7 datasets found
  1. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/njmz-dpbc
    Explore at:
    application/rdfxml, csv, application/rssxml, xml, tsv, jsonAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  2. Claims Reimbursement to Health Care Providers and Facilities for Testing,...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    Updated Mar 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claims Reimbursement to Health Care Providers and Facilities for Testing, Treatment, and Vaccine Administration of the Uninsured [Dataset]. https://data.cdc.gov/Administrative/Claims-Reimbursement-to-Health-Care-Providers-and-/rksx-33p3
    Explore at:
    application/rssxml, csv, xml, application/rdfxml, tsv, application/geo+json, kmz, kmlAvailable download formats
    Dataset updated
    Mar 3, 2022
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    HHS ASPA
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    The COVID-19 Claims Reimbursement to Health Care Providers and Facilities for Testing, Treatment, and Vaccine Administration for the Uninsured Program provides reimbursements on a rolling basis directly to eligible health care entities for claims that are attributed to the testing, treatment, and or vaccine administration of COVID-19 for uninsured individuals. The program funding information is as follow:

    TESTING The American Rescue Plan Act (ARP) which provided $4.8 billion to reimburse providers for testing the uninsured; the Families First Coronavirus Response Act (FFCRA) Relief Fund, which includes funds received from the Public Health and Social Services Emergency Fund, as appropriated in the FFCRCA (P.L. 116-127) and the Paycheck Protection Program and Health Care Enhancement Act (P.L. 116-139) (PPPHCEA), which each appropriated $1 billion to reimburse health care entities for conducting COVID-19 testing for the uninsured.

    TREATMENT & VACCINATION The Provider Relief Fund, which includes funds received from the Public Health and Social Services Emergency Fund, as appropriated in the Coronavirus Aid, Relief, and Economic Security (CARES) Act (P.L. 116-136), provided $100 billion in relief funds. The PPPHCEA appropriated an additional $75 billion in relief funds and the Coronavirus Response and Relief Supplemental Appropriations (CRRSA) Act (P.L. 116-260) appropriated another $3 billion. Within the Provider Relief Fund, a portion of the funding from these sources will be used to support healthcare-related expenses attributable to the treatment of uninsured individuals with COVID-19 and vaccination of uninsured individuals. To learn more about the program, visit: https://www.hrsa.gov/CovidUninsuredClaim

    This dataset represents the list of health care entities who have agreed to the Terms and Conditions and received claims reimbursement for COVID-19 testing of uninsured individuals, vaccine administration and treatment for uninsured individuals with a COVID-19 diagnosis.

    For Provider Relief Fund Data - https://data.cdc.gov/Administrative/HHS-Provider-Relief-Fund/kh8y-3es6

  3. ACS Health Insurance Coverage Variables - Centroids

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +5more
    Updated Dec 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Health Insurance Coverage Variables - Centroids [Dataset]. https://coronavirus-resources.esri.com/maps/7c69956008bb4019bbbe67ed9fb05dbb
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  4. Big Cities Demographic Indicators

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). Big Cities Demographic Indicators [Dataset]. https://www.johnsnowlabs.com/marketplace/big-cities-demographic-indicators/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    2010 - 2015
    Area covered
    United States
    Description

    This dataset contains estimates for demographic indicators shared by the Big Cities Health Coalition members represented by the largest metropolitan health departments in United States. The estimated values of demographic indicators cover the 2010-2015 period and are described by location, sex and race/ethnicity.

  5. Annual auto insurance premiums in the U.S. 2021-2023, by state

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual auto insurance premiums in the U.S. 2021-2023, by state [Dataset]. https://www.statista.com/statistics/675367/annual-auto-insurance-premiums-usa-by-state/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Michigan had the most expensive car insurance premiums at ***** U.S. dollars for minimum coverage in 2023, though the premiums in many states fell in that year. The annual premium in Florida also fell by almost ***** U.S. dollars in 2023. This trend occurred in many high premium states. Why it varies state by state The huge variance in premiums between states is due to the difference in state laws, the percentage of uninsured drivers in the state, the frequency of natural disasters and claim rates. For instance, Michigan has a no-fault car insurance system, which means that claims are more common. This drives up the cost of insurance for all drivers because insurers need to pay out more money in claims. Male drivers also pay more There is also a difference between premiums among different age groups. In 2023, 20-year-old male drivers paid roughly ** U.S. dollars more per month than 20-year-old female drivers did. This is due to the higher incidence of accidents in among young male drivers. This means that young drivers in states which already have higher premiums must pay a lot for car insurance.

  6. Where are the Uninsured?

    • data.amerigeoss.org
    esri rest, html
    Updated Jul 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). Where are the Uninsured? [Dataset]. https://data.amerigeoss.org/sk/dataset/where-are-the-uninsured
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Jul 22, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    Local, state, tribal, and federal agencies use health insurance coverage data to plan government programs, determine eligibility criteria, and encourage eligible people to participate in health insurance programs. This map shows where those with no health insurance live. Map opens in Houston, TX. Use the bookmarks or search to see other cities. Zoom out to see map render data for counties and states.


    Size of symbol depicts the count of those who are uninsured, color depicts the percent of those who are uninsured. Pop-up displays percentage by age group.

    This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  7. Clinical Database to Support Comparative Effectiveness Studies of Complex...

    • search.gesis.org
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Blaum, Caroline, Clinical Database to Support Comparative Effectiveness Studies of Complex Patients, 2005-2010 [United States] - Version 1 [Dataset]. http://doi.org/10.3886/ICPSR34644.v1
    Explore at:
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    GESIS search
    Authors
    Blaum, Caroline
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450728https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450728

    Area covered
    United States
    Description

    Abstract (en): Overview: The goal of the project was to develop a unique database linking chronic disease clinical data from an electronic medical record (EMR) of a large academic healthcare system to multi-payer claims data. The longitudinal relational database can be used to study clinical effectiveness of many diagnostic and treatment interventions. The population of patients used consisted of those patients who were attributed to the University of Michigan Health System (UMHS) as continuing care patients, who are also in adjudicated and validated chronic disease registries. Data Access: These data are not available from ICPSR. The data are restricted to use by the principal investigator and cannot be shared. This project concerned AHRQ priority populations, including low income and uninsured patients, older adult patients, and patients with diabetes. The population of patients used consisted of those patients who were attributed to the UMHS as continuing care patients, who were also in adjudicated and validated chronic disease registries. These registries organize EMR diagnostic and management information for patients with physician adjudicated chronic disease diagnoses. Complete claims are available for most of the relevant patient population. Funding insitution(s): United States Department of Health and Human Services. Agency for Healthcare Research and Quality (R24 HS019459).

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/njmz-dpbc
Organization logo

Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED

Explore at:
application/rdfxml, csv, application/rssxml, xml, tsv, jsonAvailable download formats
Dataset updated
Jun 8, 2023
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Authors
CDC COVID-19 Response
Area covered
United States
Description

Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

  • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
  • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
  • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
  • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
  • County level data were aggregated to obtain state- and territory- specific totals.
  • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
  • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

1 Large Central Metro
2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

Age 65 - “Age65”

1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

Non-Hispanic, Asian - “NHAA”

1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

Non-Hispanic, American Indian/Alaskan Native - “NHIA”

1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

Non-Hispanic, Black - “NHBA”

1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

Hispanic - “HISP”

1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

Population in Poverty - “Pov”

1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

Population Uninsured- “Unins”

1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

Average Household Size - “HH”

1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

Search
Clear search
Close search
Google apps
Main menu