In 2025, there were around 1.53 billion people worldwide who spoke English either natively or as a second language, slightly more than the 1.18 billion Mandarin Chinese speakers at the time of survey. Hindi and Spanish accounted for the third and fourth most widespread languages that year. Languages in the United States The United States does not have an official language, but the country uses English, specifically American English, for legislation, regulation, and other official pronouncements. The United States is a land of immigration, and the languages spoken in the United States vary as a result of the multicultural population. The second most common language spoken in the United States is Spanish or Spanish Creole, which over than 43 million people spoke at home in 2023. There were also 3.5 million Chinese speakers (including both Mandarin and Cantonese),1.8 million Tagalog speakers, and 1.57 million Vietnamese speakers counted in the United States that year. Different languages at home The percentage of people in the United States speaking a language other than English at home varies from state to state. The state with the highest percentage of population speaking a language other than English is California. About 45 percent of its population was speaking a language other than English at home in 2023.
In 2023, around 43.37 million people in the United States spoke Spanish at home. In comparison, approximately 998,179 people were speaking Russian at home during the same year. The distribution of the U.S. population by ethnicity can be accessed here. A ranking of the most spoken languages across the world can be accessed here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Languages spoken across various nations’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/shubhamptrivedi/languages-spoken-across-various-nations on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I was fascinated by this type of data as this gives a slight peek on cultural diversity of a nation and what kind of literary work to be expected from that nation
This dataset is a collection of all the languages that are spoken by the different nations around the world. Nowadays, Most nations are bi or even trilingual in nature this can be due to different cultures and different groups of people are living in the same nation in harmony. This type of data can be very useful for linguistic research, market research, advertising purposes, and the list goes on.
This dataset was published on the site Infoplease which is a general information website.
I think this dataset can be useful to understand which type of literature publication can be done for maximum penetration of the market base
--- Original source retains full ownership of the source dataset ---
Mexico is the country with the largest number of native Spanish speakers in the world. As of 2024, 132.5 million people in Mexico spoke Spanish with a native command of the language. Colombia was the nation with the second-highest number of native Spanish speakers, at around 52.7 million. Spain came in third, with 48 million, and Argentina fourth, with 46 million. Spanish, a world language As of 2023, Spanish ranked as the fourth most spoken language in the world, only behind English, Chinese, and Hindi, with over half a billion speakers. Spanish is the official language of over 20 countries, the majority on the American continent, nonetheless, it's also one of the official languages of Equatorial Guinea in Africa. Other countries have a strong influence, like the United States, Morocco, or Brazil, countries included in the list of non-Hispanic countries with the highest number of Spanish speakers. The second most spoken language in the U.S. In the most recent data, Spanish ranked as the language, other than English, with the highest number of speakers, with 12 times more speakers as the second place. Which comes to no surprise following the long history of migrations from Latin American countries to the Northern country. Moreover, only during the fiscal year 2022. 5 out of the top 10 countries of origin of naturalized people in the U.S. came from Spanish-speaking countries.
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The German corpus was produced using the Frankfurter Allgemeine und Sueddeutsche Zeitung newspaper. It contains recordings of 77 speakers (70 males, 7 females) recorded in Karlsruhe, Germany. No age distribution is available.
http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html
Our groundbreaking translation dataset represents a monumental advancement in the field of natural language processing and machine translation. Comprising a staggering 785 million records, this corpus bridges language barriers by offering translations from English to an astonishing 548 languages. The dataset promises to be a cornerstone resource for researchers, engineers, and developers seeking to enhance their machine translation models, cross-lingual analysis, and linguistic investigations.
Size of the dataset – 41GB(Uncompressed) and Compressed – 20GB
Key Features:
Scope and Scale: With a comprehensive collection of 785 million records, this dataset provides an unparalleled wealth of translated text. Each record consists of an English sentence paired with its translation in one of the 548 target languages, enabling multi-directional translation applications.
Language Diversity: Encompassing translations into 548 languages, this dataset represents a diverse array of linguistic families, dialects, and scripts. From widely spoken languages to those with limited digital representation, the dataset bridges communication gaps on a global scale.
Quality and Authenticity: The translations have been meticulously curated, verified, and cross-referenced to ensure high quality and authenticity. This attention to detail guarantees that the dataset is not only extensive but also reliable, serving as a solid foundation for machine learning applications. Data is collected from various open datasets for my personal ML projects and looking to share it to team.
Use Case Versatility: Researchers and practitioners across a spectrum of domains can harness this dataset for a myriad of applications. It facilitates the training and evaluation of machine translation models, empowers cross-lingual sentiment analysis, aids in linguistic typology studies, and supports cultural and sociolinguistic investigations.
Machine Learning Advancement: Machine translation models, especially neural machine translation (NMT) systems, can leverage this dataset to enhance their training. The large-scale nature of the dataset allows for more robust and contextually accurate translation outputs.
Fine-tuning and Customization: Developers can fine-tune translation models using specific language pairs, offering a powerful tool for specialized translation tasks. This customization capability ensures that the dataset is adaptable to various industries and use cases.
Data Format: The dataset is provided in a structured json format, facilitating easy integration into existing machine learning pipelines. This structured approach expedites research and experimentation. Json format contains the English word and equivalent word as single record. Data was exported from MongoDB database to ensure the uniqueness of the record. Each of the record is unique and sorted.
Access: The dataset is available for academic and research purposes, enabling the global AI community to contribute to and benefit from its usage. A well-documented API and sample code are provided to expedite exploration and integration.
The English-to-548-languages translation dataset represents an incredible leap forward in advancing multilingual communication, breaking down barriers to understanding, and fostering collaboration on a global scale. It holds the potential to reshape how we approach cross-lingual communication, linguistic studies, and the development of cutting-edge translation technologies.
Dataset Composition: The dataset is a culmination of translations from English, a widely spoken and understood language, into 548 distinct languages. Each language represents a unique linguistic and cultural background, providing a rich array of translation contexts. This diverse range of languages spans across various language families, regions, and linguistic complexities, making the dataset a comprehensive repository for linguistic research.
Data Volume and Scale: With a staggering 785 million records, the dataset boasts an immense scale that captures a vast array of translations and linguistic nuances. Each translation entry consists of an English source text paired with its corresponding translation in one of the 548 target languages. This vast corpus allows researchers and practitioners to explore patterns, trends, and variations across languages, enabling the development of robust and adaptable translation models.
Linguistic Coverage: The dataset covers an extensive set of languages, including but not limited to Indo-European, Afroasiatic, Sino-Tibetan, Austronesian, Niger-Congo, and many more. This broad linguistic coverage ensures that languages with varying levels of grammatical complexity, vocabulary richness, and syntactic structures are included, enhancing the applicability of translation models across diverse linguistic landscapes.
Dataset Preparation: The translation ...
Does the person speak a language other than English at home? This map takes a look at answers to this question from Census Night.Colour:For each SA1 geography, the colour indicates which language 'wins'.SA1 geographies not coloured are either tied between two languages or not enough data Colour Intensity:The colour intensity compares the values of the winner to all other values and returns its dominance over other languages in the same geographyNotes:Only considers top 6 languages for VICCensus 2016 DataPacksPredominance VisualisationsSource CodeNotice that while one language level appears to dominate certain geographies, it doesn't necessarily mean it represents the majority of the population. In fact, as you explore most areas, you will find the predominant language makes up just a fraction of the population due to the number of languages considered.
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The Spanish (Latin America) corpus was produced using the La Nacion newspaper. It contains recordings of 100 speakers (44 males, 56 females) recorded in Heredia and San Jose, Costa Rica. The following age distribution has been obtained: 20 speakers are below 19, 54 speakers are between 20 and 29, 13 speakers are between 30 and 39, 5 speakers are between 40 and 49, and 8 speakers are over 50.
As of February 2025, English was the most popular language for web content, with over 49.4 percent of websites using it. Spanish ranked second, with six percent of web content, while the content in the German language followed, with 5.6 percent. English as the leading online language United States and India, the countries with the most internet users after China, are also the world's biggest English-speaking markets. The internet user base in both countries combined, as of January 2023, was over a billion individuals. This has led to most of the online information being created in English. Consequently, even those who are not native speakers may use it for convenience. Global internet usage by regions As of October 2024, the number of internet users worldwide was 5.52 billion. In the same period, Northern Europe and North America were leading in terms of internet penetration rates worldwide, with around 97 percent of its populations accessing the internet.
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Dataset Card for [Dataset Name]
Dataset Summary
JamPatoisNLI provides the first dataset for natural language inference in a creole language, Jamaican Patois. Many of the most-spoken low-resource languages are creoles. These languages commonly have a lexicon derived from a major world language and a distinctive grammar reflecting the languages of the original speakers and the process of language birth by creolization. This gives them a distinctive place in exploring the… See the full description on the dataset page: https://huggingface.co/datasets/Ruth-Ann/jampatoisnli.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
Country: Name of the country.
Density (P/Km2): Population density measured in persons per square kilometer.
Abbreviation: Abbreviation or code representing the country.
Agricultural Land (%): Percentage of land area used for agricultural purposes.
Land Area (Km2): Total land area of the country in square kilometers.
Armed Forces Size: Size of the armed forces in the country.
Birth Rate: Number of births per 1,000 population per year.
Calling Code: International calling code for the country.
Capital/Major City: Name of the capital or major city.
CO2 Emissions: Carbon dioxide emissions in tons.
CPI: Consumer Price Index, a measure of inflation and purchasing power.
CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
Currency_Code: Currency code used in the country.
Fertility Rate: Average number of children born to a woman during her lifetime.
Forested Area (%): Percentage of land area covered by forests.
Gasoline_Price: Price of gasoline per liter in local currency.
GDP: Gross Domestic Product, the total value of goods and services produced in the country.
Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
Largest City: Name of the country's largest city.
Life Expectancy: Average number of years a newborn is expected to live.
Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
Minimum Wage: Minimum wage level in local currency.
Official Language: Official language(s) spoken in the country.
Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
Physicians per Thousand: Number of physicians per thousand people.
Population: Total population of the country.
Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
Tax Revenue (%): Tax revenue as a percentage of GDP.
Total Tax Rate: Overall tax burden as a percentage of commercial profits.
Unemployment Rate: Percentage of the labor force that is unemployed.
Urban Population: Percentage of the population living in urban areas.
Latitude: Latitude coordinate of the country's location.
Longitude: Longitude coordinate of the country's location.
Potential Use Cases
Analyze population density and land area to study spatial distribution patterns.
Investigate the relationship between agricultural land and food security.
Examine carbon dioxide emissions and their impact on climate change.
Explore correlations between economic indicators such as GDP and various socio-economic factors.
Investigate educational enrollment rates and their implications for human capital development.
Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
Study labor market dynamics through indicators such as labor force participation and unemployment rates.
Investigate the role of taxation and its impact on economic development.
Explore urbanization trends and their social and environmental consequences.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Welcome to the Country Information Dataset, meticulously curated by Aadarsh Vani. This dataset serves as an extensive resource for anyone interested in exploring the rich tapestry of countries around the globe, providing detailed information on various aspects of each nation.
This dataset contains valuable insights into countries worldwide, featuring the following attributes:
The aim of this dataset is to provide a comprehensive and reliable resource for researchers, data scientists, and cultural enthusiasts. It can facilitate analysis and visualizations that reveal global patterns in demographics, cultures, and economies.
Created by Aadarsh Vani, this dataset is a labor of love aimed at enriching the understanding of our world's countries. I encourage users to share their insights, visualizations, and analyses arising from this dataset. Together, we can foster a deeper appreciation of global diversity!
Thank you for exploring this dataset, and I hope it inspires your work in studying the fascinating intricacies of countries worldwide.
Note: This data set will be updated frequently to keep it updated by adding new columns and updating the updated values. Kindly use it for practice and projects only as it has missing values and may have unintentional wrong data in some cells.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Extinct Languages’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/the-guardian/extinct-languages on 28 January 2022.
--- Dataset description provided by original source is as follows ---
A recent Guardian blog post asks: "How many endangered languages are there in the World and what are the chances they will die out completely?" The United Nations Education, Scientific and Cultural Organisation (UNESCO) regularly publishes a list of endangered languages, using a classification system that describes its danger (or completion) of extinction.
The full detailed dataset includes names of languages, number of speakers, the names of countries where the language is still spoken, and the degree of endangerment. The UNESCO endangerment classification is as follows:
Data was originally organized and published by The Guardian, and can be accessed via this Datablog post.
--- Original source retains full ownership of the source dataset ---
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for "XLingHealth"
XLingHealth is a Cross-Lingual Healthcare benchmark for clinical health inquiry that features the top four most spoken languages in the world: English, Spanish, Chinese, and Hindi.
Statistics
Dataset
HealthQA 1,134 7.72 ± 2.41 242.85 ± 221.88
LiveQA 246 41.76 ± 37.38 115.25 ± 112.75
MedicationQA 690 6.86 ± 2.83 61.50 ± 69.44
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
This US Spanish Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Spanish -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.
Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.
The dataset features 30 hours of dual-channel call center recordings between native US Spanish speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.
This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.
Such domain-rich variety ensures model generalization across common real estate support conversations.
All recordings are accompanied by precise, manually verified transcriptions in JSON format.
These transcriptions streamline ASR and NLP development for Spanish real estate voice applications.
Detailed metadata accompanies each participant and conversation:
This enables smart filtering, dialect-focused model training, and structured dataset exploration.
This dataset is ideal for voice AI and NLP systems built for the real estate sector:
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The Swedish corpus was produced using the Goeteborgs-Posten newspaper. It contains recordings of 98 speakers (50 males, 48 females) recorded in Stockholm and Vaernamo, Sweden. The following age distribution has been obtained: 9 speakers are below 19, 50 speakers are between 20 and 29, 12 speakers are between 30 and 39, 11 speakers are between 40 and 49, and 16 speakers are over 50.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Mexican Spanish General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Spanish speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Mexican Spanish communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Spanish speech models that understand and respond to authentic Mexican accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Mexican Spanish. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Spanish speech and language AI applications:
The SPADE project aims to develop and apply user-friendly software for large-scale speech analysis of existing public and private English speech datasets, in order to understand more about English speech over space and time. To date, we have worked with 42 shared corpora comprising dialects from across the British Isles (England, Wales, Scotland, Ireland) and North America (US, Canada), with an effective time span of over 100 years. We make available here a link to our OSF repository (see below) which has acoustic measures datasets for sibilants and durations and static formants for vowels, for 39 corpora (~2200 hours of speech analysed from ~8600 speakers), with information about dataset generation. In addition, at the OSF site, we provide Praat TextGrids created by SPADE for some corpora. Reading passage text is provided when the measures are based on reading only. Datasets are in their raw form and will require cleaning (e.g. outlier removal) before analysis. In addition, we used whitelisting to anonymise measures datasets generated from non-public, restricted corpora.
Obtaining a data visualization of a text search within seconds via generic, large-scale search algorithms, such as Google n-gram viewer, is available to anyone. By contrast, speech research is only now entering its own 'big data' revolution. Historically, linguistic research has tended to carry out fine-grained analysis of a few aspects of speech from one or a few languages or dialects. The current scale of speech research studies has shaped our understanding of spoken language and the kinds of questions that we ask. Today, massive digital collections of transcribed speech are available from many different languages, gathered for many different purposes: from oral histories, to large datasets for training speech recognition systems, to legal and political interactions. Sophisticated speech processing tools exist to analyze these data, but require substantial technical skill. Given this confluence of data and tools, linguists have a new opportunity to answer fundamental questions about the nature and development of spoken language.
Our project seeks to establish the key tools to enable large-scale speech research to become as powerful and pervasive as large-scale text mining. It is based on a partnership of three teams based in Scotland, Canada and the US. Together we exploit methods from computing science and put them to work with tools and methods from speech science, linguistics and digital humanities, to discover how much the sounds of English across the Atlantic vary over space and time.
We have developed innovative and user-friendly software which exploits the availability of existing speech data and speech processing tools to facilitate large-scale integrated speech corpus analysis across many datasets together. The gains of such an approach are substantial: linguists will be able to scale up answers to existing research questions from one to many varieties of a language, and ask new and different questions about spoken language within and across social, regional, and cultural, contexts. Computational linguistics, speech technology, forensic and clinical linguistics researchers, who engage with variability in spoken language, will also benefit directly from our software. This project also opens up vast potential for those who already use digital scholarship for spoken language collections in the humanities and social sciences more broadly, e.g. literary scholars, sociologists, anthropologists, historians, political scientists. The possibility of ethically non-invasive inspection of speech and texts will allow analysts to uncover far more than is possible through textual analysis alone.
Our project has developed and applied our new software to a global language, English, using existing public and private spoken datasets of Old World (British Isles) and New World (North American) English, across an effective time span of more than 100 years, spanning the entire 20th century. Much of what we know about spoken English comes from influential studies on a few specific aspects of speech from one or two dialects. This vast literature has established important research questions which has been investigated for the first time on a much larger scale, through standardized data across many different varieties of English.
Our large-scale study complements current-scale studies, by enabling us to consider stability and change in English across the 20th century on an unparalleled scale. The global nature of English means that our findings will be interesting and relevant to a large international non-academic audience; they have been made accessible through an innovative and dynamic visualization of linguistic variation via an interactive sound mapping website. In addition to new insights into spoken English, this project also lays the crucial groundwork for large-scale speech studies across many datasets from different languages, of...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pashtu is the national language of Afghanistan and is spoken by more than 50 million people across the globe. Pashtu is written in a very complex way by calligraphers. The optical character recognition system for most of the languages of the world is in very advanced form, however, this is not the case with Pashtu. Pashtu is still looking to researchers to develop a mature optical character recognition system. This dataset consists of around 50K scanned images of the digits of Pashtu text. The digits are collected from the faculty members and students of different universities. The dataset is available for research purposes.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Mandarin Chinese General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Mandarin speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Mandarin Chinese communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Mandarin speech models that understand and respond to authentic Chinese accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Mandarin Chinese. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Mandarin speech and language AI applications:
In 2025, there were around 1.53 billion people worldwide who spoke English either natively or as a second language, slightly more than the 1.18 billion Mandarin Chinese speakers at the time of survey. Hindi and Spanish accounted for the third and fourth most widespread languages that year. Languages in the United States The United States does not have an official language, but the country uses English, specifically American English, for legislation, regulation, and other official pronouncements. The United States is a land of immigration, and the languages spoken in the United States vary as a result of the multicultural population. The second most common language spoken in the United States is Spanish or Spanish Creole, which over than 43 million people spoke at home in 2023. There were also 3.5 million Chinese speakers (including both Mandarin and Cantonese),1.8 million Tagalog speakers, and 1.57 million Vietnamese speakers counted in the United States that year. Different languages at home The percentage of people in the United States speaking a language other than English at home varies from state to state. The state with the highest percentage of population speaking a language other than English is California. About 45 percent of its population was speaking a language other than English at home in 2023.