How Couples Meet and Stay Together (HCMST) is a study of how Americans meet their spouses and romantic partners.
The study will provide answers to the following research questions:
Universe:
The universe for the HCMST survey is English literate adults in the U.S.
**Unit of Analysis: **
Individual
**Type of data collection: **
Survey Data
**Time of data collection: **
Wave I, the main survey, was fielded between February 21 and April 2, 2009. Wave 2 was fielded March 12, 2010 to June 8, 2010. Wave 3 was fielded March 22, 2011 to August 29, 2011. Wave 4 was fielded between March and November of 2013. Wave 5 was fielded between November, 2014 and March, 2015. Dates for the background demographic surveys are described in the User's Guide, under documentation below.
Geographic coverage:
United States of America
Smallest geographic unit:
US region
**Sample description: **
The survey was carried out by survey firm Knowledge Networks (now called GfK). The survey respondents were recruited from an ongoing panel. Panelists are recruited via random digit dial phone survey. Survey questions were mostly answered online; some follow-up surveys were conducted by phone. Panelists who did not have internet access at home were given an internet access device (WebTV). For further information about how the Knowledge Networks hybrid phone-internet survey compares to other survey methodology, see attached documentation.
The dataset contains variables that are derived from several sources. There are variables from the Main Survey Instrument, there are variables generated from the investigators which were created after the Main Survey, and there are demographic background variables from Knowledge Networks which pre-date the Main Survey. Dates for main survey and for the prior background surveys are included in the dataset for each respondent. The source for each variable is identified in the codebook, and in notes appended within the dataset itself (notes may only be available for the Stata version of the dataset).
Respondents who had no spouse or main romantic partner were dropped from the Main Survey. Unpartnered respondents remain in the dataset, and demographic background variables are available for them.
**Sample response rate: **
Response to the main survey in 2009 from subjects, all of whom were already in the Knowledge Networks panel, was 71%. If we include the the prior initial Random Digit Dialing phone contact and agreement to join the Knowledge Networks panel (participation rate 32.6%), and the respondents’ completion of the initial demographic survey (56.8% completion), the composite overall response rate is a much lower .326*.568*.71= 13%. For further information on the calculation of response rates, and relevant citations, see the Note on Response Rates in the documentation. Response rates for the subsequent waves of the HCMST survey are simpler, using the denominator of people who completed wave 1 and who were eligible for follow-up. Response to wave 2 was 84.5%. Response rate to wave 3 was 72.9%. Response rate to wave 4 was 60.0%. Response rate to wave 5 was 46%. Response to wave 6 was 91.3%. Wave 6 was Internet only, so people who had left the GfK KnowledgePanel were not contacted.
**Weights: **
See "Notes on the Weights" in the Documentation section.
When you use the data, you agree to the following conditions:
Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood
Not seeing a result you expected?
Learn how you can add new datasets to our index.
How Couples Meet and Stay Together (HCMST) is a study of how Americans meet their spouses and romantic partners.
The study will provide answers to the following research questions:
Universe:
The universe for the HCMST survey is English literate adults in the U.S.
**Unit of Analysis: **
Individual
**Type of data collection: **
Survey Data
**Time of data collection: **
Wave I, the main survey, was fielded between February 21 and April 2, 2009. Wave 2 was fielded March 12, 2010 to June 8, 2010. Wave 3 was fielded March 22, 2011 to August 29, 2011. Wave 4 was fielded between March and November of 2013. Wave 5 was fielded between November, 2014 and March, 2015. Dates for the background demographic surveys are described in the User's Guide, under documentation below.
Geographic coverage:
United States of America
Smallest geographic unit:
US region
**Sample description: **
The survey was carried out by survey firm Knowledge Networks (now called GfK). The survey respondents were recruited from an ongoing panel. Panelists are recruited via random digit dial phone survey. Survey questions were mostly answered online; some follow-up surveys were conducted by phone. Panelists who did not have internet access at home were given an internet access device (WebTV). For further information about how the Knowledge Networks hybrid phone-internet survey compares to other survey methodology, see attached documentation.
The dataset contains variables that are derived from several sources. There are variables from the Main Survey Instrument, there are variables generated from the investigators which were created after the Main Survey, and there are demographic background variables from Knowledge Networks which pre-date the Main Survey. Dates for main survey and for the prior background surveys are included in the dataset for each respondent. The source for each variable is identified in the codebook, and in notes appended within the dataset itself (notes may only be available for the Stata version of the dataset).
Respondents who had no spouse or main romantic partner were dropped from the Main Survey. Unpartnered respondents remain in the dataset, and demographic background variables are available for them.
**Sample response rate: **
Response to the main survey in 2009 from subjects, all of whom were already in the Knowledge Networks panel, was 71%. If we include the the prior initial Random Digit Dialing phone contact and agreement to join the Knowledge Networks panel (participation rate 32.6%), and the respondents’ completion of the initial demographic survey (56.8% completion), the composite overall response rate is a much lower .326*.568*.71= 13%. For further information on the calculation of response rates, and relevant citations, see the Note on Response Rates in the documentation. Response rates for the subsequent waves of the HCMST survey are simpler, using the denominator of people who completed wave 1 and who were eligible for follow-up. Response to wave 2 was 84.5%. Response rate to wave 3 was 72.9%. Response rate to wave 4 was 60.0%. Response rate to wave 5 was 46%. Response to wave 6 was 91.3%. Wave 6 was Internet only, so people who had left the GfK KnowledgePanel were not contacted.
**Weights: **
See "Notes on the Weights" in the Documentation section.
When you use the data, you agree to the following conditions: