100+ datasets found
  1. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  2. e

    Distribution of population by age groups and sex across...

    • data.europa.eu
    gml, wfs, wms
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Distribution of population by age groups and sex across cities/municipalities from the 2021 Census INSPIRE [Dataset]. https://data.europa.eu/data/datasets/80f294ee-e6fd-4ee0-afac-201bf0cca91c?locale=en
    Explore at:
    gml, wfs, wmsAvailable download formats
    Dataset updated
    Jul 18, 2024
    Description

    It contains data on population distribution by age groups and sex at the level of municipalities and cities according to the 2021 Census of Population, Households and Dwellings. The data are harmonised according to the INSPIRE theme ‘Population distribution (demography)’ and contain attribute values from the corresponding INSPIRE code lists http://inspire.ec.europa.eu/codelist/AgeGroupValue (for age groups 0-15, 15-65, 65+ years) and https://inspire.ec.europa.eu/codelist/ClassificationItemTypeValue (for gender distribution – men and women) to which a total number is assigned for each attribute value (StatisticalValue). The stated values are related to geometry in the form of 2D polygons for each local self-government unit from the Register of Spatial Units of the State Geodetic Administration. Polygons contain the name of the unit in the form of a geographical name and are separately harmonised according to the theme ‘Statistical units’, and they are linked to these attributes via a unique identifier. Statistical data from the 2021 Census were collected and published by the Croatian Bureau of Statistics. Data refer to the entire Republic of Croatia and were collected in the period from 13 September to 14 November 2021 by means of an independent census of citizens, i.e. with the help of official enumerators. The census is the most comprehensive source of data on population, households, families and dwellings. These data are necessary for the implementation of various economic and social development policies and scientific research. Data is available for viewing and downloading via INSPIRE compliant network services.

  3. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://healthdata.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/8dib-ck4f
    Explore at:
    application/rssxml, application/rdfxml, xml, csv, json, tsvAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    data.cdc.gov
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dict

  4. 2022 American Community Survey: B28009G | Presence of a Computer and Type of...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2022 American Community Survey: B28009G | Presence of a Computer and Type of Internet Subscription in Household (Two or More Races) (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2022.B28009G?q=B28009G&g=860XX00US77442
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The category "Has a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer. The category "No computer" consists of those who said "No" to all of these types of computers..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..The category "With a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types. The category "Without an Internet subscription" includes those who accessed the Internet without a subscription and also those with no Internet access at all..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the correspon...

  5. i

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Social Affairs (2025). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://datacatalog.ihsn.org/catalog/5178
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset provided by
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Ministry of Social Affairs
    Time period covered
    2003
    Area covered
    Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

  6. 2023 American Community Survey: B28006 | Educational Attainment by Presence...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B28006 | Educational Attainment by Presence of a Computer and Types of Internet Subscription in Household (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2023.B28006
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The category "Has a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer. The category "No computer" consists of those who said "No" to all of these types of computers..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..The category "With a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types. The category "Without an Internet subscription" includes those who accessed the Internet without a subscription and also those with no Internet access at all..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresp...

  7. D

    Household Travel Survey

    • data.nsw.gov.au
    • researchdata.edu.au
    • +1more
    pdf, visualisation +1
    Updated May 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Transport for NSW (2025). Household Travel Survey [Dataset]. https://www.data.nsw.gov.au/data/dataset/2-household-travel-survey
    Explore at:
    xlsx, pdf, visualisationAvailable download formats
    Dataset updated
    May 18, 2025
    Dataset provided by
    Transport for NSW
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Household Travel Survey (HTS) is the most comprehensive source of personal travel data for the Sydney Greater Metropolitan Area (GMA). This data explores average weekday travel patterns for residents in Sydney GMA.

    The Household Travel Survey (HTS) collects information on personal travel behaviour. The study area for the survey is the Sydney Greater Metropolitan Area (GMA) which includes Sydney Greater Capital City Statistical Area (GCCSA), parts of Illawarra and Hunter regions. All residents of occupied private dwellings within the Sydney GMA are considered within scope of the survey and are randomly selected to participate. The HTS has been running continuously since 1997/981 and collects data for all days through the year – including during school and public holidays.

    Typically, approximately 2,000-3,000 households participate in the survey annually. Data is collected on all trips made over a 24-hour period by all members of the participating households.

    Annual estimates from the HTS are usually produced on a rolling basis using multiple years of pooled data for each reporting year2. All estimates are weighted to the Australian Bureau of Statistics’ Estimated Resident Population, corresponding to the year of collection3. Unless otherwise stated, all reported estimates are for an average weekday.

    Due to disruptions in data collection resulting from the lockdowns during the COVID-19 pandemic, post-COVID releases of HTS data are based on a lower sample size than previous HTS releases. To ensure integrity of the results and mitigate risk of sampling errors some post-COVID results have been reported differently to previous years. Please see below for more information on changes to HTS post-COVID (2020/21 onwards).

    1. Data collection for the HTS was suspended during lock-down periods announced by the NSW Government due to COVID-19.

    2. Exceptions apply to the estimates for 2020/21 which are based on a single year of sample as it was decided not to pool the sample with data collected pre-COVID-19.

    3. HTS population estimates are also slightly lower than those reported in the ABS census as the survey excludes overseas visitors and those in non-private dwellings.

    Changes to HTS post-COVID (2020/21 onwards)

    HTS was suspended from late March 2020 to early October 2020 due to the impact and restrictions of COVID-19, and again from July 2021 to October 2021 following the Delta wave of COVID-19. Consequently, both the 2020/21 and 2021/22 releases are based on a reduced data collection period and smaller samples.

    Due to the impact of changed travel behaviours resulting from COVID-19 breaking previous trends, HTS releases since 2020/21 have been separated from pre-COVID-19 samples when pooled. As a result, HTS 2020/21 was based on a single wave of data collection which limited the breadth of geography available for release. Subsequent releases are based on pooled post-COVID samples to expand the geographies included with reliable estimates.

    Disruption to the data collection during, and post-COVID has led to some adjustments being made to the HTS estimates released post-COVID:

    SA3 level data has not been released for 2020/21 and 2021/22 due to low sample collection. LGA level data for 2021/22 has been released for selected LGAs when robust Relative Standard Error (RSE) for total trips are achieved Mode categories for all geographies are aggregated differently to the pre-COVID categories Purpose categories for some geographies are aggregated differently across 2020/21 and 2021/22. A new data release – for six cities as defined by the Greater Sydney Commission - is included since 2021/22. Please refer to the Data Document for 2022/23 (PDF, 262.54 KB) for further details.

    RELEASE NOTE

    The latest release of HTS data is 15 May 2025. This release includes Region, LGA, SA3 and Six Cities data for 2023/24. Please see 2023/24 Data Document for details.

    A revised dataset for LGAs and Six Cities for HTS 2022/23 data has also been included in this release on 15 May 2025. If you have downloaded HTS 2022/23 data by LGA and/or Six Cities from this link prior to 15/05/2025, we advise you replace it with the revised tables. If you have been supplied bespoke data tables for 2022/23 LGAs and/or Six Cities, please request updated tables.

    Revisions to HTS data may be made on previously published data as new sample data is appended to improve reliability of results. Please check this page for release dates to ensure you are using the most current version or create a subscription (https://opendata.transport.nsw.gov.au/subscriptions) to be notified of revisions and future releases.

  8. 2023 American Community Survey: B28009D | Presence of a Computer and Type of...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B28009D | Presence of a Computer and Type of Internet Subscription in Household (Asian Alone) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2023.B28009D?q=Tennessee+Kaw&t=Race+and+Ethnicity:Telephone,+Computer,+and+Internet+Access
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The category "Has a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer. The category "No computer" consists of those who said "No" to all of these types of computers..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..The category "With a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types. The category "Without an Internet subscription" includes those who accessed the Internet without a subscription and also those with no Internet access at all..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresp...

  9. 2021 Population and Housing Census - Ghana

    • microdata.statsghana.gov.gh
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (2023). 2021 Population and Housing Census - Ghana [Dataset]. https://microdata.statsghana.gov.gh/index.php/catalog/110
    Explore at:
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    Ghana Statistical Services
    Authors
    Ghana Statistical Service
    Time period covered
    2021
    Area covered
    Ghana
    Description

    Abstract

    The population and housing census (PHC) is the unique source of reliable and comprehensive data about the size of population and also on major socio-economic & socio-demographic characteristics of the country. It provides data on geographic and administrative distribution of population and household in addition to the demographic and socio-economic characteristics of all the people in the country. Generally, it provides for comparing and projecting demographic data, social and economic characteristics, as well as household and housing conditions at all levels of the country’s administrative units and dimensions: national, regional, districts and localities. The data from the census is classified, tabulated and disseminated so that researchers, administrators, policy makers and development partners can use the information in formulating and implementing various multi-sectorial development programs at the national and community levels. Data on all key variables namely area, household, population, economic activity, literacy and education, fertility and child survival, housing conditions and sanitation are collected and available in the census data. The 2021 PHC in Ghana had an overarching goal of generating updated demographic, social and economic data, housing characteristics and dwelling conditions to support national development planning activities.

    Geographic coverage

    National Coverage , Region , District

    Analysis unit

    • Individuals
    • Households
    • Emigrants
    • Absentee population
    • Mortality
    • Type of residence (households and non household)

    Universe

    All persons who spent census night (midnight of 27th June 2021) in Ghana

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    This 10% sample data for the 2021 PHC is representative at the district/subdistrict level and also by the urban rural classification.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    GSS developed two categories of instruments for the 2021 PHC: the listing form and the enumeration instruments. The listing form was only one, while the enumeration instruments comprised six questionnaires, designated as PHC 1A, PHC 1B, PHC 1C, PHC 1D, PHC 1E and PHC 1F. The PHC 1A was the most comprehensive with the others being its subsets.

    1. Listing Form: The listing form was developed to collect data on type of structures, level of completion, whether occupied or vacant and use(s) of the structures. It was also used to collect information about the availability, number and types of toilet facilities in the structures. It was also used to capture the number of households in a structure, number of persons in households and the sex of the persons residing in the households if occupied. Finally, the listing form was used to capture data on non-household populations such as the population in institutions, floating population and sex of the non-household populations.

    2. PHC 1A: The PHC 1A questionnaire was used to collect data from all households in the country. Primarily, it was used to capture household members and visitors who spent the Census Night in the dwelling of the household, and their relationship with the head of the household. It was also used to collect data on homeless households. Members of the households who were absent were enumerated at the place where they had spent the Census Night. The questionnaire was also used to collect the following household information: emigration; socio-demographic characteristics (sex, age, place of birth and enumeration, survival status of parents, literacy and education; economic activities; difficulty in performing activities; ownership and usage of information, technology and communication facilities; fertility; mortality; housing characteristics and conditions and sanitation.

    3. PHC 1B: The PHC 1B questionnaire was used to collect data from persons in stable institutions comprising boarding houses, hostels and prisons who were present on Census Night. Other information that was captured with this instrument are socio-demographic characteristics, literacy and education, economic activities, difficulty in performing activities; ownership and usage of information, technology and communication facilities; fertility; mortality; housing characteristics and conditions and sanitation.

    4. PHC 1C: The PHC 1C questionnaire was used to collect data from persons in “unstable” institutions such as hospitals and prayer camps who were present at these places on Census Night. The instrument was used to capture only the socio-demographic characteristics of individuals.

    5. PHC 1D: The PHC 1D questionnaire was used to collect data from the floating population. This constitutes persons who were found at airports, seaports, lorry stations and similar locations waiting for or embarking on long-distance travel, as well as outdoor sleepers on Census Night. The instrument captured the socio-demographic information of individuals.

    6. PHC 1E: All persons who spent the Census Night at hotels, motels and guest houses were enumerated using the PHC 1E. The content of the questionnaire was similar to that of the PHC 1D.

    7. PHC 1F: The PHC 1F questionnaire was administered to diplomats in the country.

    Cleaning operations

    The Census data editing was implemented at three levels: 1. data editing by enumerators and supervisors during data collection 2. data editing was done at the regional level by the regional data quality monitors during data collection 3. Final data editing was done at the national level using the batch edits in CSPro and STATA Data editing and cleaning was mainly digital.

    Response rate

    100 percent

    Data appraisal

    A post Enumeration Survey (PES) was conducted to assess the extent of coverage and content error.

  10. w

    National Family Health Survey 1992-1993 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Institute for Population Sciences (IIPS) (2017). National Family Health Survey 1992-1993 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/1404
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset authored and provided by
    International Institute for Population Sciences (IIPS)
    Time period covered
    1992 - 1993
    Area covered
    India
    Description

    Abstract

    The National Family Health Survey (NFHS) was carried out as the principal activity of a collaborative project to strengthen the research capabilities of the Population Reasearch Centres (PRCs) in India, initiated by the Ministry of Health and Family Welfare (MOHFW), Government of India, and coordinated by the International Institute for Population Sciences (IIPS), Bombay. Interviews were conducted with a nationally representative sample of 89,777 ever-married women in the age group 13-49, from 24 states and the National Capital Territoty of Delhi. The main objective of the survey was to collect reliable and up-to-date information on fertility, family planning, mortality, and maternal and child health. Data collection was carried out in three phases from April 1992 to September 1993. THe NFHS is one of the most complete surveys of its kind ever conducted in India.

    The households covered in the survey included 500,492 residents. The young age structure of the population highlights the momentum of the future population growth of the country; 38 percent of household residents are under age 15, with their reproductive years still in the future. Persons age 60 or older constitute 8 percent of the population. The population sex ratio of the de jure residents is 944 females per 1,000 males, which is slightly higher than sex ratio of 927 observed in the 1991 Census.

    The primary objective of the NFHS is to provide national-level and state-level data on fertility, nuptiality, family size preferences, knowledge and practice of family planning, the potentiel demand for contraception, the level of unwanted fertility, utilization of antenatal services, breastfeeding and food supplemation practises, child nutrition and health, immunizations, and infant and child mortality. The NFHS is also designed to explore the demographic and socioeconomic determinants of fertility, family planning, and maternal and child health. This information is intended to assist policymakers, adminitrators and researchers in assessing and evaluating population and family welfare programmes and strategies. The NFHS used uniform questionnaires and uniform methods of sampling, data collection and analysis with the primary objective of providing a source of demographic and health data for interstate comparisons. The data collected in the NFHS are also comparable with those of the Demographic and Health Surveys (DHS) conducted in many other countries.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Data collected for women 13-49, indicators calculated for women 15-49

    Universe

    The population covered by the 1992-93 DHS is defined as the universe of all women age 13-49 who were either permanent residents of the households in the NDHS sample or visitors present in the households on the night before the survey were eligible to be interviewed.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE DESIGN

    The sample design for the NFHS was discussed during a Sample Design Workshop held in Madurai in Octber, 1991. The workshop was attended by representative from the PRCs; the COs; the Office of the Registrar General, India; IIPS and the East-West Center/Macro International. A uniform sample design was adopted in all the NFHS states. The Sample design adopted in each state is a systematic, stratified sample of households, with two stages in rural areas and three stages in urban areas.

    SAMPLE SIZE AND ALLOCATION

    The sample size for each state was specified in terms of a target number of completed interviews with eligible women. The target sample size was set considering the size of the state, the time and ressources available for the survey and the need for separate estimates for urban and rural areas of the stat. The initial target sample size was 3,000 completed interviews with eligible women for states having a population of 25 million or less in 1991; 4,000 completed interviews for large states with more than 25 million population; 8,000 for Uttar Pradesh, the largest state; and 1,000 each for the six small northeastern states. In States with a substantial number of backward districts, the initial target samples were increased so as to allow separate estimates to be made for groups of backward districts.

    The urban and rural samples within states were drawn separetly and , to the extent possible, sample allocation was proportional to the size of the urban-rural populations (to facilitate the selection of a self-weighting sample for each state). In states where the urban population was not sufficiently large to provide a sample of at least 1,000 completed interviews with eligible women, the urban areas were appropriately oversampled (except in the six small northeastern states).

    THE RURAL SAMPLE: THE FRAME, STRATIFICATION AND SELECTION

    A two-stage stratified sampling was adopted for the rural areas: selection of villages followed by selection of households. Because the 1991 Census data were not available at the time of sample selection in most states, the 1981 Census list of villages served as the sampling frame in all the states with the exception of Assam, Delhi and Punjab. In these three states the 1991 Census data were used as the sampling frame.

    Villages were stratified prior to selection on the basis of a number of variables. The firts level of stratification in all the states was geographic, with districts subdivided into regions according to their geophysical characteristics. Within each of these regions, villages were further stratified using some of the following variables : village size, distance from the nearest town, proportion of nonagricultural workers, proportion of the population belonging to scheduled castes/scheduled tribes, and female literacy. However, not all variables were used in every state. Each state was examined individually and two or three variables were selected for stratification, with the aim of creating not more than 12 strata for small states and not more than 15 strata for large states. Females literacy was often used for implicit stratification (i.e., the villages were ordered prior to selection according to the proportion of females who were literate). Primary sampling Units (PSUs) were selected systematically, with probaility proportional to size (PPS). In some cases, adjacent villages with small population sizes were combined into a single PSU for the purpose of sample selection. On average, 30 households were selected for interviewing in each selected PSU.

    In every state, all the households in the selected PSUs were listed about two weeks prior to the survey. This listing provided the necessary frame for selecting households at the second sampling stage. The household listing operation consisted of preparing up-to-date notional and layout sketch maps of each selected PSU, assigning numbers to structures, recording addresses (or locations) of these structures, identifying the residential structures, and listing the names of the heads of all the households in the residentiak structures in the selected PSU. Each household listing team consisted of a lister and a mapper. The listing operation was supervised by the senior field staff of the concerned CO and the PRC in each state. Special efforts were made not to miss any household in the selected PSU during the listing operation. In PSUs with fewer than 500 households, a complete household listing was done. In PSUs with 500 or more households, segmentation of the PSU was done on the basis of existing wards in the PSU, and two segments were selected using either systematic sampling or PPS sampling. The household listing in such PSUs was carried out in the selected segments. The households to be interviewed were selected from provided with the original household listing, layout sketch map and the household sample selected for each PSU. All the selected households were approached during the data collection, and no substitution of a household was allowed under any circumstances.

    THE RURAL URBAN SAMPLE: THE FRAME, STRATIFICATION AND SELECTION

    A three-stage sample design was adopted for the urban areas in each state: selection of cities/towns, followed by urban blocks, and finally households. Cities and towns were selected using the 1991 population figures while urban blocks were selected using the 1991 list of census enumeration blocks in all the states with the exception of the firts phase states. For the first phase states, the list of urban blocks provided by the National Sample Survey Organization (NSSSO) served as the sampling frame.

    All cities and towns were subdivided into three strata: (1) self-selecting cities (i.e., cities with a population large enough to be selected with certainty), (2) towns that are district headquaters, and (3) other towns. Within each stratum, the cities/towns were arranged according to the same kind of geographic stratification used in the rural areas. In self-selecting cities, the sample was selected according to a two-stage sample design: selection of the required number of urban blocks, followed by selection of households in each of selected blocks. For district headquarters and other towns, a three stage sample design was used: selection of towns with PPS, followed by selection of two census blocks per selected town, followed by selection of households from each selected block. As in rural areas, a household listing was carried out in the selected blocks, and an average of 20 households per block was selected systematically.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the NFHS: the Household Questionnaire, the Women's Questionnaire, and the Village Questionnaire. The overall content

  11. Social Survey of Jerusalem 2005 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Nov 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2020). Social Survey of Jerusalem 2005 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/431
    Explore at:
    Dataset updated
    Nov 4, 2020
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2005
    Area covered
    West Bank, Gaza, Palestine
    Description

    Abstract

    The Jerusalem Household Social Survey 2005 is one of the most important statistical activities that have been conducted by PCBS. It is the most detailed and comprehensive statistical activity that PCBS has conducted in Jerusalem. The main objective of the Jerusalem household social survey, 2005 is to provide basic information about: Demographic and social characteristics for the Palestinian society in Jerusalem governorate including age-sex structure, Illiteracy rate, enrollment and drop-out rates by background characteristics, Labor force status, unemployment rate, occupation, economic activity, employment status, place of work and wage levels, Housing and housing conditions, Living levels and impact of Israeli measures on nutrition behavior during Al-Aqsa intifada, Criminal offence, its victims, and injuries caused.

    Geographic coverage

    Social survey data covering the province of Jerusalem only, the type locality (urban, rural, refugee camps) and Governorate

    Analysis unit

    households, Individual

    Universe

    The target population was all Palestinian households living in Jerusalem Governorate.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Sample Frame Were estimated sample size of Jerusalem by 3,300 family, including 2,240 families in the region J1, and 1,060 families in the region of J2 has been the establishment of Sample Frame to Jerusalem (J2) of the General Census of Population and Housing, and Establishment, which was carried out by the PCBS at the end of 1997, was create Sample Frame to Jerusalem (J1) of project data that has been exclusively in 2004. And the frame is a list of counting areas, and these areas are used as units an initial preview (PSUs) in the first stage of the process of selecting the sample. Stratified cluster random sample of regular two phases: Phase I: was selected a stratified random sample of enumeration areas from Jerusalem (J1) and Jerusalem (J2). The number of enumeration areas that have been chosen counting area 123 divided into two regions: 70 the count of Jerusalem (J1), 53 the count of Jerusalem (J2). Phase II: A random sample was withdrawn systematically with size of 20 families from each enumeration area that was selected in the first stage of the Jerusalem J2, and 32 families from each enumeration area that was selected in the first stage of the Jerusalem J1.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    A survey questionnaire the main tool for gathering information, so do not need to check the technical specifications for the phase of field work, as required to achieve the requirements of data processing and analysis, has been designed form the survey after examining the experience of other countries on the subject of social surveys, covering the form as much as possible the most important social indicators as recommended by the United Nations, taking into account the specificity of the Palestinian community in this aspect.

    Cleaning operations

    Phase included a set of data processing Activities and operations that have been made to the Forms to prepare her for the analysis phase, This phase included the following operations: Before the introduction of audit data: at this stage was Check all the forms using the instructions To check to make sure the field of logical data and re- Incomplete, including a second field. Data Entry: The data entry Central to the central headquarters in Al-Bireh, was organized The data entry process using the BLAISE Program Where the form has been programmed through this program. Was marked by the program that was developed in the Device properties and features the following: The possibility of dealing with an exact copy of the form The computer screen. The ability to conduct all tests and possibilities Possible and logical sequence of data in the form. Maintain a minimum of errors Portal Digital data or errors of field work. Ease of use and deal with the software and data (User-Friendly). The possibility of converting the data to the other formula can be Use and analysis of the statistical systems Analysis such as SPSS.

    Response rate

    during the field work we visit 3,300 family in Jerusalem Governorate, 2,240 in Area J1 and1,060 in Area J2 where the final results of the interviews were as follows: The number of families who were interviewed (2,485) in Jerusalem Governorate, complete questioner 75.3% (1,773) in J1 79.2% (712) in J2 67.2%

    Sampling error estimates

    Data were collected in a manner that the survey sample and not Balhsr destruction, so she is exposed to two main types of errors. The first sampling errors (statistical errors), and the second non-statistical errors. It is intended that sampling errors of the errors resulting from sample design, so it is easy to measure, the contrast has been calculated and the effect of sample design.

    The non-statistical errors are possible to occur in every stage of project implementation, through data collection, inserting, and mistakes can be summarized by the non-response, and response errors (surveyed), and the mistakes of the interview (the researcher) and data-entry errors. To avoid errors and reduce the impact it has made significant efforts through the training of researchers extensive training, and the presence of a group of experts in the concepts and terminology, medical / health, and training on how to conduct interviews, and the things that must be followed during the interview, and the things that should be avoided.

    Have been trained on the data entry program entry, program, and were examined in order to see the picture of the situation and reduce any problems, there was constant contact between supervisors and checkers through ongoing visits and periodic meetings. In addition, has been drafting a set of circulars and instructions reminder to the team. Also been circulated answers to questions and problems faced by the researchers during the field work.

    As for office work have been trained crew to check the special forms and field detection of errors, which greatly reduces the rates of errors that can occur during field work. In order to reduce the proportion of errors that can occur during entry form to the computer, the software is designed to entry so as not to allow any errors Tnasagah can get during the process of input and contains many of the conditions Logical, where they were loading the program the input of many tests on private answers each question in addition to the relations between the different questions and testing the other logical. This process has led to the disclosure of most of the errors that are not found in previous phases of work, where they were correct all errors that have been discovered.

    Data were evaluated according to the following areas: 1. Definition of family members and how to register. 2. Demographic characteristics that have a relationship on Christmas. 3. Breakdown of the profession and activity.

    Methods of assessment vary according to the data subject in this survey include the following: 1. Occurrences of missing values and Answers "other" and "Do not know" and examine inconsistencies between different sections or between the date of birth and other sections. Add to examine the internal consistency of the data as part of a logical data and completeness. 2. Compared to survey data with the results of surveys of the relationship and by the Central Bureau of Statistics Palestinian implementation.

    Can be summarized as sources of some non-statistical errors that have emerged during the implementation of the survey including the following: Inability to meet the data in some cases the forms because of the lack of a home or be in the housing unit does not exist or are uninhabited and there are families not able to provide some data or refused to do so. Some families did not take the form subject very seriously affecting the quality of the data provided. Errors resulting from the method of asking the question by the researcher in the field. Category understand the question and answer based on his understanding of it. The inability of the technical team overseeing the project from the field visit on a regular basis for all duty stations in order to see the workflow and meet researchers and directing them, especially in the area J1. There was difficulty in reaching the families because of the construction of the wall, especially in the Ram Area and also in the area of Bir Nabala where the switch was a full count area due to additional incompleteness caused by the absence of the families in the region because of the separation wall. It was not easy to follow and adjust the time researchers because of the prevailing security conditions.

  12. d

    Influenza Vaccination Coverage, ZIP Code

    • catalog.data.gov
    • data.cityofchicago.org
    • +1more
    Updated Jun 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Influenza Vaccination Coverage, ZIP Code [Dataset]. https://catalog.data.gov/dataset/influenza-vaccination-coverage-zip-code
    Explore at:
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    Chicago residents who are up to date with influenza vaccines by ZIP Code, based on the reported home address and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). “Up to date” refers to individuals aged 6 months and older who have received 1+ doses of influenza vaccine during the current season, defined as the beginning of July (MMWR week 27) through the end of the following June (MMWR week 26). Data Notes: Weekly cumulative totals of people up to date are shown for each combination ZIP Code and age group. Note there are rows where age group is "All ages" so care should be taken when summing rows. Weeks begin on a Sunday and end on a Saturday. Coverage percentages are calculated based on the cumulative number of people in each ZIP Code and age group who are considered up to date as of the week ending date divided by the estimated number of people in that subgroup. Population counts are obtained from the 2020 U.S. Decennial Census. For ZIP Codes mostly outside Chicago, coverage percentages are not calculated because reliable Chicago-only population counts are not available. Actual counts may exceed population estimates and lead to coverage estimates that are greater than 100%, especially in smaller ZIP Codes with smaller populations. Additionally, the medical provider may report a work address or incorrect home address for the person receiving the vaccination, which may lead to over- or underestimation of vaccination coverage by geography. All coverage percentages are capped at 99%. The Chicago Department of Public Health (CDPH) uses the most complete data available to estimate influenza vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Influenza vaccine administration is not required to be reported in Illinois, except for publicly funded vaccine (e.g., Vaccines for Children, Section 317). Individuals may receive vaccinations that are not recorded in I-CARE, such as those administered in another state, or those administered by a provider that does not submit data to I-CARE, causing underestimation of the number individuals who received an influenza vaccine for the current season. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For all datasets related to influenza, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=flu . Data Source: Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau 2020 Decennial Census

  13. National Database of Childcare Prices 2008-2022

    • datalumos.org
    delimited
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Labor. Women's Bureau (2025). National Database of Childcare Prices 2008-2022 [Dataset]. http://doi.org/10.3886/E226943V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Apr 16, 2025
    Dataset provided by
    United States Department of Laborhttp://www.dol.gov/
    Authors
    Department of Labor. Women's Bureau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2008 - 2022
    Area covered
    United States
    Description

    The National Database of Childcare Prices (NDCP) provides childcare prices at the county level in the United States. The NDCP is a new data source, and the most comprehensive federal source of childcare prices at the county level in the United States. The NDCP was developed to fill a need for local-level childcare price data, standardized across U.S. states. Most existing sources of childcare price data provide prices at the state level, yet parents must choose childcare providers that are in close proximity to their homes or workplaces. Therefore, state averages are unlikely to be good estimates of the prices parents encounter in the market. State average prices do not reflect the substantial variation in prices from one locale to the next within a state and underestimate prices in urban areas.The NDCP provides data on the price of childcare by children's age groups and care setting (home-based or center-based) at the median and 75th percentile over an 15-year period (2008-2022, inclusive) at the county level. The data were obtained from state Lead Agencies responsible for conducting market rate surveys (MRS) according to Child Care and Development Fund regulations. A MRS is the collection and analysis of prices charged by childcare providers for services in the priced market. All state Lead Agencies must conduct a survey and develop a report on local childcare prices in their state every three years. The Women's Bureau contracted with ICF to obtain reports and data from previously conducted surveys to develop the NDCP. The NDCP standardizes and harmonizes data across years and geographies for about 200 previously-conducted MRS. The NDCP also provides county-level demographic and economic data from the American Community Survey.The accompanying User Guide (U.S. Department of Labor, Women's Bureau National Database of Childcare Prices: Final Report) provides detailed information about the data sources, data collection strategy, standardization and imputation of the data, and data limitations to inform and assist researchers who may be interested in using the data for future analyses. The following items are provided in the User Guide as appendices.Appendix A: Data Collection Protocol and Decisions Made During Data Entry Process, Including State NuancesAppendix B: List of Imputations Performed for Each State and YearAppendix C: County-Level Data DictionaryAppendix D: Methods Used for Specific Demographic Variables – CountyAppendix E: State-Level Data DictionaryAppendix F: Methods Used for Specific Demographic Variables – StateAppendix G: 2008-2018 Imputations for County-Level Childcare Prices from Statewide DataAppendix H: Price Quintile Ranges for State-Level Price DatabaseAppendix I: Summary of Additional 2008-2018 Data Added as a Result of Additional In-Between Study Imputations

  14. a

    Census ACS1923 5yr BlockGroups

    • public-morpc.hub.arcgis.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mid-Ohio Regional Planning Commission (2025). Census ACS1923 5yr BlockGroups [Dataset]. https://public-morpc.hub.arcgis.com/items/aa407b7bb3b34b0eb1c55d88b95c2d0f
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    Mid-Ohio Regional Planning Commission
    Area covered
    Description

    The American Community Survey (ACS) helps local officials, community leaders, and businesses understand the changes taking place in their communities. It is the premier source for detailed population and housing information about our nation.This latest data was release in December of 2024. POP_UNI Total Population

    POP_MIN Population in all race / ethnic categories other than 'white, not hispanic'

    POP_HISLAT Population that is hispanic or latino

    POP_65UP Population 65 and older

    DISHH_UNI Households (aka Occupied Housing Units)

    DISHH Households with one or more persons with one or more disabilities

    ZCARHH_UNI Households (aka Occupied Housing Units)

    ZCARHH Households with access to zero cars

    UNEMP_UNI Population age 16+ who are in the labor force

    UNEMP Population in the labor force who are unemployed

    BBHH_UNI Households (aka Occupied Housing Units)

    LINTHH Households with internet via dial-up only

    ZINTHH Households with no internet

    ZCOMHH Households with no computer

    POV_UNI Population for whom poverty status is determined

    POV_100 Population at or below 100% Federal Poverty Level

    POV_200 Population at or below 200% Federal Poverty Level

    HHInc_UNI Households (aka Occupied Housing Units)

    HHIncL25k Household Income under $25,000

    HHInc25_50k Household Income between $25,000 and $50,000

    HHInc50_75k Household Income between $50,000 and $75,000

    HHInc75_100K Household Income between $75,000 and $100,000

    HHInc100_150K Household Income between $100,000 and $150,000

    HHInc150_200k Household Income between $150,000 and $200,000

    HHInc200plus Household Income above $200,000

    TRANS_UNI Workers 16 years and older

    TRANS_CAR Workers who use a car as their means of transportation

    TRANS_POOL Workers who carpool as their means of transportation

    TRANS_PUB Workers who use public transportation

    TRANS_BUS Workers who take a bus as their means of transportation

    TRANS_BIKE Workers who bicycle as their means of transportation

    TRANS_WALK Workers who walk as their means of transportation

    TRANS_WFH Workers who work from home

    ED_UNI Population 25 years and over (Ed. Universe)

    ED_LESS_TWEL Less than a twelfth grade education

    ED_HS_GRAD High School graduate

    ED_GED_EQ GED or alternative credential

    ED_COL_SOME Some college

    ED_ASSOC Associate's degree

    ED_BACH Bachelor's degree

    ED_MAST_P Master's, Professional, or Doctorate degree

    PER_CAP Per capita income

    MED_INC Median income

    HU_UNI Total housing units

    HU_OCC Occupied housing untis

    HU_VAC Vacant housing units

    VET_UNI Veteran Universe

    VET_YES Veterans

    VET_NO Non-Veterans

    HU_SF Single family housing unit

    HU_MF Multifamily housing unit

    HU_OTH Other housing unit type

    TEN_UNI Occupied housing units

    TEN_RENT Renter occupied housing unit

    TEN_OWN Owner occupied housing unit

    PCT_POV_100 Percent of population at or below 100% Federal Poverty Level

    PCT_POV_200 Percent of population at or below 200% Federal Poverty Level

    PCT_MIN Percent of population in all race / ethnic categories other than 'white, not hispanic'

    PCT_HISLAT Percent of population that is hispanic or latino

    PCT_65UP Percent of Population over 65

    PCT_DISHH Percent of Households with one or more persons with one or more disabilities

    PCT_ZCARHH Percent of Households with access to zero cars

    PCT_UNEMP Percent fo Population in the labor force who are unemployed

    PCT_LINTHH Percent of Households with internet via dial-up only

    PCT_ZINTHH Percent of Households with no internet

    PCT_ZCOMHH Percent of Households with no computer

    PCT_L25K Percent of Households with Income under $25,000

    PCT_25_50k Percent of Households with Income between $25,000 and $50,000

    PCT_50_75k Percent of Households with Income between $50,000 and $75,000

    PCT_75_100k Percent of Households with Income between $75,000 and $100,000

    PCT_100_150k Percent of Households with Income between $100,000 and $150,000

    PCT_150_200K Percent of Households with Income between $150,000 and $200,000

    PCT_200kPlus Percent of Households with Income above $200,000

    PCT_CAR_ALONE Percent of Workers who use a car as their means of transportation

    PCT_Walk_Bike Percent of Workers who walk or Bike as their means of transportation

    PCT_WFH Percent of Workers who work from home

    PCT_BACH Percent of Population with Bachelors Degree

    PCT_MAST_P Percent of Population with Master's, Professional, or Doctorate Degree

    PCT_OCC Percent of Housing Units that are occupied

    PCT_SF_HU Percent of Single Family Housing Units

    PCT_MF_HU Percent of Multi Family Housing Units

    PCT_RENT Percent of Tenants that are renters

    PCT_OWN Percent of Tenanats that own

    PCT_VET Percentage of population that are veterans

  15. d

    Influenza Vaccination Coverage, Region (HCEZ)

    • catalog.data.gov
    • data.cityofchicago.org
    • +1more
    Updated May 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Influenza Vaccination Coverage, Region (HCEZ) [Dataset]. https://catalog.data.gov/dataset/influenza-vaccination-coverage-region-hcez
    Explore at:
    Dataset updated
    May 24, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    Chicago residents who are up to date with influenza vaccines by Healthy Chicago Equity Zone (HCEZ), based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f “Up to date” refers to individuals aged 6 months and older who have received 1+ doses of influenza vaccine during the current season, defined as the beginning of July (MMWR week 27) through the end of the following June (MMWR week 26). Data notes: Weekly cumulative totals of people up to date are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" and race-ethnicity is “All Race/Ethnicity Groups” so care should be taken when summing rows. Weeks begin on a Sunday and end on a Saturday. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who are up to date, divided by the estimated number of people in that subgroup. Population counts are from the 2020 U.S. Decennial Census. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%. Summing all race/ethnicity group populations to obtain citywide populations may provide a population count that differs slightly from the citywide population count listed in the dataset. Differences in these estimates are due to how community area populations are calculated. The Chicago Department of Public Health (CDPH) uses the most complete data available to estimate influenza vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Influenza vaccine administration is not required to be reported in Illinois, except for publicly funded vaccine (e.g., Vaccines for Children, Section 317). Individuals may receive vaccinations that are not recorded in I-CARE, such as those administered in another state, or those administered by a provider that does not submit data to I-CARE, causing underestimation of the number individuals who received an influenza vaccine for the current season. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For all datasets related to influenza, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=flu . Data Source: Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau 2020 Decennial Census

  16. Consumer Price Index 2020 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Jan 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2022). Consumer Price Index 2020 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/706
    Explore at:
    Dataset updated
    Jan 2, 2022
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2020
    Area covered
    Gaza Strip, West Bank, Gaza, Palestine
    Description

    Abstract

    The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.

    Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.

    Geographic coverage

    Palestine West Bank Gaza Strip Jerusalem

    Analysis unit

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Universe

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).

    Sampling deviation

    Not apply

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).

    In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.

    Cleaning operations

    The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.

    At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.

    Response rate

    Not apply

    Sampling error estimates

    The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. For example, for the CPI, the variation between its goods was very low, except in some cases such as banana, tomato, and cucumber goods that had a high coefficient of variation during 2019 due to the high oscillation in their prices. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.

    Data appraisal

    Other technical procedures to improve data quality: Seasonal adjustment processes

  17. v

    Census local area profiles 2006

    • opendata.vancouver.ca
    Updated Mar 25, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Census local area profiles 2006 [Dataset]. https://opendata.vancouver.ca/explore/dataset/census-local-area-profiles-2006/
    Explore at:
    Dataset updated
    Mar 25, 2013
    License

    https://opendata.vancouver.ca/pages/licence/https://opendata.vancouver.ca/pages/licence/

    Description

    The census is Canada's largest and most comprehensive data source conducted by Statistics Canada every five years. The Census of Population collects demographics and linguistic information on every man, woman and child living in Canada. The data shown here is provided by Statistics Canada from the 2006 Census as a custom profile data order for the City of Vancouver, using the City'​s 22 local planning areas. The data may be reproduced provided they are credited to Statistics Canada, Census 2006, custom order for City of Vancouver Local Areas. Data accessThis dataset has not yet been converted to a format compatible with our new platform. The following links provide access to the files from our legacy site: Census local area profiles 2006 (CSV) Census local area profiles 2006 (XLS)Dataset schema (Attributes)Please see the Census local area profiles 2006 attributes page. NoteThe 22 Local Areas is defined by the Census blocks and is equal to the City'​s 22 local planning areas and includes the Musqueam 2 reserve. Vancouver CSD (Census Subdivision) is defined by the City of Vancouver municipal boundary which excludes the Musqueam 2 reserve but includes Stanley Park. Vancouver CMA (Census Metropolitan Area) is defined by the Metro Vancouver boundary which includes the following Census Subdivisions: Vancouver, Surrey, Burnaby, Richmond, Coquitlam, District of Langley, Delta, District of North Vancouver, Maple Ridge, New Westminster, Port Coquitlam, City of North Vancouver, West Vancouver, Port Moody, City of Langley, White Rock, Pitt Meadows, Greater Vancouver A, Bowen Island, Capilano 5, Anmore, Musqueam 2, Burrard Inlet 3, Lions Bay, Tsawwassen, Belcarra, Mission 1, Matsqui 4, Katzie 1, Semiahmoo, Seymour Creek 2, McMillian Island 6, Coquitlam 1, Musqueam 4, Coquitlam 2, Katzie 2, Whonnock 1, Barnston Island 3, and Langley 5. In 2006 there were changes made to the definition of households. A number of Single Room Occupancy and Seniors facilities were considered to be dwellings in 2001, and collective dwellings in 2006. As a result the residents of those buildings would not be considered to be households in 2006. There is a high likelihood that residents of such facilities have low incomes, and there will have been an impact on the count of households considered to have a low income.A number of changes were made to the census family concept for 2001 which account for some of the increase in the total number of families, single parent families and children living at home.Occupied Dwellings are those with a household living in them. The change to the definition of households (already noted) also affects the number of occupied dwellings.In 2006 there was a change made to the definition of duplex. While it is still defined as a dwelling in a building with two dwellings, one above the other, in 2001 these were only detached properties. In 2006 the definition changed so they could be joined to other similar properties. In 2006 Statistics Canada also seem to have identified more duplexes than before.In 2006 Statistics Canada conducted the Census with a mail-in or online response. To facilitate this, they identified more secondary addresses in houses. This probably also contributes to the increase from 2001 in the number of duplexes, and the reduction in the number of single-family dwellings.Data products that are identified as 20% sample data refer to information that was collected using the long census questionnaire. For the most part, these data were collected from 20% of the households; however they also include some areas, such as First Nations communities and remote areas, where long census form data were collected from 100% of the households. Data currencyThe data for Census 2006 was collected in May 2006. Data accuracyStatistics Canada is committed to protect the privacy of all Canadians and the confidentiality of the data they provide to us. As part of this commitment, some population counts of geographic areas are adjusted in order to ensure confidentiality.Counts of the total population are rounded to a base of 5 for any dissemination block having a population less than 15. Population counts for all standard geographic areas above the dissemination block level are derived by summing the adjusted dissemination block counts. The adjustment of dissemination block counts is controlled to ensure that the population counts for dissemination areas will always be within 5 of the actual values. The adjustment has no impact on the population counts of census divisions and large census subdivisions. Websites for further information Statistics Canada 2006 Census Dictionary Local area boundary dataset

  18. Influenza Vaccination Coverage, Citywide

    • healthdata.gov
    • data.cityofchicago.org
    • +1more
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Influenza Vaccination Coverage, Citywide [Dataset]. https://healthdata.gov/dataset/Influenza-Vaccination-Coverage-Citywide/hmy2-55cb
    Explore at:
    json, csv, tsv, xml, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    Chicago residents who are up to date with influenza vaccines, based on the reported address, race-ethnicity, sex, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE).

    “Up to date” refers to individuals aged 6 months and older who have received 1+ doses of influenza vaccine during the current season, defined as the beginning of July (MMWR week 27) through the end of the following June (MMWR week 26).

    Data Notes:

    Weekly cumulative counts and coverage percentages of people up to date are shown for each combination of race-ethnicity, sex, and age group. Note that race-ethnicity, age, and sex all have an option for “All” so care should be taken when summing rows. Weeks begin on a Sunday and end on a Saturday.

    Coverage percentages are calculated based on the cumulative number of people in each race-ethnicity/age/sex population subgroup who are considered up to date as of the week ending date divided by the estimated number of people in that subgroup. Population counts are obtained from the 2020 U.S. Decennial Census. Actual counts may exceed population estimates and lead to coverage estimates that are greater than 100%, especially in smaller demographic groupings with smaller populations. Additionally, the medical provider may report incorrect demographic information for the person receiving the vaccination, which may lead to over- or underestimation of vaccination coverage. All coverage percentages are capped at 99%.

    The Chicago Department of Public Health (CDPH) uses the most complete data available to estimate influenza vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Influenza vaccine administration is not required to be reported in Illinois, except for publicly funded vaccine (e.g., Vaccines for Children, Section 317). Individuals may receive vaccinations that are not recorded in I-CARE, such as those administered in another state, or those administered by a provider that does not submit data to I-CARE, causing underestimation of the number individuals who received an influenza vaccine for the current season.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to influenza, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=flu.

    Data Source: Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau 2020 Decennial Census

  19. Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-cases-and-deaths-by-county-archived
    Explore at:
    rdf, csv, xsl, jsonAvailable download formats
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: The cumulative case count for some counties (with small population) is higher than expected due to the inclusion of non-permanent residents in COVID-19 case counts.

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration. CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • Cases and deaths are based on date of report and not on the date of symptom onset. CDC calculates rates in this data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data were organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts were calculated as the week-to-week change in reported cumulative cases and deaths (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the week before.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues. CDC also worked with jurisdictions after the end of the public health emergency declaration to finalize county data.

    • Source: The weekly archived dataset is based on county-level aggregate count data
    • Confirmed/Probable Cases/Death breakdown: Cumulative cases and deaths for each county are included. Total reported cases include probable and confirmed cases.
    • Time Series Frequency: The weekly archived dataset contains weekly time series data (i.e., one record per week per county)

    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the daily archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implement these case classifications. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, counts of confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report

  20. 2023 American Community Survey: B28009C | Presence of a Computer and Type of...

    • data.census.gov
    Updated Feb 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2025). 2023 American Community Survey: B28009C | Presence of a Computer and Type of Internet Subscription in Household (American Indian and Alaska Native Alone) (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/all/tables?q=B28009C&g=160XX00US4829096
    Explore at:
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The category "Has a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer. The category "No computer" consists of those who said "No" to all of these types of computers..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at https://www.census.gov/library/working-papers/2017/acs/2017_Lewis_01.html or the user note regarding changes in the 2016 questions located at https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2017-03.html..The category "With a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types. The category "Without an Internet subscription" includes those who accessed the Internet without a subscription and also those with no Internet access at all..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient numbe...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
Organization logo

Census Data

Explore at:
Dataset updated
Mar 1, 2024
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

Search
Clear search
Close search
Google apps
Main menu