The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
How many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MultiSocial is a dataset (described in a paper) for multilingual (22 languages) machine-generated text detection benchmark in social-media domain (5 platforms). It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual large language models by using 3 iterations of paraphrasing. The dataset has been anonymized to minimize amount of sensitive data by hiding email addresses, usernames, and phone numbers.
If you use this dataset in any publication, project, tool or in any other form, please, cite the paper.
Due to data source (described below), the dataset may contain harmful, disinformation, or offensive content. Based on a multilingual toxicity detector, about 8% of the text samples are probably toxic (from 5% in WhatsApp to 10% in Twitter). Although we have used data sources of older date (lower probability to include machine-generated texts), the labeling (of human-written text) might not be 100% accurate. The anonymization procedure might not successfully hiden all the sensitive/personal content; thus, use the data cautiously (if feeling affected by such content, report the found issues in this regard to dpo[at]kinit.sk). The intended use if for non-commercial research purpose only.
The human-written part consists of a pseudo-randomly selected subset of social media posts from 6 publicly available datasets:
Telegram data originated in Pushshift Telegram, containing 317M messages (Baumgartner et al., 2020). It contains messages from 27k+ channels. The collection started with a set of right-wing extremist and cryptocurrency channels (about 300 in total) and was expanded based on occurrence of forwarded messages from other channels. In the end, it thus contains a wide variety of topics and societal movements reflecting the data collection time.
Twitter data originated in CLEF2022-CheckThat! Task 1, containing 34k tweets on COVID-19 and politics (Nakov et al., 2022, combined with Sentiment140, containing 1.6M tweets on various topics (Go et al., 2009).
Gab data originated in the dataset containing 22M posts from Gab social network. The authors of the dataset (Zannettou et al., 2018) found out that “Gab is predominantly used for the dissemination and discussion of news and world events, and that it attracts alt-right users, conspiracy theorists, and other trolls.” They also found out that hate speech is much more prevalent there compared to Twitter, but lower than 4chan's Politically Incorrect board.
Discord data originated in Discord-Data, containing 51M messages. This is a long-context, anonymized, clean, multi-turn and single-turn conversational dataset based on Discord data scraped from a large variety of servers, big and small. According to the dataset authors, it contains around 0.1% of potentially toxic comments (based on the applied heuristic/classifier).
WhatsApp data originated in whatsapp-public-groups, containing 300k messages (Garimella & Tyson, 2018). The public dataset contains the anonymised data, collected for around 5 months from around 178 groups. Original messages were made available to us on request to dataset authors for research purposes.
From these datasets, we have pseudo-randomly sampled up to 1300 texts (up to 300 for test split and the remaining up to 1000 for train split if available) for each of the selected 22 languages (using a combination of automated approaches to detect the language) and platform. This process resulted in 61,592 human-written texts, which were further filtered out based on occurrence of some characters or their length, resulting in about 58k human-written texts.
The machine-generated part contains texts generated by 7 LLMs (Aya-101, Gemini-1.0-pro, GPT-3.5-Turbo-0125, Mistral-7B-Instruct-v0.2, opt-iml-max-30b, v5-Eagle-7B-HF, vicuna-13b). All these models were self-hosted except for GPT and Gemini, where we used the publicly available APIs. We generated the texts using 3 paraphrases of the original human-written data and then preprocessed the generated texts (filtered out cases when the generation obviously failed).
The dataset has the following fields:
'text' - a text sample,
'label' - 0 for human-written text, 1 for machine-generated text,
'multi_label' - a string representing a large language model that generated the text or the string "human" representing a human-written text,
'split' - a string identifying train or test split of the dataset for the purpose of training and evaluation respectively,
'language' - the ISO 639-1 language code identifying the detected language of the given text,
'length' - word count of the given text,
'source' - a string identifying the source dataset / platform of the given text,
'potential_noise' - 0 for text without identified noise, 1 for text with potential noise.
ToDo Statistics (under construction)
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Researcher(s): Alexandros Mokas, Eleni Kamateri
Supervisor: Ioannis Tsampoulatidis
This repository contains 3 social media datasets:
2 Post-processing datasets: These datasets contain post-processing data extracted from the analysis of social media posts collected for two different use cases during the first two years of the Deepcube project. More specifically, these include:
1 Annotated dataset: An additional anottated dataset was created that contains post-processing data along with annotations of Twitter posts collected for UC2 for the years 2010-2022. More specifically, it includes:
For every social media post retrieved from Twitter and Instagram, a preprocessing step was performed. This involved a three-step analysis of each post using the appropriate web service. First, the location of the post was automatically extracted from the text using a location extraction service. Second, the images included in the post were analyzed using a concept extraction service, which identified and provided the top ten concepts that best described the image. These concepts included items such as "person," "building," "drought," "sun," and so on. Finally, the sentiment expressed in the post's text was determined by using a sentiment analysis service. The sentiment was classified as either positive, negative, or neutral.
After the social media posts were preprocessed, they were visualized using the Social Media Web Application. This intuitive, user-friendly online application was designed for both expert and non-expert users and offers a web-based user interface for filtering and visualizing the collected social media data. The application provides various filtering options, an interactive map, a timeline, and a collection of graphs to help users analyze the data. Moreover, this application provides users with the option to download aggregated data for specific periods by applying filters and clicking the "Download Posts" button. This feature allows users to easily extract and analyze social media data outside of the web application, providing greater flexibility and control over data analysis.
The dataset is provided by INFALIA.
INFALIA, being a spin-off of the CERTH institute and a partner of a research EU project, releases this dataset containing Tweets IDs and post pre-processing data for the sole purpose of enabling the validation of the research conducted within the DeepCube. Moreover, Twitter Content provided in this dataset to third parties remains subject to the Twitter Policy, and those third parties must agree to the Twitter Terms of Service, Privacy Policy, Developer Agreement, and Developer Policy (https://developer.twitter.com/en/developer-terms) before receiving this download.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.
We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.
more info : https://snap.stanford.edu/data/com-Youtube.html
Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.
The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
How popular is Instagram?
Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
Who uses Instagram?
Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
Celebrity influencers on Instagram
Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
The Reddit Subreddit Dataset by Dataplex offers a comprehensive and detailed view of Reddit’s vast ecosystem, now enhanced with appended AI-generated columns that provide additional insights and categorization. This dataset includes data from over 2.1 million subreddits, making it an invaluable resource for a wide range of analytical applications, from social media analysis to market research.
Dataset Overview:
This dataset includes detailed information on subreddit activities, user interactions, post frequency, comment data, and more. The inclusion of AI-generated columns adds an extra layer of analysis, offering sentiment analysis, topic categorization, and predictive insights that help users better understand the dynamics of each subreddit.
2.1 Million Subreddits with Enhanced AI Insights: The dataset covers over 2.1 million subreddits and now includes AI-enhanced columns that provide: - Sentiment Analysis: AI-driven sentiment scores for posts and comments, allowing users to gauge community mood and reactions. - Topic Categorization: Automated categorization of subreddit content into relevant topics, making it easier to filter and analyze specific types of discussions. - Predictive Insights: AI models that predict trends, content virality, and user engagement, helping users anticipate future developments within subreddits.
Sourced Directly from Reddit:
All social media data in this dataset is sourced directly from Reddit, ensuring accuracy and authenticity. The dataset is updated regularly, reflecting the latest trends and user interactions on the platform. This ensures that users have access to the most current and relevant data for their analyses.
Key Features:
Use Cases:
Data Quality and Reliability:
The Reddit Subreddit Dataset emphasizes data quality and reliability. Each record is carefully compiled from Reddit’s vast database, ensuring that the information is both accurate and up-to-date. The AI-generated columns further enhance the dataset's value, providing automated insights that help users quickly identify key trends and sentiments.
Integration and Usability:
The dataset is provided in a format that is compatible with most data analysis tools and platforms, making it easy to integrate into existing workflows. Users can quickly import, analyze, and utilize the data for various applications, from market research to academic studies.
User-Friendly Structure and Metadata:
The data is organized for easy navigation and analysis, with metadata files included to help users identify relevant subreddits and data points. The AI-enhanced columns are clearly labeled and structured, allowing users to efficiently incorporate these insights into their analyses.
Ideal For:
This dataset is an essential resource for anyone looking to understand the intricacies of Reddit's vast ecosystem, offering the data and AI-enhanced insights needed to drive informed decisions and strategies across various fields. Whether you’re tracking emerging trends, analyzing user behavior, or conduc...
This dataset provides comprehensive social media profile links discovered through real-time web search. It includes profiles from major social networks like Facebook, TikTok, Instagram, Twitter, LinkedIn, Youtube, Pinterest, Github and more. The data is gathered through intelligent search algorithms and pattern matching. Users can leverage this dataset for social media research, influencer discovery, social presence analysis, and social media marketing. The API enables efficient discovery of social profiles across multiple platforms. The dataset is delivered in a JSON format via REST API.
How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Social Media Analytics market is experiencing robust growth, projected to reach $6.00 billion in 2025 and exhibiting a remarkable Compound Annual Growth Rate (CAGR) of 24% from 2019 to 2033. This expansion is fueled by several key drivers. The increasing reliance of businesses on social media for marketing, customer service, and brand building necessitates sophisticated analytics to understand audience engagement, sentiment, and campaign effectiveness. Further driving market growth is the proliferation of social media platforms themselves, generating ever-larger datasets demanding advanced analytical tools. The rise of artificial intelligence (AI) and machine learning (ML) within these tools enhances the speed and accuracy of insights, allowing businesses to react swiftly to emerging trends and opportunities. Competitive pressures also force companies to adopt these technologies to gain a decisive advantage in market understanding and responsiveness. While data privacy regulations present a restraint, the demand for actionable insights continues to outweigh these concerns, with sophisticated analytics tools incorporating privacy-preserving techniques. Segmentation within the market includes solutions catering to different business sizes and needs, from small and medium-sized enterprises (SMEs) to large multinational corporations. Major players like Sprinklr, Synthesio, BrandWatch, Oracle, NetBase Solutions, Meltwater, Talkwalker, Sprout Social, Digimind Social, and Brand24 are shaping the competitive landscape through continuous innovation and strategic acquisitions. The forecast period of 2025-2033 promises even more dynamic growth. As social media usage continues its upward trajectory and businesses become more sophisticated in their application of analytics, we can anticipate increased demand for more advanced features such as predictive analytics, real-time monitoring, and sentiment analysis across multiple languages. The integration of social media analytics with other data sources, such as CRM and website analytics, will further enhance its value, enabling a holistic view of customer behavior and business performance. We expect to see continued investment in research and development, leading to improvements in data visualization, reporting capabilities, and the development of niche solutions tailored to specific industries. The growing adoption of cloud-based solutions will also facilitate accessibility and scalability for businesses of all sizes. Recent developments include: In May 2022, TikTok expanded its Marketing Partners Program, introducing its inaugural group of Content Marketing Partners. The founding member is Brandwatch, and its social suite of the future, which would allow its customers to scale, manage, execute, and optimize the content on TikTok, all while staying within the Brandwatch platform. This officially badged partnership between Brandwatch and TikTok empowers Brandwatch clients to manage, understand, and respond to their community profiles on TikTok in a way that feels native to the world's hottest technology platform., In April 2022, Digimind collaborated with Facelift to give essential tools for effective social media growth. Facelift is a firm that provides social media management tools. This collaboration benefited both industries in monitoring their brand image and effectively managing all social networks.. Key drivers for this market are: Exponential Growth of Number of Social Media Users, Increased Emphasis on Target Marketing and Competitive Intelligence. Potential restraints include: Exponential Growth of Number of Social Media Users, Increased Emphasis on Target Marketing and Competitive Intelligence. Notable trends are: Increased Emphasis on Targeted Marketing and Competitive Intelligence.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset tracks influencer marketing campaigns across major social media platforms, providing a robust foundation for analyzing campaign effectiveness, engagement, reach, and sales outcomes. Each record represents a unique campaign and includes details such as the campaign’s platform (Instagram, YouTube, TikTok, Twitter), influencer category (e.g., Fashion, Tech, Fitness), campaign type (Product Launch, Brand Awareness, Giveaway, etc.), start and end dates, total user engagements, estimated reach, product sales, and campaign duration. The dataset structure supports diverse analyses, including ROI calculation, campaign benchmarking, and influencer performance comparison.
Columns:
- campaign_id
: Unique identifier for each campaign
- platform
: Social media platform where the campaign ran
- influencer_category
: Niche or industry focus of the influencer
- campaign_type
: Objective or style of the campaign
- start_date
, end_date
: Campaign time frame
- engagements
: Total user interactions (likes, comments, shares, etc.)
- estimated_reach
: Estimated number of unique users exposed to the campaign
- product_sales
: Number of products sold as a result of the campaign
- campaign_duration_days
: Duration of the campaign in days
import pandas as pd
df = pd.read_csv('influencer_marketing_roi_dataset.csv', parse_dates=['start_date', 'end_date'])
print(df.head())
print(df.info())
# Overview of campaign types and platforms
print(df['campaign_type'].value_counts())
print(df['platform'].value_counts())
# Summary statistics
print(df[['engagements', 'estimated_reach', 'product_sales']].describe())
# Average engagements and sales by platform
platform_stats = df.groupby('platform')[['engagements', 'product_sales']].mean()
print(platform_stats)
# Top influencer categories by product sales
top_categories = df.groupby('influencer_category')['product_sales'].sum().sort_values(ascending=False)
print(top_categories)
# Assume a fixed campaign cost for demonstration
df['campaign_cost'] = 500 + df['estimated_reach'] * 0.01 # Example formula
# Calculate ROI: (Revenue - Cost) / Cost
# Assume each product sold yields $40 revenue
df['revenue'] = df['product_sales'] * 40
df['roi'] = (df['revenue'] - df['campaign_cost']) / df['campaign_cost']
# View campaigns with highest ROI
top_roi = df.sort_values('roi', ascending=False).head(10)
print(top_roi[['campaign_id', 'platform', 'roi']])
import matplotlib.pyplot as plt
import seaborn as sns
# Engagements vs. Product Sales scatter plot
plt.figure(figsize=(8,6))
sns.scatterplot(data=df, x='engagements', y='product_sales', hue='platform', alpha=0.6)
plt.title('Engagements vs. Product Sales by Platform')
plt.xlabel('Engagements')
plt.ylabel('Product Sales')
plt.legend()
plt.show()
# Average ROI by Influencer Category
category_roi = df.groupby('influencer_category')['roi'].mean().sort_values()
category_roi.plot(kind='barh', color='teal')
plt.title('Average ROI by Influencer Category')
plt.xlabel('Average ROI')
plt.show()
# Campaigns over time
df['month'] = df['start_date'].dt.to_period('M')
monthly_sales = df.groupby('month')['product_sales'].sum()
monthly_sales.plot(figsize=(10,4), marker='o', title='Monthly Product Sales from Influencer Campaigns')
plt.ylabel('Product Sales')
plt.show()
In the fourth quarter of 2024, TikTok generated around 186 million downloads from users worldwide. Initially launched in China first by ByteDance as Douyin, the short-video format was popularized by TikTok and took over the global social media environment in 2020. In the first quarter of 2020, TikTok downloads peaked at over 313.5 million worldwide, up by 62.3 percent compared to the first quarter of 2019.
TikTok interactions: is there a magic formula for content success?
In 2024, TikTok registered an engagement rate of approximately 4.64 percent on video content hosted on its platform. During the same examined year, the social video app recorded over 1,100 interactions on average. These interactions were primarily composed of likes, while only recording less than 20 comments per piece of content on average in 2024.
The platform has been actively monitoring the issue of fake interactions, as it removed around 236 million fake likes during the first quarter of 2024. Though there is no secret formula to get the maximum of these metrics, recommended video length can possibly contribute to the success of content on TikTok.
It was recommended that tiny TikTok accounts with up to 500 followers post videos that are around 2.6 minutes long as of the first quarter of 2024. While, the ideal video duration for huge TikTok accounts with over 50,000 followers was 7.28 minutes. The average length of TikTok videos posted by the creators in 2024 was around 43 seconds.
What’s trending on TikTok Shop?
Since its launch in September 2023, TikTok Shop has become one of the most popular online shopping platforms, offering consumers a wide variety of products. In 2023, TikTok shops featuring beauty and personal care items sold over 370 million products worldwide.
TikTok shops featuring womenswear and underwear, as well as food and beverages, followed with 285 and 138 million products sold, respectively. Similarly, in the United States market, health and beauty products were the most-selling items,
accounting for 85 percent of sales made via the TikTok Shop feature during the first month of its launch. In 2023, Indonesia was the market with the largest number of TikTok Shops, hosting over 20 percent of all TikTok Shops. Thailand and Vietnam followed with 18.29 and 17.54 percent of the total shops listed on the famous short video platform, respectively.
This dataset contains simulated data for social media users' demographics, behaviors, and perceptions related to political content. It includes features such as age, gender, education level, occupation, social media usage frequency, exposure to political content, and perceptions of accuracy and relevance.
the features included in the "Social Media Political Content Analysis Dataset":
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is extracted through web scraping from Webtoon (https://www.webtoons.com/), a self-publishing platform for webcomics. The dataset includes the most popular comics per category, social media analytics (e.g., rating and followers) and top comments for each comic issue, including replies and social media reactions (like and dislikes). This dataset is been generated as part of the OU funded DA20 SRIF44 pilot project on Webcomics. The study uses this dataset for a genre and reception study of webcomics focused on gender and minorities.
Social media companies are starting to offer users the option to subscribe to their platforms in exchange for monthly fees. Until recently, social media has been predominantly free to use, with tech companies relying on advertising as their main revenue generator. However, advertising revenues have been dropping following the COVID-induced boom. As of July 2023, Meta Verified is the most costly of the subscription services, setting users back almost 15 U.S. dollars per month on iOS or Android. Twitter Blue costs between eight and 11 U.S. dollars per month and ensures users will receive the blue check mark, and have the ability to edit tweets and have NFT profile pictures. Snapchat+, drawing in four million users as of the second quarter of 2023, boasts a Story re-watch function, custom app icons, and a Snapchat+ badge.
YouTube, Instagram and Snapchat are the most popular online platforms among teens. Fully 95% of teens have access to a smartphone, and 45% say they are online 'almost constantly
this dataset has all you need to know about apps that are more popular among teens
Please cite the following paper when using this dataset: N. Thakur, “Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions,” Preprints, 2022, DOI: 10.20944/preprints202206.0383.v1 Abstract The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and use cases in assisted living, military, healthcare, firefighting, and industries. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, public opinion, reviews, and feedback related to exoskeletons, for which a dataset is necessary. The Internet of Everything era of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by mining relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics including but not limited to news, current events, politics, emerging technologies, family, relationships, and career opportunities, via tweets, while sharing their views, opinions, perspectives, and feedback towards the same. Therefore, this work presents a dataset of about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. Instructions: This dataset contains about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. The dataset contains only tweet identifiers (Tweet IDs) due to the terms and conditions of Twitter to re-distribute Twitter data only for research purposes. They need to be hydrated to be used. The process of retrieving a tweet's complete information (such as the text of the tweet, username, user ID, date and time, etc.) using its ID is known as the hydration of a tweet ID. The Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweets) or any similar application may be used for hydrating this dataset. Data Description This dataset consists of 7 .txt files. The following shows the number of Tweet IDs and the date range (of the associated tweets) in each of these files. Filename: Exoskeleton_TweetIDs_Set1.txt (Number of Tweet IDs – 22945, Date Range of Tweets - July 20, 2021 – May 21, 2022) Filename: Exoskeleton_TweetIDs_Set2.txt (Number of Tweet IDs – 19416, Date Range of Tweets - Dec 1, 2020 – July 19, 2021) Filename: Exoskeleton_TweetIDs_Set3.txt (Number of Tweet IDs – 16673, Date Range of Tweets - April 29, 2020 - Nov 30, 2020) Filename: Exoskeleton_TweetIDs_Set4.txt (Number of Tweet IDs – 16208, Date Range of Tweets - Oct 5, 2019 - Apr 28, 2020) Filename: Exoskeleton_TweetIDs_Set5.txt (Number of Tweet IDs – 17983, Date Range of Tweets - Feb 13, 2019 - Oct 4, 2019) Filename: Exoskeleton_TweetIDs_Set6.txt (Number of Tweet IDs – 34009, Date Range of Tweets - Nov 9, 2017 - Feb 12, 2019) Filename: Exoskeleton_TweetIDs_Set7.txt (Number of Tweet IDs – 11351, Date Range of Tweets - May 21, 2017 - Nov 8, 2017) Here, the last date for May is May 21 as it was the most recent date at the time of data collection. The dataset would be updated soon to incorporate more recent tweets.
Tiktok network graph with 5,638 nodes and 318,986 unique links, representing up to 790,599 weighted links between labels, using Gephi network analysis software. Source of: Peña-Fernández, Simón, Larrondo-Ureta, Ainara, & Morales-i-Gras, Jordi. (2022). Current affairs on TikTok. Virality and entertainment for digital natives. Profesional De La Información, 31(1), 1–12. https://doi.org/10.5281/zenodo.5962655 Abstract: Since its appearance in 2018, TikTok has become one of the most popular social media platforms among digital natives because of its algorithm-based engagement strategies, a policy of public accounts, and a simple, colorful, and intuitive content interface. As happened in the past with other platforms such as Facebook, Twitter, and Instagram, various media are currently seeking ways to adapt to TikTok and its particular characteristics to attract a younger audience less accustomed to the consumption of journalistic material. Against this background, the aim of this study is to identify the presence of the media and journalists on TikTok, measure the virality and engagement of the content they generate, describe the communities created around them, and identify the presence of journalistic use of these accounts. For this, 23,174 videos from 143 accounts belonging to media from 25 countries were analyzed. The results indicate that, in general, the presence and impact of the media in this social network are low and that most of their content is oriented towards the creation of user communities based on viral content and entertainment. However, albeit with a lesser presence, one can also identify accounts and messages that adapt their content to the specific characteristics of TikTok. Their virality and engagement figures illustrate that there is indeed a niche for current affairs on this social network.
The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).