20 datasets found
  1. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  2. Population density in India as of 2022, by area and state

    • statista.com
    Updated Jul 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Population density in India as of 2022, by area and state [Dataset]. https://www.statista.com/statistics/1366870/india-population-density-by-area-and-state/
    Explore at:
    Dataset updated
    Jul 10, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    India
    Description

    In 2022, the union territory of Delhi had the highest urban population density of over 18 thousand persons per square kilometer. While the rural population density was highest in union territory of Puducherry, followed by the state of Bihar.

  3. Total population of India 2029

    • statista.com
    Updated Nov 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total population of India 2029 [Dataset]. https://www.statista.com/statistics/263766/total-population-of-india/
    Explore at:
    Dataset updated
    Nov 18, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The statistic shows the total population of India from 2019 to 2029. In 2023, the estimated total population in India amounted to approximately 1.43 billion people.

    Total population in India

    India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population.

    With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year.

    As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.

  4. d

    National Family Health Survey (NFHS): State- and Region-wise Statistical...

    • dataful.in
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). National Family Health Survey (NFHS): State- and Region-wise Statistical Indicators Data on Family Profile and Health Status in India [Dataset]. https://dataful.in/datasets/18683
    Explore at:
    xlsx, csv, application/x-parquetAvailable download formats
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    India
    Variables measured
    National Nutrition and Health Status of India
    Description

    The dataset contains state-wise National Family Health Survey (NFHS) compiled data on various family planning, childbirth, population, medical, health and other parameters which provide statistical indicators data on family profile and health status in India. There are 100+ indicators covered in the survey which broadly fall in the following categories: Health and Wellness, Maternal and Child Health, Family Planning and Reproductive Health, Disease Screening and Prevention, Social and Economic Factors, General Healthcare and Treatment

    The different types of health data contained in the dataset include Anaemia among women and children, blood sugar levels and hypertension among men and women, tobacco and alcohol consumption among adults, delivery care and child feeding practices of women, quality of family planning services, screening of cancer among women, marriage and family, maternity care, nutritional status of women, child vaccinations and vitamin A supplementation, treatment of childhood diseases, etc.

    Within these categories of health data, the dataset contains indicators data such as births attended by skilled health care professionals and caesarean section, number of children with under and heavy weight, stunted growth, their different vaccations status, male and female sterilization, consumption of iron folic acid among mothers, mother who had antenatal, postnatal, neonatal services, women who are obese and at the risk of weight to hip ratio, educational status among women and children, sanitation, birth and sex ratio, etc.

    All of the data is compiled from the NFHS 4th and 5th survey reports. The The NFHS is a collaborative project of the International Institute for Population Sciences(IIPS), aimed at providing health data to strengthen India's health policies and programmes.

    There are 100+ indicators covered in the survey which broadly fall in the following categories: Health and Wellness, Maternal and Child Health, Family Planning and Reproductive Health, Disease Screening and Prevention, Social and Economic Factors, General Healthcare and Treatment

  5. India Census: Population: by Religion: Muslim: Urban

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). India Census: Population: by Religion: Muslim: Urban [Dataset]. https://www.ceicdata.com/en/india/census-population-by-religion/census-population-by-religion-muslim-urban
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2001 - Mar 1, 2011
    Area covered
    India
    Variables measured
    Population
    Description

    India Census: Population: by Religion: Muslim: Urban data was reported at 68,740,419.000 Person in 2011. This records an increase from the previous number of 49,393,496.000 Person for 2001. India Census: Population: by Religion: Muslim: Urban data is updated yearly, averaging 59,066,957.500 Person from Mar 2001 (Median) to 2011, with 2 observations. The data reached an all-time high of 68,740,419.000 Person in 2011 and a record low of 49,393,496.000 Person in 2001. India Census: Population: by Religion: Muslim: Urban data remains active status in CEIC and is reported by Census of India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE001: Census: Population: by Religion.

  6. National Family Survey 2019-2021 - India

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated May 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Institute for Population Sciences (IIPS) (2022). National Family Survey 2019-2021 - India [Dataset]. https://catalog.ihsn.org/catalog/10308
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset provided by
    Ministry of Health and Family Welfare, Government of Indiahttps://www.mohfw.gov.in/
    International Institute for Population Sciences (IIPS)
    Time period covered
    2019 - 2021
    Area covered
    India
    Description

    Abstract

    The National Family Health Survey 2019-21 (NFHS-5), the fifth in the NFHS series, provides information on population, health, and nutrition for India, each state/union territory (UT), and for 707 districts.

    The primary objective of the 2019-21 round of National Family Health Surveys is to provide essential data on health and family welfare, as well as data on emerging issues in these areas, such as levels of fertility, infant and child mortality, maternal and child health, and other health and family welfare indicators by background characteristics at the national and state levels. Similar to NFHS-4, NFHS-5 also provides information on several emerging issues including perinatal mortality, high-risk sexual behaviour, safe injections, tuberculosis, noncommunicable diseases, and the use of emergency contraception.

    The information collected through NFHS-5 is intended to assist policymakers and programme managers in setting benchmarks and examining progress over time in India’s health sector. Besides providing evidence on the effectiveness of ongoing programmes, NFHS-5 data will help to identify the need for new programmes in specific health areas.

    The clinical, anthropometric, and biochemical (CAB) component of NFHS-5 is designed to provide vital estimates of the prevalence of malnutrition, anaemia, hypertension, high blood glucose levels, and waist and hip circumference, Vitamin D3, HbA1c, and malaria parasites through a series of biomarker tests and measurements.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15 to 54

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, all men age 15-54, and all children aged 0-5 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A uniform sample design, which is representative at the national, state/union territory, and district level, was adopted in each round of the survey. Each district is stratified into urban and rural areas. Each rural stratum is sub-stratified into smaller substrata which are created considering the village population and the percentage of the population belonging to scheduled castes and scheduled tribes (SC/ST). Within each explicit rural sampling stratum, a sample of villages was selected as Primary Sampling Units (PSUs); before the PSU selection, PSUs were sorted according to the literacy rate of women age 6+ years. Within each urban sampling stratum, a sample of Census Enumeration Blocks (CEBs) was selected as PSUs. Before the PSU selection, PSUs were sorted according to the percentage of SC/ST population. In the second stage of selection, a fixed number of 22 households per cluster was selected with an equal probability systematic selection from a newly created list of households in the selected PSUs. The list of households was created as a result of the mapping and household listing operation conducted in each selected PSU before the household selection in the second stage. In all, 30,456 Primary Sampling Units (PSUs) were selected across the country in NFHS-5 drawn from 707 districts as on March 31st 2017, of which fieldwork was completed in 30,198 PSUs.

    For further details on sample design, see Section 1.2 of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four survey schedules/questionnaires: Household, Woman, Man, and Biomarker were canvassed in 18 local languages using Computer Assisted Personal Interviewing (CAPI).

    Cleaning operations

    Electronic data collected in the 2019-21 National Family Health Survey were received on a daily basis via the SyncCloud system at the International Institute for Population Sciences, where the data were stored on a password-protected computer. Secondary editing of the data, which required resolution of computer-identified inconsistencies and coding of open-ended questions, was conducted in the field by the Field Agencies and at the Field Agencies central office, and IIPS checked the secondary edits before the dataset was finalized.

    Field-check tables were produced by IIPS and the Field Agencies on a regular basis to identify certain types of errors that might have occurred in eliciting information and recording question responses. Information from the field-check tables on the performance of each fieldwork team and individual investigator was promptly shared with the Field Agencies during the fieldwork so that the performance of the teams could be improved, if required.

    Response rate

    A total of 664,972 households were selected for the sample, of which 653,144 were occupied. Among the occupied households, 636,699 were successfully interviewed, for a response rate of 98 percent.

    In the interviewed households, 747,176 eligible women age 15-49 were identified for individual women’s interviews. Interviews were completed with 724,115 women, for a response rate of 97 percent. In all, there were 111,179 eligible men age 15-54 in households selected for the state module. Interviews were completed with 101,839 men, for a response rate of 92 percent.

  7. India Census: Population: Punjab

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Census: Population: Punjab [Dataset]. https://www.ceicdata.com/en/india/census-population-by-states/census-population-punjab
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 1901 - Mar 1, 2011
    Area covered
    India
    Variables measured
    Population
    Description

    Census: Population: Punjab data was reported at 27,743,338.000 Person in 03-01-2011. This records an increase from the previous number of 24,358,999.000 Person for 03-01-2001. Census: Population: Punjab data is updated decadal, averaging 10,367,652.500 Person from Mar 1901 (Median) to 03-01-2011, with 12 observations. The data reached an all-time high of 27,743,338.000 Person in 03-01-2011 and a record low of 6,731,510.000 Person in 03-01-1911. Census: Population: Punjab data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAB002: Census: Population: by States.

  8. India Census: Population: Maharashtra

    • ceicdata.com
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). India Census: Population: Maharashtra [Dataset]. https://www.ceicdata.com/en/india/census-population-by-states/census-population-maharashtra
    Explore at:
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 1901 - Mar 1, 2011
    Area covered
    India
    Variables measured
    Population
    Description

    Census: Population: Maharashtra data was reported at 112,374,333.000 Person in 03-01-2011. This records an increase from the previous number of 96,878,627.000 Person for 03-01-2001. Census: Population: Maharashtra data is updated decadal, averaging 35,778,141.000 Person from Mar 1901 (Median) to 03-01-2011, with 12 observations. The data reached an all-time high of 112,374,333.000 Person in 03-01-2011 and a record low of 19,391,643.000 Person in 03-01-1901. Census: Population: Maharashtra data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAB002: Census: Population: by States.

  9. w

    India - National Family Health Survey 1998-1999 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). India - National Family Health Survey 1998-1999 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/india-national-family-health-survey-1998-1999
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The second National Family Health Survey (NFHS-2), conducted in 1998-99, provides information on fertility, mortality, family planning, and important aspects of nutrition, health, and health care. The International Institute for Population Sciences (IIPS) coordinated the survey, which collected information from a nationally representative sample of more than 90,000 ever-married women age 15-49. The NFHS-2 sample covers 99 percent of India's population living in all 26 states. This report is based on the survey data for 25 of the 26 states, however, since data collection in Tripura was delayed due to local problems in the state. IIPS also coordinated the first National Family Health Survey (NFHS-1) in 1992-93. Most of the types of information collected in NFHS-2 were also collected in the earlier survey, making it possible to identify trends over the intervening period of six and one-half years. In addition, the NFHS-2 questionnaire covered a number of new or expanded topics with important policy implications, such as reproductive health, women's autonomy, domestic violence, women's nutrition, anaemia, and salt iodization. The NFHS-2 survey was carried out in two phases. Ten states were surveyed in the first phase which began in November 1998 and the remaining states (except Tripura) were surveyed in the second phase which began in March 1999. The field staff collected information from 91,196 households in these 25 states and interviewed 89,199 eligible women in these households. In addition, the survey collected information on 32,393 children born in the three years preceding the survey. One health investigator on each survey team measured the height and weight of eligible women and children and took blood samples to assess the prevalence of anaemia. SUMMARY OF FINDINGS POPULATION CHARACTERISTICS Three-quarters (73 percent) of the population lives in rural areas. The age distribution is typical of populations that have recently experienced a fertility decline, with relatively low proportions in the younger and older age groups. Thirty-six percent of the population is below age 15, and 5 percent is age 65 and above. The sex ratio is 957 females for every 1,000 males in rural areas but only 928 females for every 1,000 males in urban areas, suggesting that more men than women have migrated to urban areas. The survey provides a variety of demographic and socioeconomic background information. In the country as a whole, 82 percent of household heads are Hindu, 12 percent are Muslim, 3 percent are Christian, and 2 percent are Sikh. Muslims live disproportionately in urban areas, where they comprise 15 percent of household heads. Nineteen percent of household heads belong to scheduled castes, 9 percent belong to scheduled tribes, and 32 percent belong to other backward classes (OBCs). Two-fifths of household heads do not belong to any of these groups. Questions about housing conditions and the standard of living of households indicate some improvements since the time of NFHS-1. Sixty percent of households in India now have electricity and 39 percent have piped drinking water compared with 51 percent and 33 percent, respectively, at the time of NFHS-1. Sixty-four percent of households have no toilet facility compared with 70 percent at the time of NFHS-1. About three-fourths (75 percent) of males and half (51 percent) of females age six and above are literate, an increase of 6-8 percentage points from literacy rates at the time of NFHS-1. The percentage of illiterate males varies from 6-7 percent in Mizoram and Kerala to 37 percent in Bihar and the percentage of illiterate females varies from 11 percent in Mizoram and 15 percent in Kerala to 65 percent in Bihar. Seventy-nine percent of children age 6-14 are attending school, up from 68 percent in NFHS-1. The proportion of children attending school has increased for all ages, particularly for girls, but girls continue to lag behind boys in school attendance. Moreover, the disparity in school attendance by sex grows with increasing age of children. At age 6-10, 85 percent of boys attend school compared with 78 percent of girls. By age 15-17, 58 percent of boys attend school compared with 40 percent of girls. The percentage of girls 6-17 attending school varies from 51 percent in Bihar and 56 percent in Rajasthan to over 90 percent in Himachal Pradesh and Kerala. Women in India tend to marry at an early age. Thirty-four percent of women age 15-19 are already married including 4 percent who are married but gauna has yet to be performed. These proportions are even higher in the rural areas. Older women are more likely than younger women to have married at an early age: 39 percent of women currently age 45-49 married before age 15 compared with 14 percent of women currently age 15-19. Although this indicates that the proportion of women who marry young is declining rapidly, half the women even in the age group 20-24 have married before reaching the legal minimum age of 18 years. On average, women are five years younger than the men they marry. The median age at marriage varies from about 15 years in Madhya Pradesh, Bihar, Uttar Pradesh, Rajasthan, and Andhra Pradesh to 23 years in Goa. As part of an increasing emphasis on gender issues, NFHS-2 asked women about their participation in household decisionmaking. In India, 91 percent of women are involved in decision-making on at least one of four selected topics. A much lower proportion (52 percent), however, are involved in making decisions about their own health care. There are large variations among states in India with regard to women's involvement in household decisionmaking. More than three out of four women are involved in decisions about their own health care in Himachal Pradesh, Meghalaya, and Punjab compared with about two out of five or less in Madhya Pradesh, Orissa, and Rajasthan. Thirty-nine percent of women do work other than housework, and more than two-thirds of these women work for cash. Only 41 percent of women who earn cash can decide independently how to spend the money that they earn. Forty-three percent of working women report that their earnings constitute at least half of total family earnings, including 18 percent who report that the family is entirely dependent on their earnings. Women's work-participation rates vary from 9 percent in Punjab and 13 percent in Haryana to 60-70 percent in Manipur, Nagaland, and Arunachal Pradesh. FERTILITY AND FAMILY PLANNING Fertility continues to decline in India. At current fertility levels, women will have an average of 2.9 children each throughout their childbearing years. The total fertility rate (TFR) is down from 3.4 children per woman at the time of NFHS-1, but is still well above the replacement level of just over two children per woman. There are large variations in fertility among the states in India. Goa and Kerala have attained below replacement level fertility and Karnataka, Himachal Pradesh, Tamil Nadu, and Punjab are at or close to replacement level fertility. By contrast, fertility is 3.3 or more children per woman in Meghalaya, Uttar Pradesh, Rajasthan, Nagaland, Bihar, and Madhya Pradesh. More than one-third to less than half of all births in these latter states are fourth or higher-order births compared with 7-9 percent of births in Kerala, Goa, and Tamil Nadu. Efforts to encourage the trend towards lower fertility might usefully focus on groups within the population that have higher fertility than average. In India, rural women and women from scheduled tribes and scheduled castes have somewhat higher fertility than other women, but fertility is particularly high for illiterate women, poor women, and Muslim women. Another striking feature is the high level of childbearing among young women. More than half of women age 20-49 had their first birth before reaching age 20, and women age 15-19 account for almost one-fifth of total fertility. Studies in India and elsewhere have shown that health and mortality risks increase when women give birth at such young ages?both for the women themselves and for their children. Family planning programmes focusing on women in this age group could make a significant impact on maternal and child health and help to reduce fertility. INFANT AND CHILD MORTALITY NFHS-2 provides estimates of infant and child mortality and examines factors associated with the survival of young children. During the five years preceding the survey, the infant mortality rate was 68 deaths at age 0-11 months per 1,000 live births, substantially lower than 79 per 1,000 in the five years preceding the NFHS-1 survey. The child mortality rate, 29 deaths at age 1-4 years per 1,000 children reaching age one, also declined from the corresponding rate of 33 per 1,000 in NFHS-1. Ninety-five children out of 1,000 born do not live to age five years. Expressed differently, 1 in 15 children die in the first year of life, and 1 in 11 die before reaching age five. Child-survival programmes might usefully focus on specific groups of children with particularly high infant and child mortality rates, such as children who live in rural areas, children whose mothers are illiterate, children belonging to scheduled castes or scheduled tribes, and children from poor households. Infant mortality rates are more than two and one-half times as high for women who did not receive any of the recommended types of maternity related medical care than for mothers who did receive all recommended types of care. HEALTH, HEALTH CARE, AND NUTRITION Promotion of maternal and child health has been one of the most important components of the Family Welfare Programme of the Government of India. One goal is for each pregnant woman to receive at least three antenatal check-ups plus two tetanus toxoid injections and a full course of iron and folic acid supplementation. In India, mothers of 65 percent of the children born in the three years preceding NFHS-2 received at least one antenatal

  10. w

    Global Financial Inclusion (Global Findex) Database 2021 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/4653
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    India
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    Excluded populations living in Northeast states and remote islands and Jammu and Kashmir. The excluded areas represent less than 10 percent of the total population.

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for India is 3000.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  11. d

    India - National Family Health Survey 2005-2006 - Dataset - waterdata

    • waterdata3.staging.derilinx.com
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). India - National Family Health Survey 2005-2006 - Dataset - waterdata [Dataset]. https://waterdata3.staging.derilinx.com/dataset/india-national-family-health-survey-2005-2006
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The National Family Health Surveys (NFHS) programme, initiated in the early 1990s, has emerged as a nationally important source of data on population, health, and nutrition for India and its states. The 2005-06 National Family Health Survey (NFHS-3), the third in the series of these national surveys, was preceded by NFHS-1 in 1992-93 and NFHS-2 in 1998-99. Like NFHS-1 and NFHS-2, NFHS-3 was designed to provide estimates of important indicators on family welfare, maternal and child health, and nutrition. In addition, NFHS-3 provides information on several new and emerging issues, including family life education, safe injections, perinatal mortality, adolescent reproductive health, high-risk sexual behaviour, tuberculosis, and malaria. Further, unlike the earlier surveys in which only ever-married women age 15-49 were eligible for individual interviews, NFHS-3 interviewed all women age 15-49 and all men age 15-54. Information on nutritional status, including the prevalence of anaemia, is provided in NFHS3 for women age 15-49, men age 15-54, and young children. A special feature of NFHS-3 is the inclusion of testing of the adult population for HIV. NFHS-3 is the first nationwide community-based survey in India to provide an estimate of HIV prevalence in the general population. Specifically, NFHS-3 provides estimates of HIV prevalence among women age 15-49 and men age 15-54 for all of India, and separately for Uttar Pradesh and for Andhra Pradesh, Karnataka, Maharashtra, Manipur, and Tamil Nadu, five out of the six states classified by the National AIDS Control Organization (NACO) as high HIV prevalence states. No estimate of HIV prevalence is being provided for Nagaland, the sixth high HIV prevalence state, due to strong local opposition to the collection of blood samples. NFHS-3 covered all 29 states in India, which comprise more than 99 percent of India's population. NFHS-3 is designed to provide estimates of key indicators for India as a whole and, with the exception of HIV prevalence, for all 29 states by urban-rural residence. Additionally, NFHS-3 provides estimates for the slum and non-slum populations of eight cities, namely Chennai, Delhi, Hyderabad, Indore, Kolkata, Meerut, Mumbai, and Nagpur. NFHS-3 was conducted under the stewardship of the Ministry of Health and Family Welfare (MOHFW), Government of India, and is the result of the collaborative efforts of a large number of organizations. The International Institute for Population Sciences (IIPS), Mumbai, was designated by MOHFW as the nodal agency for the project. Funding for NFHS-3 was provided by the United States Agency for International Development (USAID), DFID, the Bill and Melinda Gates Foundation, UNICEF, UNFPA, and MOHFW. Macro International, USA, provided technical assistance at all stages of the NFHS-3 project. NACO and the National AIDS Research Institute (NARI) provided technical assistance for the HIV component of NFHS-3. Eighteen Research Organizations, including six Population Research Centres, shouldered the responsibility of conducting the survey in the different states of India and producing electronic data files. The survey used a uniform sample design, questionnaires (translated into 18 Indian languages), field procedures, and procedures for biomarker measurements throughout the country to facilitate comparability across the states and to ensure the highest possible data quality. The contents of the questionnaires were decided through an extensive collaborative process in early 2005. Based on provisional data, two national-level fact sheets and 29 state fact sheets that provide estimates of more than 50 key indicators of population, health, family welfare, and nutrition have already been released. The basic objective of releasing fact sheets within a very short period after the completion of data collection was to provide immediate feedback to planners and programme managers on key process indicators.

  12. w

    India - National Family Health Survey 1992-1993 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). India - National Family Health Survey 1992-1993 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/india-national-family-health-survey-1992-1993
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The National Family Health Survey (NFHS) was carried out as the principal activity of a collaborative project to strengthen the research capabilities of the Population Reasearch Centres (PRCs) in India, initiated by the Ministry of Health and Family Welfare (MOHFW), Government of India, and coordinated by the International Institute for Population Sciences (IIPS), Bombay. Interviews were conducted with a nationally representative sample of 89,777 ever-married women in the age group 13-49, from 24 states and the National Capital Territoty of Delhi. The main objective of the survey was to collect reliable and up-to-date information on fertility, family planning, mortality, and maternal and child health. Data collection was carried out in three phases from April 1992 to September 1993. THe NFHS is one of the most complete surveys of its kind ever conducted in India. The households covered in the survey included 500,492 residents. The young age structure of the population highlights the momentum of the future population growth of the country; 38 percent of household residents are under age 15, with their reproductive years still in the future. Persons age 60 or older constitute 8 percent of the population. The population sex ratio of the de jure residents is 944 females per 1,000 males, which is slightly higher than sex ratio of 927 observed in the 1991 Census. The primary objective of the NFHS is to provide national-level and state-level data on fertility, nuptiality, family size preferences, knowledge and practice of family planning, the potentiel demand for contraception, the level of unwanted fertility, utilization of antenatal services, breastfeeding and food supplemation practises, child nutrition and health, immunizations, and infant and child mortality. The NFHS is also designed to explore the demographic and socioeconomic determinants of fertility, family planning, and maternal and child health. This information is intended to assist policymakers, adminitrators and researchers in assessing and evaluating population and family welfare programmes and strategies. The NFHS used uniform questionnaires and uniform methods of sampling, data collection and analysis with the primary objective of providing a source of demographic and health data for interstate comparisons. The data collected in the NFHS are also comparable with those of the Demographic and Health Surveys (DHS) conducted in many other countries.

  13. India Vital Statistics: Birth Rate: per 1000 Population: Punjab: Rural

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). India Vital Statistics: Birth Rate: per 1000 Population: Punjab: Rural [Dataset]. https://www.ceicdata.com/en/india/vital-statistics-birth-rate-by-states/vital-statistics-birth-rate-per-1000-population-punjab-rural
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    India
    Variables measured
    Vital Statistics
    Description

    Vital Statistics: Birth Rate: per 1000 Population: Punjab: Rural data was reported at 14.900 NA in 2020. This records a decrease from the previous number of 15.000 NA for 2019. Vital Statistics: Birth Rate: per 1000 Population: Punjab: Rural data is updated yearly, averaging 17.700 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 23.700 NA in 1998 and a record low of 14.900 NA in 2020. Vital Statistics: Birth Rate: per 1000 Population: Punjab: Rural data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH002: Vital Statistics: Birth Rate: by States.

  14. Forecasting the prevalence of overweight and obesity in India to 2040

    • plos.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shammi Luhar; Ian M. Timæus; Rebecca Jones; Solveig Cunningham; Shivani A. Patel; Sanjay Kinra; Lynda Clarke; Rein Houben (2023). Forecasting the prevalence of overweight and obesity in India to 2040 [Dataset]. http://doi.org/10.1371/journal.pone.0229438
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Shammi Luhar; Ian M. Timæus; Rebecca Jones; Solveig Cunningham; Shivani A. Patel; Sanjay Kinra; Lynda Clarke; Rein Houben
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    BackgroundIn India, the prevalence of overweight and obesity has increased rapidly in recent decades. Given the association between overweight and obesity with many non-communicable diseases, forecasts of the future prevalence of overweight and obesity can help inform policy in a country where around one sixth of the world’s population resides.MethodsWe used a system of multi-state life tables to forecast overweight and obesity prevalence among Indians aged 20–69 years by age, sex and urban/rural residence to 2040. We estimated the incidence and initial prevalence of overweight using nationally representative data from the National Family Health Surveys 3 and 4, and the Study on global AGEing and adult health, waves 0 and 1. We forecasted future mortality, using the Lee-Carter model fitted life tables reported by the Sample Registration System, and adjusted the mortality rates for Body Mass Index using relative risks from the literature.ResultsThe prevalence of overweight will more than double among Indian adults aged 20–69 years between 2010 and 2040, while the prevalence of obesity will triple. Specifically, the prevalence of overweight and obesity will reach 30.5% (27.4%-34.4%) and 9.5% (5.4%-13.3%) among men, and 27.4% (24.5%-30.6%) and 13.9% (10.1%-16.9%) among women, respectively, by 2040. The largest increases in the prevalence of overweight and obesity between 2010 and 2040 is expected to be in older ages, and we found a larger relative increase in overweight and obesity in rural areas compared to urban areas. The largest relative increase in overweight and obesity prevalence was forecast to occur at older age groups.ConclusionThe overall prevalence of overweight and obesity is expected to increase considerably in India by 2040, with substantial increases particularly among rural residents and older Indians. Detailed predictions of excess weight are crucial in estimating future non-communicable disease burdens and their economic impact.

  15. N

    Satellite-Derived PM2.5

    • datacatalog.med.nyu.edu
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Satellite-Derived PM2.5 [Dataset]. https://datacatalog.med.nyu.edu/dataset/10730
    Explore at:
    Dataset updated
    Mar 20, 2025
    Time period covered
    Jan 1, 1998 - Dec 31, 2023
    Area covered
    International
    Description

    This dataset contains information about annual estimates of fine particulate matter (PM2.5) concentrations and trends beginning in 1998. PM2.5 refers to airborne particulate matter less than 2.5 µm in diameter; comprises several chemical and particulate constituents, including nitrate, ammonium, elemental carbons, organic carbons, silicon and sodium ions and dust, and originates from a variety of sources, including vehicle exhaust, forest fires, and industrial processes. Exposure to PM2.5 is a leading environmental risk factor for mortality and the global burden of disease.

    Global and regional PM2.5 concentrations are estimated using a combination of satellite observations, chemical transport modeling, and ground-based monitoring. Annual and coarse-resolution averages correspond to a simple mean of within-grid values. Gridded datasets are provided to allow users to agglomerate data as best meets their particular needs.

    Annual and monthly datasets are provided in NetCDF [.nc] format, with naming convention V6GL02.02.CNNPM25.REGION.YYYYMM_START-YYYYMM_END.nc. REGION refers to the file region (e.g. ‘Global’). YYYYMM_START and YYYYMM_END refer to the numeric start and end date of the file (e.g. for annual mean PM2.5 for 2015, YYYYMM_START is 201501 and YYYYMM_END is 201512). Gridded files use the WGS84 projection.

    Variable names within these files include "lat" (latitude coordinate centers of the PM2.5 grid, "lon" (longitude coordinates centers of the PM2.5 grid), and "PM25" (gridded mean PM2.5 concentrations).

    Processed summary files are available for annual global country-level means, Canada provincial-level means, China and India regional-level means, and US state-level means. Population-weighted estimates and total population describe only those people covered by the V6.GL.02.02 dataset and are provided by Gridded Population of the World, version 4 (GPWv4). Country borders are defined following the Database of Global Administrative Areas, version 3.6 (GAD3.6).

  16. f

    Table_1_Population Estimate, Habitat-Use and Activity Patterns of the Honey...

    • frontiersin.figshare.com
    docx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nilanjan Chatterjee; Parag Nigam; Bilal Habib (2023). Table_1_Population Estimate, Habitat-Use and Activity Patterns of the Honey Badger in a Dry-Deciduous Forest of Central India.DOCX [Dataset]. http://doi.org/10.3389/fevo.2020.585256.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Frontiers
    Authors
    Nilanjan Chatterjee; Parag Nigam; Bilal Habib
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Studies on carnivores are skewed toward larger species in India, limiting ecological information of the smaller ones. Basic ecological understanding like population density, distribution, habitat-use patterns of small carnivores is lacking. This inadequate knowledge has led to disagreement between conservation approaches in different landscapes. Honey badgers (Mellivora capensis) are cryptic carnivores distributed across large areas of Africa and Asia; however, fundamental ecological knowledge is scarce. The species is thought to exist at low population densities throughout its range. We used a large camera trap dataset from a tiger reserve in Maharashtra State, India to understand the population density, habitat preference, and diel activity pattern of the species. We applied an extension of the spatial count model for the estimation of population. Habitat preference analyses were carried out using generalized linear models and activity patterns were analyzed using kernel-density functions. The population density was estimated as 14.09 (95% CI 10–22.25) individuals per 100 km2. Habitat use revealed a positive association with forest cover and negative association with elevation. This may expose the species to other large carnivores in the habitat but honey badger activity pattern peaked at midnight retaining minimum temporal overlap with other large carnivores (e.g., tiger Panthera tigris, leopard Panthera pardus, and dhole Cuon alpinus) and moderate overlap with small carnivores (e.g., jungle cat Felis chaus, rusty-spotted cat Prionailurus rubiginosus). These behaviors, in turn, may facilitate the coexistence of species at such high density even with high carnivore density. We hope the findings of this study will fill the existing knowledge gap of this species and aid in guiding the conservation of the species in other landscapes and reserves.

  17. d

    NCRB: State and Gender-wise Number of Persons Reported Missing and Traced

    • dataful.in
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). NCRB: State and Gender-wise Number of Persons Reported Missing and Traced [Dataset]. https://dataful.in/datasets/18466
    Explore at:
    csv, application/x-parquet, xlsxAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    India
    Variables measured
    Number of persons missing, share of persons traced
    Description

    The dataset contains the state-wise number of persons reported missing in a particular year, the total number of persons missing including those from previous years, the number of persons recovered/traced and those unrecovered/untraced. The dataset also contains the percentage recovery of missing persons which is calculated as the percentage share of total number of persons traced over the total number of persons missing. NCRB started providing detailed data on missing & traced persons including children from 2016 onwards following the Supreme Court’s direction in a Writ Petition. It should also be noted that the data published by NCRB is restricted to those cases where FIRs have been registered by the police in respective States/UTs.

    Note: Figures for projected_mid_year_population are sourced from the Report of the Technical Group on Population Projections for India and States 2011-2036

  18. COVID-19 Vaccine Progress Dashboard Data

    • data.chhs.ca.gov
    • data.ca.gov
    • +5more
    csv, xlsx, zip
    Updated Jul 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Vaccine Progress Dashboard Data [Dataset]. https://data.chhs.ca.gov/dataset/vaccine-progress-dashboard
    Explore at:
    csv(110928434), csv(83128924), csv(2641927), csv(724860), csv(188895), csv(12877811), csv(54906), csv(82754), csv(18403068), csv(26828), csv(111682), xlsx(7708), csv(638738), csv(503270), csv(7777694), xlsx(11534), xlsx(11249), csv(303068812), csv(6772350), csv(2447143), csv(148732), csv(675610), xlsx(11731), xlsx(11870), zipAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.

    On 6/16/2023 CDPH replaced the booster measures with a new “Up to Date” measure based on CDC’s new recommendations, replacing the primary series, boosted, and bivalent booster metrics The definition of “primary series complete” has not changed and is based on previous recommendations that CDC has since simplified. A person cannot complete their primary series with a single dose of an updated vaccine. Whereas the booster measures were calculated using the eligible population as the denominator, the new up to date measure uses the total estimated population. Please note that the rates for some groups may change since the up to date measure is calculated differently than the previous booster and bivalent measures.

    This data is from the same source as the Vaccine Progress Dashboard at https://covid19.ca.gov/vaccination-progress-data/ which summarizes vaccination data at the county level by county of residence. Where county of residence was not reported in a vaccination record, the county of provider that vaccinated the resident is included. This applies to less than 1% of vaccination records. The sum of county-level vaccinations does not equal statewide total vaccinations due to out-of-state residents vaccinated in California.

    These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.

    Totals for the Vaccine Progress Dashboard and this dataset may not match, as the Dashboard totals doses by Report Date and this dataset totals doses by Administration Date. Dose numbers may also change for a particular Administration Date as data is updated.

    Previous updates:

    • On March 3, 2023, with the release of HPI 3.0 in 2022, the previous equity scores have been updated to reflect more recent community survey information. This change represents an improvement to the way CDPH monitors health equity by using the latest and most accurate community data available. The HPI uses a collection of data sources and indicators to calculate a measure of community conditions ranging from the most to the least healthy based on economic, housing, and environmental measures.

    • Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 16+ and age 5+ denominators have been uploaded as archived tables.

    • Starting on May 29, 2021 the methodology for calculating on-hand inventory in the shipped/delivered/on-hand dataset has changed. Please see the accompanying data dictionary for details. In addition, this dataset is now down to the ZIP code level.

  19. India Vital Statistics: Death Rate: per 1000 Population: West Bengal

    • ceicdata.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). India Vital Statistics: Death Rate: per 1000 Population: West Bengal [Dataset]. https://www.ceicdata.com/en/india/vital-statistics-death-rate-by-states/vital-statistics-death-rate-per-1000-population-west-bengal
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    India
    Variables measured
    Vital Statistics
    Description

    Vital Statistics: Death Rate: per 1000 Population: West Bengal data was reported at 5.500 NA in 2020. This records an increase from the previous number of 5.300 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: West Bengal data is updated yearly, averaging 6.200 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 7.500 NA in 1998 and a record low of 5.300 NA in 2019. Vital Statistics: Death Rate: per 1000 Population: West Bengal data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.

  20. India Vital Statistics: Death Rate: per 1000 Population: Chhattisgarh: Urban...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Vital Statistics: Death Rate: per 1000 Population: Chhattisgarh: Urban [Dataset]. https://www.ceicdata.com/en/india/vital-statistics-death-rate-by-states/vital-statistics-death-rate-per-1000-population-chhattisgarh-urban
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    India
    Variables measured
    Vital Statistics
    Description

    Vital Statistics: Death Rate: per 1000 Population: Chhattisgarh: Urban data was reported at 6.300 NA in 2020. This records an increase from the previous number of 6.200 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Chhattisgarh: Urban data is updated yearly, averaging 6.300 NA from Dec 1999 (Median) to 2020, with 21 observations. The data reached an all-time high of 7.100 NA in 2003 and a record low of 5.600 NA in 2017. Vital Statistics: Death Rate: per 1000 Population: Chhattisgarh: Urban data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
Organization logo

Census Data

Explore at:
Dataset updated
Mar 1, 2024
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

Search
Clear search
Close search
Google apps
Main menu