16 datasets found
  1. h

    100-richest-people-in-world

    • huggingface.co
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nate Raw (2023). 100-richest-people-in-world [Dataset]. https://huggingface.co/datasets/nateraw/100-richest-people-in-world
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 2, 2023
    Authors
    Nate Raw
    License

    https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

    Area covered
    World
    Description

    Dataset Card for 100 Richest People In World

      Dataset Summary
    

    This dataset contains the list of Top 100 Richest People in the World Column Information:-

    Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain

      Join our Community
    
    
    
    
    
    
    
    
    
      Supported Tasks and Leaderboards
    

    [More Information Needed]

      Languages
    

    [More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.

  2. U.S. median household income 2023, by state

    • statista.com
    • ai-chatbox.pro
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by state [Dataset]. https://www.statista.com/statistics/233170/median-household-income-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the real median household income in the state of Alabama was 60,660 U.S. dollars. The state with the highest median household income was Massachusetts, which was 106,500 U.S. dollars in 2023. The average median household income in the United States was at 80,610 U.S. dollars.

  3. i

    Richest Zip Codes in West Virginia

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in West Virginia [Dataset]. https://www.incomebyzipcode.com/westvirginia
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    West Virginia
    Description

    A dataset listing the richest zip codes in West Virginia per the most current US Census data, including information on rank and average income.

  4. United States US: Account: Income: Richest 60%: % Aged 15+

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Account: Income: Richest 60%: % Aged 15+ [Dataset]. https://www.ceicdata.com/en/united-states/banking-indicators/us-account-income-richest-60--aged-15
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    undefined
    Description

    United States US: Account: Income: Richest 60%: % Aged 15+ data was reported at 97.904 % in 2014. This records an increase from the previous number of 92.810 % for 2011. United States US: Account: Income: Richest 60%: % Aged 15+ data is updated yearly, averaging 95.357 % from Dec 2011 (Median) to 2014, with 2 observations. The data reached an all-time high of 97.904 % in 2014 and a record low of 92.810 % in 2011. United States US: Account: Income: Richest 60%: % Aged 15+ data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Banking Indicators. Denotes the percentage of respondents who report having an account (by themselves or together with someone else). For 2011, this can be an account at a bank or another type of financial institution, and for 2014 this can be a mobile account as well (see year-specific definitions for details) (income, richest 60%, % age 15+). [ts: data are available for multiple waves].; ; Demirguc-Kunt et al., 2015, Global Financial Inclusion Database, World Bank.; Weighted average;

  5. United States US: Account at a Financial Institution: Income: Richest 60%: %...

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Account at a Financial Institution: Income: Richest 60%: % Aged 15+ [Dataset]. https://www.ceicdata.com/en/united-states/banking-indicators/us-account-at-a-financial-institution-income-richest-60--aged-15
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    undefined
    Description

    United States US: Account at a Financial Institution: Income: Richest 60%: % Aged 15+ data was reported at 97.904 % in 2014. This records an increase from the previous number of 92.810 % for 2011. United States US: Account at a Financial Institution: Income: Richest 60%: % Aged 15+ data is updated yearly, averaging 95.357 % from Dec 2011 (Median) to 2014, with 2 observations. The data reached an all-time high of 97.904 % in 2014 and a record low of 92.810 % in 2011. United States US: Account at a Financial Institution: Income: Richest 60%: % Aged 15+ data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Banking Indicators. Account at a financial institution denotes the percentage of respondents who report having an account (by themselves or together with someone else) at a bank or another type of financial institution.; ; Demirguc-Kunt et al., 2015, Global Financial Inclusion Database, World Bank.; Weighted average;

  6. Should This Loan be Approved or Denied?

    • kaggle.com
    Updated Mar 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mirbek Toktogaraev (2020). Should This Loan be Approved or Denied? [Dataset]. https://www.kaggle.com/mirbektoktogaraev/should-this-loan-be-approved-or-denied/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 17, 2020
    Dataset provided by
    Kaggle
    Authors
    Mirbek Toktogaraev
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Context

    The dataset is from the U.S. Small Business Administration (SBA)

    The U.S. SBA was founded in 1953 on the principle of promoting and assisting small enterprises in the U.S. credit market (SBA Overview and History, US Small Business Administration (2015)). Small businesses have been a primary source of job creation in the United States; therefore, fostering small business formation and growth has social benefits by creating job opportunities and reducing unemployment.

    There have been many success stories of start-ups receiving SBA loan guarantees such as FedEx and Apple Computer. However, there have also been stories of small businesses and/or start-ups that have defaulted on their SBA-guaranteed loans.

    Content

    Shape of the data: 899164 rows and 27 columns

    Data Dictionary

    Variable NameDescription
    LoanNr_ChkDgtIdentifier Primary key
    NameBorrower name
    CityBorrower city
    StateBorrower state
    ZipBorrower zip code
    BankBank name
    BankStateBank state
    NAICSNorth American industry classification system code
    ApprovalDateDate SBA commitment issued
    ApprovalFYFiscal year of commitment
    TermLoan term in months
    NoEmpNumber of business employees
    NewExist1 = Existing business, 2 = New business
    CreateJobNumber of jobs created
    RetainedJobNumber of jobs retained
    FranchiseCodeFranchise code, (00000 or 00001) = No franchise
    UrbanRural1 = Urban, 2 = rural, 0 = undefined
    RevLineCrRevolving line of credit: Y = Yes, N = No
    LowDocLowDoc Loan Program: Y = Yes, N = No
    ChgOffDateThe date when a loan is declared to be in default
    DisbursementDateDisbursement date
    DisbursementGrossAmount disbursed
    BalanceGrossGross amount outstanding
    MIS_StatusLoan status charged off = CHGOFF, Paid in full =PIF
    ChgOffPrinGrCharged-off amount
    GrAppvGross amount of loan approved by bank
    SBA_AppvSBA’s guaranteed amount of approved loan

    Description of the first two digits of NAICS.

    SectorDescription
    11Agriculture, forestry, fishing and hunting
    21Mining, quarrying, and oil and gas extraction
    22Utilities
    23Construction
    31–33Manufacturing
    42Wholesale trade
    44–45Retail trade
    48–49Transportation and warehousing
    51Information
    52Finance and insurance
    53Real estate and rental and leasing
    54Professional, scientific, and technical services
    55Management of companies and enterprises
    56Administrative and support and waste management and remediation services
    61Educational services
    62Health care and social assistance
    71Arts, entertainment, and recreation
    72Accommodation and food services
    81Other services (except public administration) 92 Public administration

    Acknowledgements

    Original data set id from “Should This Loan be Approved or Denied?”: A Large Dataset with Class Assignment Guidelines. by: Min Li, Amy Mickel & Stanley Taylor

    To link to this article: https://doi.org/10.1080/10691898.2018.1434342

    Inspiration

    Good luck with predictions!

  7. TIGER/Line Shapefile, 2022, County, Rich County, UT, Area Hydrography

    • datasets.ai
    • catalog.data.gov
    55, 57
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau, Department of Commerce, TIGER/Line Shapefile, 2022, County, Rich County, UT, Area Hydrography [Dataset]. https://datasets.ai/datasets/tiger-line-shapefile-2022-county-rich-county-ut-area-hydrography
    Explore at:
    55, 57Available download formats
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau, Department of Commerce
    Area covered
    Rich County
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national filewith no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent dataset, or they can be combined to cover the entire nation. The Area Hydrography Shapefile contains the geometry and attributes of both perennial and intermittent area hydrography features, including ponds, lakes, oceans, swamps (up to the U.S. nautical three-mile limit), glaciers, and the area covered by large rivers, streams, and/or canals that are represented as double-line drainage. Single-line drainage water features can be found in the Linear Hydrography Shapefile (LINEARWATER.shp). Linear water features includes single-line drainage water features and artificial path features, where they exist, that run through double-line drainage features such as rivers, streams, and/or canals, and serve as a linear representation of these features.

  8. d

    Hydrologic Data Sites for Rich County, Utah

    • search.dataone.org
    • data.usgs.gov
    • +3more
    Updated Oct 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2016). Hydrologic Data Sites for Rich County, Utah [Dataset]. https://search.dataone.org/view/82a27cbc-bba7-4a27-bd85-28c56c94f6e6
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    Area covered
    Description

    This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Rich County, Utah.

    The scope and purpose of NWIS is defined on the web site:

    http://water.usgs.gov/public/pubs/FS/FS-027-98/

  9. g

    Replication Data for: Understanding Public Perceptions of Growing Economic...

    • datasearch.gesis.org
    • dataverse-staging.rdmc.unc.edu
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Franko, William (2020). Replication Data for: Understanding Public Perceptions of Growing Economic Inequality [Dataset]. http://doi.org/10.15139/S3/D9ZUIB
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    Franko, William
    Description

    While most Americans appear to acknowledge the large gap between the rich and the poor in the U.S., it is not clear if the public is aware of recent changes in income inequality. Even though economic inequality has grown substantially in recent decades, studies have shown that the public's perception of growing income disparities has remained mostly unchanged since the 1980s. This research offers an alternative approach to evaluating how public perceptions of inequality are developed. Centrally, it conceptualizes the public's response to growing economic disparities by applying theories of macro-political behavior and place-based contextual effects to the formation of aggregate perceptions about income inequality. It is argued that most of the public relies on basic information about the economy to form attitudes about inequality and that geographic context---in this case, the American states---plays a role in how views of income disparities are produced. A new measure of state perceptions of growing economic inequality over a 25-year period is used to examine whether the public is responsive to objective changes in economic inequality. Time-series cross-sectional analyses suggest that the public's perceptions of growing inequality are largely influenced by objective state economic indicators and state political ideology. This research has implications for how knowledgeable the public is of disparities between the rich and the poor, whether state context influences attitudes about inequality, and what role the public will have in determining how expanding income differences are addressed through government policy.

  10. TIGER/Line Shapefile, 2022, County, Rich County, UT, Address Range-Feature

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jan 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, County, Rich County, UT, Address Range-Feature [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/tiger-line-shapefile-2022-county-rich-county-ut-address-range-feature
    Explore at:
    Dataset updated
    Jan 28, 2024
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    United States Census Bureauhttp://census.gov/
    Area covered
    Rich County, Utah
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Feature Shapefile (ADDRFEAT.dbf) contains the geospatial edge geometry and attributes of all unsuppressed address ranges for a county or county equivalent area. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. Single-address address ranges have been suppressed to maintain the confidentiality of the addresses they describe. Multiple coincident address range feature edge records are represented in the shapefile if more than one left or right address ranges are associated to the edge. The ADDRFEAT shapefile contains a record for each address range to street name combination. Address range associated to more than one street name are also represented by multiple coincident address range feature edge records. Note that the ADDRFEAT shapefile includes all unsuppressed address ranges compared to the All Lines Shapefile (EDGES.shp) which only includes the most inclusive address range associated with each side of a street edge. The TIGER/Line shapefile contain potential address ranges, not individual addresses. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.

  11. i

    Richest Zip Codes in New Jersey

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in New Jersey [Dataset]. https://www.incomebyzipcode.com/newjersey
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    New Jersey
    Description

    A dataset listing the richest zip codes in New Jersey per the most current US Census data, including information on rank and average income.

  12. T

    GOLD RESERVES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2014). GOLD RESERVES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gold-reserves
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2014
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GOLD RESERVES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  13. i

    Richest Zip Codes in Missouri

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in Missouri [Dataset]. https://www.incomebyzipcode.com/missouri
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    Missouri
    Description

    A dataset listing the richest zip codes in Missouri per the most current US Census data, including information on rank and average income.

  14. m

    20 Richest Counties in Maryland

    • maryland-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). 20 Richest Counties in Maryland [Dataset]. https://www.maryland-demographics.com/richest_counties
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.maryland-demographics.com/terms_and_conditionshttps://www.maryland-demographics.com/terms_and_conditions

    Area covered
    Maryland
    Description

    A dataset listing the 20 richest counties in Maryland for 2024, including information on rank, county, population, average income, and median income.

  15. i

    Richest Zip Codes in South Carolina

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in South Carolina [Dataset]. https://www.incomebyzipcode.com/southcarolina
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    South Carolina
    Description

    A dataset listing the richest zip codes in South Carolina per the most current US Census data, including information on rank and average income.

  16. g

    20 Richest Counties in Georgia

    • georgia-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). 20 Richest Counties in Georgia [Dataset]. https://www.georgia-demographics.com/richest_counties
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions

    Area covered
    Georgia
    Description

    A dataset listing the 20 richest counties in Georgia for 2024, including information on rank, county, population, average income, and median income.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nate Raw (2023). 100-richest-people-in-world [Dataset]. https://huggingface.co/datasets/nateraw/100-richest-people-in-world

100-richest-people-in-world

nateraw/100-richest-people-in-world

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Aug 2, 2023
Authors
Nate Raw
License

https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

Area covered
World
Description

Dataset Card for 100 Richest People In World

  Dataset Summary

This dataset contains the list of Top 100 Richest People in the World Column Information:-

Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain

  Join our Community









  Supported Tasks and Leaderboards

[More Information Needed]

  Languages

[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.

Search
Clear search
Close search
Google apps
Main menu