Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Social Media has become a part of our day-to-day routine, keeping users from across the world well-connected through digital platforms. With each passing year, social media is evolving at a rapid speed. With each passing year, the number of social media users is increasing at an immersive speed. Reports also suggest the number of social media users will reach a milestone of 5.85 billion in 2027.
In 2024, 62.6% of the world’s population will access social media, which clearly indicates the dominance of social media platforms in today’s world. In this article, we will examine social media statistics for 2024, uncovering monthly active users, daily time spent by users, most downloaded social media apps, etc.
Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.
The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
How popular is Instagram?
Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
Who uses Instagram?
Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
Celebrity influencers on Instagram
Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
Context: This dataset offers insights into the usage patterns of social media apps for 1,000 users across seven popular platforms: Facebook, Instagram, Twitter, Snapchat, TikTok, LinkedIn, and Pinterest. It tracks various metrics such as daily time spent on the app, number of posts made, likes received, and new followers gained.
Dataset Features:
User_ID: Unique identifier for each user. App: The social media platform being used. Daily_Minutes_Spent: Total time a user spends on the app each day, ranging from 5 to 500 minutes. Posts_Per_Day: Number of posts a user creates per day, ranging from 0 to 20. Likes_Per_Day: Total number of likes a user receives on their posts each day, ranging from 0 to 200. Follows_Per_Day: The number of new followers a user gains daily, ranging from 0 to 50. Context & Use Cases: This dataset could be particularly useful for social media analysts, digital marketers, or researchers interested in understanding user engagement trends across different platforms. It provides insights into how much time users spend, how actively they post, and the level of engagement they receive (in terms of likes and followers).
Conclusion & Outcome: Analyzing this dataset could yield several outcomes:
Engagement Patterns: Identifying which platforms have higher engagement in terms of time spent or likes received. Active Users: Determining which users are the most active across various platforms based on the number of posts and followers gained. User Retention: Studying the correlation between time spent and follower growth, providing insight into user retention strategies for different platforms. Overall, the dataset allows for exploration of social media usage trends and helps drive decision-making for marketing strategies, content creation, and platform engagement.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset explores how daily digital habits — including social media usage, screen time, and notification exposure — relate to individual productivity, stress, and well-being.
The dataset contains 30,000 real-world-style records simulating behavioral patterns of people with various jobs, social habits, and lifestyle choices. The goal is to understand how different digital behaviors correlate with perceived and actual productivity.
✅ Designed for real-world ML workflows
Includes missing values, noise, and outliers — ideal for practicing data cleaning and preprocessing.
🔗 High correlation between target features
The perceived_productivity_score
and actual_productivity_score
are strongly correlated, making this dataset suitable for experiments in feature selection and multicollinearity.
🛠️ Feature Engineering playground
Use this dataset to practice feature scaling, encoding, binning, interaction terms, and more.
🧪 Perfect for EDA, regression & classification
You can model productivity, stress, or satisfaction based on behavior patterns and digital exposure.
Column Name | Description |
---|---|
age | Age of the individual (18–65 years) |
gender | Gender identity: Male, Female, or Other |
job_type | Employment sector or status (IT, Education, Student, etc.) |
daily_social_media_time | Average daily time spent on social media (hours) |
social_platform_preference | Most-used social platform (Instagram, TikTok, Telegram, etc.) |
number_of_notifications | Number of mobile/social notifications per day |
work_hours_per_day | Average hours worked each day |
perceived_productivity_score | Self-rated productivity score (scale: 0–10) |
actual_productivity_score | Simulated ground-truth productivity score (scale: 0–10) |
stress_level | Current stress level (scale: 1–10) |
sleep_hours | Average hours of sleep per night |
screen_time_before_sleep | Time spent on screens before sleeping (hours) |
breaks_during_work | Number of breaks taken during work hours |
uses_focus_apps | Whether the user uses digital focus apps (True/False) |
has_digital_wellbeing_enabled | Whether Digital Wellbeing is activated (True/False) |
coffee_consumption_per_day | Number of coffee cups consumed per day |
days_feeling_burnout_per_month | Number of burnout days reported per month |
weekly_offline_hours | Total hours spent offline each week (excluding sleep) |
job_satisfaction_score | Satisfaction with job/life responsibilities (scale: 0–10) |
👉 Sample notebook coming soon with data cleaning, visualization, and productivity prediction!
How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
About Dataset This dataset captures the pulse of viral social media trends across Facebook, Instagram and Twitter. It provides insights into the most popular hashtags, content types, and user engagement levels, offering a comprehensive view of how trends unfold across platforms. With regional data and influencer-driven content, this dataset is perfect for:
Trend analysis 🔍 Sentiment modeling 💭 Understanding influencer marketing 📈 Dive in to explore what makes content go viral, the behaviors that drive engagement, and how trends evolve on a global scale! 🌍
This dataset provides comprehensive social media profile links discovered through real-time web search. It includes profiles from major social networks like Facebook, TikTok, Instagram, Twitter, LinkedIn, Youtube, Pinterest, Github and more. The data is gathered through intelligent search algorithms and pattern matching. Users can leverage this dataset for social media research, influencer discovery, social presence analysis, and social media marketing. The API enables efficient discovery of social profiles across multiple platforms. The dataset is delivered in a JSON format via REST API.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook and YouTube are still the most used social media platforms today.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This study focuses on a unique social media user migration phenomenon: a large number of U.S. users shifted to another Chinese social platform, Xiaohongshu, against the backdrop of the U.S. government's push to ban TikTok. By constructing a multidimensional analysis framework, this study systematically analyzes 5,919 user reviews collected during January 2025. The study uses MediaCrawler crawler technology to collect data, TextBlob for sentiment analysis, and combines geographic distribution, time trend and text theme analysis methods to deeply explore this unique user migration pattern. The study finds that despite policy pressure, users have a neutral to positive attitude towards platform migration, with 59.6% of neutral comments and 32.7% of positive comments. The analysis of geographic distribution shows that 88.7% of users in the United States have a significant “digital backlash”. Temporal trend analysis reveals the “bimodal” character of user discussions, reflecting the dynamic change of policy impact and users' continuous attention. Text analysis further shows that users are more concerned about the functional experience of the platform than political factors, reflecting rationality beyond geopolitics. These findings provide new perspectives for understanding social media user behavior in the context of globalization, and have important implications for social media policymaking and platform operation. The study suggests that in the digital era, administrative means have limited influence on users' platform choices, and users' social needs and behavioral choices often transcend geopolitical constraints.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The report provides a snapshot of the social media usage trends amongst online Canadian adults based on an online survey of 1500 participants. Canada continues to be one of the most connected countries in the world. An overwhelming majority of online Canadian adults (94%) have an account on at least one social media platform. However, the 2022 survey results show that the COVID-19 pandemic has ushered in some changes in how and where Canadians are spending their time on social media. Dominant platforms such as Facebook, messaging apps and YouTube are still on top but are losing ground to newer platforms such as TikTok and more niche platforms such as Reddit and Twitch.
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MultiSocial is a dataset (described in a paper) for multilingual (22 languages) machine-generated text detection benchmark in social-media domain (5 platforms). It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual large language models by using 3 iterations of paraphrasing. The dataset has been anonymized to minimize amount of sensitive data by hiding email addresses, usernames, and phone numbers.
If you use this dataset in any publication, project, tool or in any other form, please, cite the a paper.
Due to data source (described below), the dataset may contain harmful, disinformation, or offensive content. Based on a multilingual toxicity detector, about 8% of the text samples are probably toxic (from 5% in WhatsApp to 10% in Twitter). Although we have used data sources of older date (lower probability to include machine-generated texts), the labeling (of human-written text) might not be 100% accurate. The anonymization procedure might not successfully hiden all the sensitive/personal content; thus, use the data cautiously (if feeling affected by such content, report the found issues in this regard to dpo[at]kinit.sk). The intended use if for non-commercial research purpose only.
The human-written part consists of a pseudo-randomly selected subset of social media posts from 6 publicly available datasets:
Telegram data originated in Pushshift Telegram, containing 317M messages (Baumgartner et al., 2020). It contains messages from 27k+ channels. The collection started with a set of right-wing extremist and cryptocurrency channels (about 300 in total) and was expanded based on occurrence of forwarded messages from other channels. In the end, it thus contains a wide variety of topics and societal movements reflecting the data collection time.
Twitter data originated in CLEF2022-CheckThat! Task 1, containing 34k tweets on COVID-19 and politics (Nakov et al., 2022, combined with Sentiment140, containing 1.6M tweets on various topics (Go et al., 2009).
Gab data originated in the dataset containing 22M posts from Gab social network. The authors of the dataset (Zannettou et al., 2018) found out that “Gab is predominantly used for the dissemination and discussion of news and world events, and that it attracts alt-right users, conspiracy theorists, and other trolls.” They also found out that hate speech is much more prevalent there compared to Twitter, but lower than 4chan's Politically Incorrect board.
Discord data originated in Discord-Data, containing 51M messages. This is a long-context, anonymized, clean, multi-turn and single-turn conversational dataset based on Discord data scraped from a large variety of servers, big and small. According to the dataset authors, it contains around 0.1% of potentially toxic comments (based on the applied heuristic/classifier).
WhatsApp data originated in whatsapp-public-groups, containing 300k messages (Garimella & Tyson, 2018). The public dataset contains the anonymised data, collected for around 5 months from around 178 groups. Original messages were made available to us on request to dataset authors for research purposes.
From these datasets, we have pseudo-randomly sampled up to 1300 texts (up to 300 for test split and the remaining up to 1000 for train split if available) for each of the selected 22 languages (using a combination of automated approaches to detect the language) and platform. This process resulted in 61,592 human-written texts, which were further filtered out based on occurrence of some characters or their length, resulting in about 58k human-written texts.
The machine-generated part contains texts generated by 7 LLMs (Aya-101, Gemini-1.0-pro, GPT-3.5-Turbo-0125, Mistral-7B-Instruct-v0.2, opt-iml-max-30b, v5-Eagle-7B-HF, vicuna-13b). All these models were self-hosted except for GPT and Gemini, where we used the publicly available APIs. We generated the texts using 3 paraphrases of the original human-written data and then preprocessed the generated texts (filtered out cases when the generation obviously failed).
The dataset has the following fields:
'text' - a text sample,
'label' - 0 for human-written text, 1 for machine-generated text,
'multi_label' - a string representing a large language model that generated the text or the string "human" representing a human-written text,
'split' - a string identifying train or test split of the dataset for the purpose of training and evaluation respectively,
'language' - the ISO 639-1 language code identifying the detected language of the given text,
'length' - word count of the given text,
'source' - a string identifying the source dataset / platform of the given text,
'potential_noise' - 0 for text without identified noise, 1 for text with potential noise.
ToDo Statistics (under construction)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The results might surprise you when looking at internet users that are active on social media in each country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average person has 8-9 social media accounts. This has doubled since 2013, when the average person just had 4-5 accounts.
The Reddit Subreddit Dataset by Dataplex offers a comprehensive and detailed view of Reddit’s vast ecosystem, now enhanced with appended AI-generated columns that provide additional insights and categorization. This dataset includes data from over 2.1 million subreddits, making it an invaluable resource for a wide range of analytical applications, from social media analysis to market research.
Dataset Overview:
This dataset includes detailed information on subreddit activities, user interactions, post frequency, comment data, and more. The inclusion of AI-generated columns adds an extra layer of analysis, offering sentiment analysis, topic categorization, and predictive insights that help users better understand the dynamics of each subreddit.
2.1 Million Subreddits with Enhanced AI Insights: The dataset covers over 2.1 million subreddits and now includes AI-enhanced columns that provide: - Sentiment Analysis: AI-driven sentiment scores for posts and comments, allowing users to gauge community mood and reactions. - Topic Categorization: Automated categorization of subreddit content into relevant topics, making it easier to filter and analyze specific types of discussions. - Predictive Insights: AI models that predict trends, content virality, and user engagement, helping users anticipate future developments within subreddits.
Sourced Directly from Reddit:
All social media data in this dataset is sourced directly from Reddit, ensuring accuracy and authenticity. The dataset is updated regularly, reflecting the latest trends and user interactions on the platform. This ensures that users have access to the most current and relevant data for their analyses.
Key Features:
Use Cases:
Data Quality and Reliability:
The Reddit Subreddit Dataset emphasizes data quality and reliability. Each record is carefully compiled from Reddit’s vast database, ensuring that the information is both accurate and up-to-date. The AI-generated columns further enhance the dataset's value, providing automated insights that help users quickly identify key trends and sentiments.
Integration and Usability:
The dataset is provided in a format that is compatible with most data analysis tools and platforms, making it easy to integrate into existing workflows. Users can quickly import, analyze, and utilize the data for various applications, from market research to academic studies.
User-Friendly Structure and Metadata:
The data is organized for easy navigation and analysis, with metadata files included to help users identify relevant subreddits and data points. The AI-enhanced columns are clearly labeled and structured, allowing users to efficiently incorporate these insights into their analyses.
Ideal For:
This dataset is an essential resource for anyone looking to understand the intricacies of Reddit's vast ecosystem, offering the data and AI-enhanced insights needed to drive informed decisions and strategies across various fields. Whether you’re tracking emerging trends, analyzing user behavior, or conduc...
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset captures insights from a survey on social media usage across diverse age groups and genders. It includes data on the most used platforms, daily screen time, reasons for usage, preferred content types, and how social media influences buying decisions. Additionally, it reflects users' concerns about privacy and their willingness to reduce usage. The dataset is useful for analyzing digital behavior, content preferences, and the social impact of online platforms. It can support research in marketing, psychology, and digital well-being, offering a snapshot of how people interact with and perceive social media in their daily lives.
Emotion recognition is a higher approach or special case of sentiment analysis. In this task, the result is not produced in terms of either polarity: positive or negative or in the form of rating (from 1 to 5) but of a more detailed level of sentiment analysis in which the result are depicted in more expressions like sadness, enjoyment, anger, disgust, fear and surprise. Emotion recognition plays a critical role in measuring brand value of a product by recognizing specific emotions of customers’ comments. In this study, we have achieved two targets. First and foremost, we built a standard Vietnamese Social Media Emotion Corpus (UIT-VSMEC) with about 6,927 human-annotated sentences with six emotion labels, contributing to emotion recognition research in Vietnamese which is a low-resource language in Natural Language Processing (NLP). Secondly, we assessed and measured machine learning and deep neural network models on our UIT-VSMEC. As a result, Convolutional Neural Network (CNN) model achieved the highest performance with 57.61% of F1-score.
Paper: Vong Ho, Duong Nguyen, Danh Nguyen, Linh Pham, Kiet Nguyen and Ngan Nguyen, Emotion Recognition for Vietnamese Social Media Text, 2019 16th International Conference of the Pacific Association for Computational Linguistics (PACLING 2019), October 11-13, 2019, Ha Noi, Vietnam. Link.
https://sites.google.com/uit.edu.vn/uit-nlp/datasets-projects
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tiktok network graph with 5,638 nodes and 318,986 unique links, representing up to 790,599 weighted links between labels, using Gephi network analysis software.
Source of:
Peña-Fernández, Simón, Larrondo-Ureta, Ainara, & Morales-i-Gras, Jordi. (2022). Current affairs on TikTok. Virality and entertainment for digital natives. Profesional De La Información, 31(1), 1–12. https://doi.org/10.5281/zenodo.5962655
Abstract:
Since its appearance in 2018, TikTok has become one of the most popular social media platforms among digital natives because of its algorithm-based engagement strategies, a policy of public accounts, and a simple, colorful, and intuitive content interface. As happened in the past with other platforms such as Facebook, Twitter, and Instagram, various media are currently seeking ways to adapt to TikTok and its particular characteristics to attract a younger audience less accustomed to the consumption of journalistic material. Against this background, the aim of this study is to identify the presence of the media and journalists on TikTok, measure the virality and engagement of the content they generate, describe the communities created around them, and identify the presence of journalistic use of these accounts. For this, 23,174 videos from 143 accounts belonging to media from 25 countries were analyzed. The results indicate that, in general, the presence and impact of the media in this social network are low and that most of their content is oriented towards the creation of user communities based on viral content and entertainment. However, albeit with a lesser presence, one can also identify accounts and messages that adapt their content to the specific characteristics of TikTok. Their virality and engagement figures illustrate that there is indeed a niche for current affairs on this social network.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Social Media has become a part of our day-to-day routine, keeping users from across the world well-connected through digital platforms. With each passing year, social media is evolving at a rapid speed. With each passing year, the number of social media users is increasing at an immersive speed. Reports also suggest the number of social media users will reach a milestone of 5.85 billion in 2027.
In 2024, 62.6% of the world’s population will access social media, which clearly indicates the dominance of social media platforms in today’s world. In this article, we will examine social media statistics for 2024, uncovering monthly active users, daily time spent by users, most downloaded social media apps, etc.