadata Contact: FAO GIS Manager

    Resource Contact: Land and Water Officer FAO-NRL

    Data lineage:

    The land cover database is validated only using the high resolution remote sensing imagery present in Google Earth.

    Resource constraints:

    Reproduction and dissemination of material contained in GLC-SHARE Beta-Release v1.0 or educational, research, personal or other noncommercial purposes are authorized without any prior written permission from the copyright holders, provided FAO are fully acknowledged. No part of GLC-SHARE Beta-Release v1.0 data may be downloaded, stored in a retrieval system or transmitted by any means for resale or other commercial purposes without written permission of the copyright holders. If any information or resources on this site are attributed to a site or source external to FAO permission to use must be sought with FAO.

    The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. FAO declines all responsibility for errors or deficiencies in the database or software or in the documentation accompanying it, for program maintenance and upgrading as well as for any damage that may arise from them. FAO also declines any responsibility for updating the data and assumes no responsibility for errors and omissions in the data provided. Users are, however, kindly asked to report any errors or deficiencies in this product to FAO.

    Online resources:

    Download: GLC-Share - Shrubs Covered Area

    Download: GLC-Share - Sources

    Download: GLC-Share report

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
Organization logo

Global Country Information 2023

Explore at:
csvAvailable download formats
Dataset updated
Jun 15, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Nidula Elgiriyewithana; Nidula Elgiriyewithana
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Description

This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

Key Features

  • Country: Name of the country.
  • Density (P/Km2): Population density measured in persons per square kilometer.
  • Abbreviation: Abbreviation or code representing the country.
  • Agricultural Land (%): Percentage of land area used for agricultural purposes.
  • Land Area (Km2): Total land area of the country in square kilometers.
  • Armed Forces Size: Size of the armed forces in the country.
  • Birth Rate: Number of births per 1,000 population per year.
  • Calling Code: International calling code for the country.
  • Capital/Major City: Name of the capital or major city.
  • CO2 Emissions: Carbon dioxide emissions in tons.
  • CPI: Consumer Price Index, a measure of inflation and purchasing power.
  • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
  • Currency_Code: Currency code used in the country.
  • Fertility Rate: Average number of children born to a woman during her lifetime.
  • Forested Area (%): Percentage of land area covered by forests.
  • Gasoline_Price: Price of gasoline per liter in local currency.
  • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
  • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
  • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
  • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
  • Largest City: Name of the country's largest city.
  • Life Expectancy: Average number of years a newborn is expected to live.
  • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
  • Minimum Wage: Minimum wage level in local currency.
  • Official Language: Official language(s) spoken in the country.
  • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
  • Physicians per Thousand: Number of physicians per thousand people.
  • Population: Total population of the country.
  • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
  • Tax Revenue (%): Tax revenue as a percentage of GDP.
  • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
  • Unemployment Rate: Percentage of the labor force that is unemployed.
  • Urban Population: Percentage of the population living in urban areas.
  • Latitude: Latitude coordinate of the country's location.
  • Longitude: Longitude coordinate of the country's location.

Potential Use Cases

  • Analyze population density and land area to study spatial distribution patterns.
  • Investigate the relationship between agricultural land and food security.
  • Examine carbon dioxide emissions and their impact on climate change.
  • Explore correlations between economic indicators such as GDP and various socio-economic factors.
  • Investigate educational enrollment rates and their implications for human capital development.
  • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
  • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
  • Investigate the role of taxation and its impact on economic development.
  • Explore urbanization trends and their social and environmental consequences.
Search
Clear search
Close search
Google apps
Main menu