According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.
One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.
Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.
The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.
From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological innovation, Asia Pacific is expected to exhibit the highest CAGR during the forecast period, fueled by the digital transformation of emerging economies and the proliferation of AI applications across various industry sectors.
The AI training dataset market is segmented by data type into Text, Image/Video, Audio, and Others, each playing a crucial role in powering different AI applications. Text da
This is a test collection for passage and document retrieval, produced in the TREC 2023 Deep Learning track. The Deep Learning Track studies information retrieval in a large training data regime. This is the case where the number of training queries with at least one positive label is at least in the tens of thousands, if not hundreds of thousands or more. This corresponds to real-world scenarios such as training based on click logs and training based on labels from shallow pools (such as the pooling in the TREC Million Query Track or the evaluation of search engines based on early precision).Certain machine learning based methods, such as methods based on deep learning are known to require very large datasets for training. Lack of such large scale datasets has been a limitation for developing such methods for common information retrieval tasks, such as document ranking. The Deep Learning Track organized in the previous years aimed at providing large scale datasets to TREC, and create a focused research effort with a rigorous blind evaluation of ranker for the passage ranking and document ranking tasks.Similar to the previous years, one of the main goals of the track in 2022 is to study what methods work best when a large amount of training data is available. For example, do the same methods that work on small data also work on large data? How much do methods improve when given more training data? What external data and models can be brought in to bear in this scenario, and how useful is it to combine full supervision with other forms of supervision?The collection contains 12 million web pages, 138 million passages from those web pages, search queries, and relevance judgments for the queries.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In this dataset you can find hundreds of thousands of the largest cities in the world and info about their latitude, longitude, timezone, location, etc.
This data comes from https://data.world/fiftin/cities/workspace/file?filename=RU.txt.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LAS&T is the largest and most diverse dataset for shape, texture and material recognition and retrieval in 2D and 3D with 650,000 images, based on real world shapes and textures.
The LAS&T Dataset aims to test the most basic aspect of vision in the most general way. Mainly the ability to identify any shape, texture, and material in any setting and environment, without being limited to specific types or classes of objects, materials, and environments. For shapes, this means identifying and retrieving any shape in 2D or 3D with every element of the shape changed between images, including the material and texture, orientation, size, and environment. For textures and materials, the goal is to recognize the same texture or material when appearing on different objects, environments, and light conditions. The dataset relies on shapes, textures, and materials extracted from real-world images, leading to an almost unlimited quantity and diversity of real-world natural patterns. Each section of the dataset (shapes, and textures), contains 3D parts that rely on physics-based scenes with realistic light materials and object simulation and abstract 2D parts. In addition, a real-world images benchmark for 3D shapes recognition is also supplied.
3D shape recognition and retrieval.
2D shape recognition and retrieval.
3D Materials recognition and retrieval.
2D Texture recognition and retrieval.
Each can be used independently for training and testing.
Additional assets are a set of 350,000 natural 2D shapes extracted from real-world images (SHAPES_COLLECTION_350k.zip)
3D shape recognition real-world images benchmark
The scripts used to generate and test the dataset are supplied as in SCRIPT** files.
For shape recognition the goal is to identify the same shape in different images, where the material/texture/color of the shape is changed, the shape is rotated, and the background is replaced. Hence, only the shape remains the same in both images. All files with 3D shapes contain samples of the 3D shape dataset. This is tested for 3D shapes/objects with realistic light simulation. All files with 2D shapes contain samples of the 2D shape dataset. Examples files contain images with examples for each set.
3D_Shape_Recognition_Synthethic_GENERAL_LARGE_SET_76k.zip A Large number of synthetic examples 3D shapes with max variability can be used for training/testing 3D shape/objects recognition/retrieval.
2D_Shapes_Recognition_Textured_Synthetic_Resize2_GENERAL_LARGE_SET_61k.zip A Large number of synthetic examples for 2D shapes with max variability can be used for training/testing 2D shape recognition/retrieval.
SHAPES_2D_365k.zip 365,000 2D shapes extracted from real-world images saved as black and white .png image files.
All jpg images that are in the exact same subfolder contain the exact same shape (but with different texture/color/background/orientation).
For texture and materials, the goal is to identify and match images containing the same material or textures, however the shape/object on which the material texture is applied is different, and so is the background and light.
This is done for physics-based material in 3D and abstract 2D textures.
3D_Materials_PBR_Synthetic_GENERAL_LARGE_SET_80K.zip A Large number of examples of 3D materials in physics grounded can be used for training or testing of material recognition/retrieval.
2D_Textures_Recogition_GENERAL_LARGE_SET_Synthetic_53K.zip
Large number of images of 2D texture in maximum variability of setting can be used for training/testing 2D textured recognition/retrieval.
All jpg images that are in the exact same subfolder contain the exact same texture/material (but overlay on different objects with different background/and illumination/orientation).
The images in the synthetic part of the dataset were created by automatically extracting shapes and textures from natural images and combining them in synthetic images. This created synthetic images that completely rely on real-world patterns, making extremely diverse and complex shapes and textures. As far as we know this is the largest and most diverse shape and texture recognition/retrieval dataset. 3D data was generated using physics-based material and rendering (blender) making the images physically grounded and enabling using the data to train for real-world examples. The scripts for generating the data are supplied in files with the world SCRIPTS* in them.
For 3D shape recognition and retrieval, we also supply a real-world natural image benchmark. With a variety of natural images containing the exact same 3D shape but made/coated with different materials and in different environments and orientations. The goal is again to identify the same shape in different images. The benchmark is available at: Real_Images_3D_shape_matching_Benchmarks.zip
Files containing the word 'GENERAL_LARGE_SET' contains synthetic images that can be used for training or testing, the type of data (2D shapes, 3D shapes, 2D textures, 3D materials) that appears in the file name, as well as the number of images. Files containing MultiTests contain a number of different tests in which only a single aspect of the aspect of the instance is changed (for example only the background.) File containing "SCRIPTS" contain data generation testing scripts. Images containing "examples" are example of each test.
The file SHAPES_COLLECTION_350k.zip contains 350,000 2D shapes extracted from natural images and used for the dataset generation.
For evaluating and testing see: SCRIPTS_Testing_LVLM_ON_LAST_VQA.zip
This can be use to test leading LVLMs using api, create human tests, and in general turn the dataset into multichoice question images similar to the one in the paper.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rapidly acquiring three-dimensional (3D) building data, including geometric attributes like rooftop, height and orientations, as well as indicative attributes like function, quality, and age, is essential for accurate urban analysis, simulations, and policy updates. Current building datasets suffer from incomplete coverage of building multi-attributes. This paper presents the first national-scale Multi-Attribute Building dataset (CMAB) with artificial intelligence, covering 3,667 spatial cities, 31 million buildings, and 23.6 billion m² of rooftops with an F1-Score of 89.93% in OCRNet-based extraction, totaling 363 billion m³ of building stock. We trained bootstrap aggregated XGBoost models with city administrative classifications, incorporating morphology, location, and function features. Using multi-source data, including billions of remote sensing images and 60 million street view images (SVIs), we generated rooftop, height, structure, function, style, age, and quality attributes for each building with machine learning and large multimodal models. Accuracy was validated through model benchmarks, existing similar products, and manual SVI validation, mostly above 80%. Our dataset and results are crucial for global SDGs and urban planning.Data records: A building dataset with a total rooftop area of 23.6 billion square meters in 3,667 natural cities in China, including the attribute of building rooftop, height, structure, function, age, style and quality, as well as the code files used to calculate these data. The deep learning models used are OCRNet, XGBoost, fine-tuned CLIP and Yolo-v8.Supplementary note: The architectural structure, style, and quality are affected by the temporal and spatial distribution of street views in China. Regarding the recognition of building colors, we found that the existing CLIP series model can not accurately judge the composition and proportion of building colors, and then it will be accurately calculated and supplemented by semantic segmentation and image processing. Please contact zhangyec23@mails.tsinghua.edu.cn or ylong@tsinghua.edu.cn if you have any technical problems.Reference Format: Zhang, Y., Zhao, H. & Long, Y. CMAB: A Multi-Attribute Building Dataset of China. Sci Data 12, 430 (2025). https://doi.org/10.1038/s41597-025-04730-5.
According to our latest research, the AI-Generated Synthetic Tabular Dataset market size reached USD 1.42 billion in 2024 globally, reflecting the rapid adoption of artificial intelligence-driven data generation solutions across numerous industries. The market is expected to expand at a robust CAGR of 34.7% from 2025 to 2033, reaching a forecasted value of USD 19.17 billion by 2033. This exceptional growth is primarily driven by the increasing need for high-quality, privacy-preserving datasets for analytics, model training, and regulatory compliance, particularly in sectors with stringent data privacy requirements.
One of the principal growth factors propelling the AI-Generated Synthetic Tabular Dataset market is the escalating demand for data-driven innovation amidst tightening data privacy regulations. Organizations across healthcare, finance, and government sectors are facing mounting challenges in accessing and sharing real-world data due to GDPR, HIPAA, and other global privacy laws. Synthetic data, generated by advanced AI algorithms, offers a solution by mimicking the statistical properties of real datasets without exposing sensitive information. This enables organizations to accelerate AI and machine learning development, conduct robust analytics, and facilitate collaborative research without risking data breaches or non-compliance. The growing sophistication of generative models, such as GANs and VAEs, has further increased confidence in the utility and realism of synthetic tabular data, fueling adoption across both large enterprises and research institutions.
Another significant driver is the surge in digital transformation initiatives and the proliferation of AI and machine learning applications across industries. As businesses strive to leverage predictive analytics, automation, and intelligent decision-making, the need for large, diverse, and high-quality datasets has become paramount. However, real-world data is often siloed, incomplete, or inaccessible due to privacy concerns. AI-generated synthetic tabular datasets bridge this gap by providing scalable, customizable, and bias-mitigated data for model training and validation. This not only accelerates AI deployment but also enhances model robustness and generalizability. The flexibility of synthetic data generation platforms, which can simulate rare events and edge cases, is particularly valuable in sectors like finance and healthcare, where such scenarios are underrepresented in real datasets but critical for risk assessment and decision support.
The rapid evolution of the AI-Generated Synthetic Tabular Dataset market is also underpinned by technological advancements and growing investments in AI infrastructure. The availability of cloud-based synthetic data generation platforms, coupled with advancements in natural language processing and tabular data modeling, has democratized access to synthetic datasets for organizations of all sizes. Strategic partnerships between technology providers, research institutions, and regulatory bodies are fostering innovation and establishing best practices for synthetic data quality, utility, and governance. Furthermore, the integration of synthetic data solutions with existing data management and analytics ecosystems is streamlining workflows and reducing barriers to adoption, thereby accelerating market growth.
Regionally, North America dominates the AI-Generated Synthetic Tabular Dataset market, accounting for the largest share in 2024 due to the presence of leading AI technology firms, strong regulatory frameworks, and early adoption across industries. Europe follows closely, driven by stringent data protection laws and a vibrant research ecosystem. The Asia Pacific region is emerging as a high-growth market, fueled by rapid digitalization, government initiatives, and increasing investments in AI research and development. Latin America and the Middle East & Africa are also witnessing growing interest, particularly in sectors like finance and government, though market maturity varies across countries. The regional landscape is expected to evolve dynamically as regulatory harmonization, cross-border data collaboration, and technological advancements continue to shape market trajectories globally.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.
One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.
Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.
The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.
As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.
Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.
The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.
Image data is critical for computer vision application
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Mario Maker 2 user world records
Part of the Mario Maker 2 Dataset Collection
Dataset Description
The Mario Maker 2 user world records dataset consists of 15.3 million world records from Nintendo's online service totaling around 215MB of data. The dataset was created using the self-hosted Mario Maker 2 api over the course of 1 month in February 2022.
How to use it
The Mario Maker 2 user world records dataset is a very large dataset so for most use cases it is… See the full description on the dataset page: https://huggingface.co/datasets/TheGreatRambler/mm2_user_world_record.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains the latest Covid-19 WORLD state-wise data in detail from 2/24/2020 to 6/29/2021. This dataset can be used to analyze covid conditions in the World. This dataset is great for Exploratory Data Analysis. they are 99k rows to work with.
If you find this dataset useful, please consider upvoting ✊
The confluence of Search and Recommendation (S&R) services is a vital aspect of online content platforms like Kuaishou and TikTok. The integration of S&R modeling is a highly intuitive approach adopted by industry practitioners. However, there is a noticeable lack of research conducted in this area within the academia, primarily due to the absence of publicly available datasets. Consequently, a substantial gap has emerged between academia and industry regarding research endeavors in this field. To bridge this gap, we introduce the first large-scale, real-world dataset KuaiSAR of integrated Search And Recommendation behaviors collected from Kuaishou, a leading short-video app in China with over 300 million daily active users. Previous research in this field has predominantly employed publicly available datasets that are semi-synthetic and simulated, with artificially fabricated search behaviors. Distinct from previous datasets, KuaiSAR records genuine user behaviors, the occurrence of each interaction within either search or recommendation service, and the users’ transitions between the two services. This work aids in joint modeling of S&R, and the utilization of search data for recommenders (and recommendation data for search engines). Additionally, due to the diverse feedback labels of user-video interactions, KuaiSAR also supports a wide range of other tasks, including intent recommendation, multi-task learning, and long sequential multi-behavior modeling etc. We believe this dataset will facilitate innovative research and enrich our understanding of S&R services integration in real-world applications.
This data set provides a list of the three largest glaciers and glacier complexes in each of the 19 glacial regions of the world as defined by the Global Terrestrial Network for Glaciers. The data are provided in shapefile format with an outline for each of the largest ice bodies along with a number of attributes such as area in km2.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.
The Potential Impacts of Climate Change on World Food Supply: Datasets from a Major Crop Modeling Study contain projected country and regional changes in grain crop yields due to global climate change. Equilibrium and transient scenarios output from General Circulation Models (GCMs) with three levels of farmer adaptations to climate change were utilized to generate crop yield estimates of wheat, rice, coarse grains (barley and maize), and protein feed (soybean) at 125 agricultural sites representing major world agricultural regions. Projected yields at the agricultural sites were aggregated to major trading regions, and fed into the Basic Linked Systems (BLS) global trade model to produce country and regional estimates of potential price increases, food shortages, and risk of hunger. These datasets are produced by the Goddard Institute for Space Studies (GISS) and are distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 38 rows and is filtered where the book publisher is Greatest in the World. It features 7 columns including author, publication date, language, and book publisher.
The Generalized Analog Regression Downscaling method Large Ensemble (GARD-LENS) dataset is comprised of daily precipitation, mean temperature, and temperature range over the Contiguous U.S., Alaska, and Hawaii at 12 km, 4 km, and 1 km resolutions, respectively. GARD-LENS downscales three CMIP6 global climate model large ensembles, CESM2, CanESM5, and EC-Earth3, totaling 200 ensemble members. GARD-LENS is the first downscaled SMILE (single model initial-condition large ensemble), providing information about the role of internal climate variability at high resolutions. GARD LENS uses GMET as a training dataset for the period 1980-2014, although Hawaii GMET data is only available for 1990-2014. The total dataset consists of 200 ensemble member files per region per variable (e.g., 200 files for t_mean for CONUS), for a total of 1800 files and a total dataset size of roughly 12 TB.
The 150-year record of this large ensemble dataset provides ample data for assessing trends and extremes and allows users to robustly assess internal variability, forced climate signals, and time of emergence at high resolutions. As the need for high resolution, robust climate datasets continues to grow, GARD-LENS will be a valuable tool for scientists and practitioners who wish to account for internal variability in their future climate analyses and adaptation plans.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LAION-400M The world’s largest openly available image-text-pair dataset with 400 million samples. # Concept and Content The LAION-400M dataset is completely openly, freely accessible. All images and texts in the LAION-400M dataset have been filtered with OpenAI‘s CLIP by calculating the cosine similarity between the text and image embeddings and dropping those with a similarity below 0.3 The threshold of 0.3 had been determined through human evaluations and seems to be a good heuristic for estimating semantic image-text-content matching. The image-text-pairs have been extracted from the Common Crawl web data dump and are from random web pages crawled between 2014 and 2021. # Download Information You can find The CLIP image embeddings (NumPy files) The parquet files KNN index of image embeddings # LAION-400M Dataset Statistics The LAION-400M and future even bigger ones are in fact datasets of datasets. For instance, it can be filtered out by image sizes into smaller datasets like th
The Stack Overflow dataset, a detailed archive of posts, votes, tags, and badges from the world’s largest programmer community.
LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset
This dataset contains one million real-world conversations with 25 state-of-the-art LLMs. It is collected from 210K unique IP addresses in the wild on the Vicuna demo and Chatbot Arena website from April to August 2023. Each sample includes a conversation ID, model name, conversation text in OpenAI API JSON format, detected language tag, and OpenAI moderation API tag. User consent is obtained through the "Terms of use"… See the full description on the dataset page: https://huggingface.co/datasets/lmsys/lmsys-chat-1m.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
In our work, we have designed and implemented a novel workflow with several heuristic methods to combine state-of-the-art methods related to CVE fix commits gathering. As a consequence of our improvements, we have been able to gather the largest programming language-independent real-world dataset of CVE vulnerabilities with the associated fix commits. Our dataset containing 29,203 unique CVEs coming from 7,238 unique GitHub projects is, to the best of our knowledge, by far the biggest CVE vulnerability dataset with fix commits available today. These CVEs are associated with 35,276 unique commits as sql and 39,931 patch commit files that fixed those vulnerabilities(some patch files can't be saved as sql due to several techincal reasons) Our larger dataset thus substantially improves over the current real-world vulnerability datasets and enables further progress in research on vulnerability detection and software security. We used NVD(nvd.nist.gov) and Github Secuirty advisory Database as the main sources of our pipeline.
We release to the community a 16GB PostgreSQL database that contains information on CVEs up to 2024-09-26, CWEs of each CVE, files and methods changed by each commit, and repository metadata. Additionally, patch files related to the fix commits are available as a separate package. Furthermore, we make our dataset collection tool also available to the community.
cvedataset-patches.zip
file contains fix patches, and postgrescvedumper.sql.zip
contains a postgtesql dump of fixes, together with several other fields such as CVEs, CWEs, repository meta-data, commit data, file changes, method changed, etc.
MoreFixes data-storage strategy is based on CVEFixes to store CVE commits fixes from open-source repositories, and uses a modified version of Porspector(part of ProjectKB from SAP) as a module to detect commit fixes of a CVE. Our full methodology is presented in the paper, with the title of "MoreFixes: A Large-Scale Dataset of CVE Fix Commits Mined through Enhanced Repository Discovery", which will be published in the Promise conference (2024).
For more information about usage and sample queries, visit the Github repository: https://github.com/JafarAkhondali/Morefixes
If you are using this dataset, please be aware that the repositories that we mined contain different licenses and you are responsible to handle any licesnsing issues. This is also the similar case with CVEFixes.
This product uses the NVD API but is not endorsed or certified by the NVD.
This research was partially supported by the Dutch Research Council (NWO) under the project NWA.1215.18.008 Cyber Security by Integrated Design (C-SIDe).
To restore the dataset, you can use the docker-compose file available at the gitub repository. Dataset default credentials after restoring dump:
POSTGRES_USER=postgrescvedumper POSTGRES_DB=postgrescvedumper POSTGRES_PASSWORD=a42a18537d74c3b7e584c769152c3d
Please use this for citation:
title={MoreFixes: A large-scale dataset of CVE fix commits mined through enhanced repository discovery},
author={Akhoundali, Jafar and Nouri, Sajad Rahim and Rietveld, Kristian and Gadyatskaya, Olga},
booktitle={Proceedings of the 20th International Conference on Predictive Models and Data Analytics in Software Engineering},
pages={42--51},
year={2024}
}
According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.
One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.
Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.
The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.
From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological innovation, Asia Pacific is expected to exhibit the highest CAGR during the forecast period, fueled by the digital transformation of emerging economies and the proliferation of AI applications across various industry sectors.
The AI training dataset market is segmented by data type into Text, Image/Video, Audio, and Others, each playing a crucial role in powering different AI applications. Text da