48 datasets found
  1. N

    United States Age Group Population Dataset: A Complete Breakdown of United...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/454c7ad4-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 30 to 34 years years with a population of 23.06 million (6.94%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.34 million (1.91%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  2. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  3. United States International Census

    • kaggle.com
    zip
    Updated Aug 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2019). United States International Census [Dataset]. https://www.kaggle.com/census/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Aug 30, 2019
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Context

    The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050.

    Content

    The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_international

    https://cloud.google.com/bigquery/public-data/international-census

    Dataset Source: www.census.gov

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source -http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by Steve Richey from Unsplash.

    Inspiration

    What countries have the longest life expectancy?

    Which countries have the largest proportion of their population under 25?

    Which countries are seeing the largest net migration?

  4. International Census Data

    • console.cloud.google.com
    Updated Nov 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:United%20States%20Census%20Bureau&hl=nb&inv=1&invt=Ab1OTg (2019). International Census Data [Dataset]. https://console.cloud.google.com/marketplace/product/united-states-census-bureau/international-census-data?hl=nb
    Explore at:
    Dataset updated
    Nov 19, 2019
    Dataset provided by
    Googlehttp://google.com/
    Description

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates. Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  5. f

    Population Estimates by Census Tract, New York State, by Age and Sex,...

    • figshare.com
    txt
    Updated Jun 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francis P. Boscoe (2019). Population Estimates by Census Tract, New York State, by Age and Sex, 1990-2016. [Dataset]. http://doi.org/10.6084/m9.figshare.6813029.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 21, 2019
    Dataset provided by
    figshare
    Authors
    Francis P. Boscoe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    This file contains population estimates by age and sex and single year for census tracts in New York State, from 1990-2016.Iterative proportional fitting was used to develop populations that are consistent with official Census Bureau tract-level populations from 1990, 2000, and 2010 and single-year county-level population estimates published by the SEER program of the National Cancer Institute (https://seer.cancer.gov/popdata/). The Longitudinal Tract Database (LTDB) (https://s4.ad.brown.edu/projects/diversity/researcher/bridging.htm) was used to report populations using 2010 census tract boundaries.In effect, the approach assumes that population growth or reduction at the tract level mirrors what is happening at the county level. This is an improvement over linear or geometric interpolation between census years, but is still far from perfect. Census tracts can undergo rapid year-to-year population change, such as when new housing is constructed or, less frequently, demolished. An extreme example is census tract 1.04 in Westchester County, New York, which had a population of 0 in all 3 census years, as it was located entirely within an industrial area. Since 2010, multiple large high-rise condominiums have been constructed here, so that the population in 2018 is probably now in the thousands, though any estimation or projection method tied to the 2010 census will still count 0 people here. It is conceivable that address files from the United States Postal Service or other sources could be used to capture these kinds of changes; I am unaware of any attempts to do this.The file contains data for 4893 census tracts. It has been restricted to census tracts with nonzero populations in at least one of the census years. There are other census tracts consisting entirely of water, parkland, or non-residential areas as in the example above, which have been omitted.These data are used for the calculation of small-area cancer rates in New York State.

  6. N

    State Line, MS Age Group Population Dataset: A Complete Breakdown of State...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). State Line, MS Age Group Population Dataset: A Complete Breakdown of State Line Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4548c3f1-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mississippi, State Line
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the State Line population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for State Line. The dataset can be utilized to understand the population distribution of State Line by age. For example, using this dataset, we can identify the largest age group in State Line.

    Key observations

    The largest age group in State Line, MS was for the group of age 40 to 44 years years with a population of 160 (18.76%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in State Line, MS was the 85 years and over years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the State Line is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of State Line total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for State Line Population by Age. You can refer the same here

  7. 🇺🇸 Fiscally US Cities

    • kaggle.com
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mexwell (2024). 🇺🇸 Fiscally US Cities [Dataset]. https://www.kaggle.com/datasets/mexwell/fiscally-us-cities
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 31, 2024
    Dataset provided by
    Kaggle
    Authors
    mexwell
    Area covered
    United States
    Description

    Motivation

    In the United States, city governments provide many services: they run public school districts, administer certain welfare and health programs, build roads and manage airports, provide police and fire protection, inspect buildings, and often run water and utility systems. Cities also get revenues through certain local taxes, various fees and permit costs, sale of property, and through the fees they charge for the utilities they run.

    It would be interesting to compare all these expenses and revenues across cities and over time, but also quite difficult. Cities share many of these service responsibilities with other government agencies: in one particular city, some roads may be maintained by the state government, some law enforcement provided by the county sheriff, some schools run by independent school districts with their own tax revenue, and some utilities run by special independent utility districts. These governmental structures vary greatly by state and by individual city. It would be hard to make a fair comparison without taking into account all these differences.

    This dataset takes into account all those differences. The Lincoln Institute of Land Policy produces what they call “Fiscally Standardized Cities” (FiSCs), aggregating all services provided to city residents regardless of how they may be divided up by different government agencies and jurisdictions. Using this, we can study city expenses and revenues, and how the proportions of different costs vary over time.

    Data

    The dataset tracks over 200 American cities between 1977 and 2020. Each row represents one city for one year. Revenue and expenditures are broken down into more than 120 categories.

    Values are available for FiSCs and also for the entities that make it up: the city, the county, independent school districts, and any special districts, such as utility districts. There are hence five versions of each variable, with suffixes indicating the entity. For example, taxes gives the FiSC’s tax revenue, while taxes_city, taxes_cnty, taxes_schl, and taxes_spec break it down for the city, county, school districts, and special districts.

    The values are organized hierarchically. For example, taxes is the sum of tax_property (property taxes), tax_sales_general (sales taxes), tax_income (income tax), and tax_other (other taxes). And tax_income is itself the sum of tax_income_indiv (individual income tax) and tax_income_corp (corporate income tax) subcategories.

    Variable Description

    • year Year for these values
    • city_name Name of the city, such as “AK: Anchorage”, where “AK” is the standard two-letter abbreviation for Alaska
    • city_population Estimated city population, based on Census data
    • county_name Name of the county the city is in
    • county_population Estimated county population, based on Census data
    • cpi Consumer Price Index for this year, scaled so that 2020 is 1.
    • relationship_city_school Type of school district. 1: City-wide independent school district that serves the entire city. 2: County-wide independent school district that serves the entire county. 3: One or more independent school districts whose boundaries extend beyond the city. 4: School district run by or dependent on the city. 5: School district run by or dependent on the county.
    • enrollment Estimated number of public school students living in the city.
    • districts_in_city Estimated number of school districts in the city.
    • consolidated_govt Whether the city has a consolidated city-county government (1 = yes, 0 = no). For example, Philadelphia’s city and county government are the same entity; they are not separate governments.
    • id2_city 12-digit city identifier, from the Annual Survey of State and Local Government Finances
    • id2_county 12-digit county identifier
    • city_types Two types: core and legacy. There are 150 core cities, “including the two largest cities in each state, plus all cities with populations of 150,000+ in 1980 and 200,000+ in 2010”. Legacy cities include “95 cities with population declines of at least 20 percent from their peak, poverty rates exceeding the national average, and a peak population of at least 50,000”. Some cities are both (denoted “core

    The revenue and expenses variables are described in this detailed table. Further documentation is available on the FiSC Database website, linked in References below.

    All monetary data is already adjusted for inflation, and is given in terms of 2020 US dollars per capita. The Consumer Price Index is provided for each year if you prefer to use numbers not adjusted for inflation, scaled so that 2020 is 1; simply divide each value by the CPI to get the value in that year’s nominal dollars. The total population is also provided if you want total values instead of per-capita values.

    Questions

    • Do some exploratory data analysis. Are there any outlying cities? Any interesting trends and rela...
  8. Core Based Statistical Areas

    • catalog.data.gov
    • data-usdot.opendata.arcgis.com
    • +1more
    Updated Aug 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (USCB) (Point of Contact) (2024). Core Based Statistical Areas [Dataset]. https://catalog.data.gov/dataset/core-based-statistical-areas1
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Core Based Statistical Areas boundaries were defined by OMB based on the 2010 Census, and the dataset was updated on August 09, 2019 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.

  9. United States US: Population Density: People per Square Km

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-population-density-people-per-square-km
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Population Density: People per Square Km data was reported at 35.608 Person/sq km in 2017. This records an increase from the previous number of 35.355 Person/sq km for 2016. United States US: Population Density: People per Square Km data is updated yearly, averaging 26.948 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 35.608 Person/sq km in 2017 and a record low of 20.056 Person/sq km in 1961. United States US: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;

  10. c

    Library Patronage

    • data.ccrpc.org
    csv
    Updated Jun 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2022). Library Patronage [Dataset]. https://data.ccrpc.org/dataset/library-patronage
    Explore at:
    csv(2618)Available download formats
    Dataset updated
    Jun 8, 2022
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The library patronage indicator measures the percentage of the total resident population served by each public library (the percentage of eligible residents that holds an unexpired library card). Ten public libraries and public library districts in Champaign County are included: the Champaign Public Library, the Homer Community Library, the Mahomet Public Library District, the Ogden Rose Public Library, the Philo Public Library District, the Rantoul Public Library, the St. Joseph Township-Swearingen Memorial Library, the Sidney Community Library, the Tolono Public Library District, and the Urbana Free Library. Public libraries often serve as community hubs and offer a number of educational and social opportunities and services for their population served. Registration for and maintenance of a library card is one way a resident can engage in recreation and other community involvement.

    In 2021, five of the ten libraries analyzed had residential participation rates between 20 and 30 percent: Champaign Public Library, 27.57 percent; St. Joseph Township-Swearingen Memorial Library, 25.12 percent; Mahomet Public Library District, 22.38 percent; Tolono Public Library District, 21.82 percent; and the Philo Public Library District, 21.3 percent.

    The libraries with the greatest percentage of the resident population with unexpired library cards were the Homer Community Library, at 38.96 percent, and the Urbana Free Library at 30 percent. The libraries with the smallest percentage of the resident population with unexpired library cards were the Sidney Community Library, 18.13 percent; Rantoul Public Library, 17.22 percent; and the Ogden Rose Public Library, at 13.85 percent.

    All ten public libraries in Champaign County saw the percentage of their resident population with unexpired library cards decrease between 2015 and 2021. It is worth noting that many library buildings were closed during part of 2020 due to the COVID-19 pandemic, and that along with statewide stay-at-home orders may have deterred residents from renewing or obtaining library cards.

    The release of the 2020 Census results in 2021 shows that the population in eight of the ten library districts decreased from 2010 to 2020. It is important to note that the population of a library district sometimes differs than the population of the municipality where it is located (e.g., Tolono).

    The two library districts that saw a population increase in 2020 were the Champaign Public Library and Tolono Public Library District. However, the number of unexpired library cards in those districts decreased in 2021, so the decrease in the percentage of the population with library cards cannot be explained by population growth.

    The two library districts that saw an increase in the percentage of the population with library cards from 2020 to 2021 are the Homer Community Library and Urbana Free Library. The number of unexpired library cards at the Homer Community Library increased from 2020 to 2021, which explains the percentage increase. However, the number of unexpired library cards at the Urbana Free Library decreased from 2020 to 2021, so the percentage increase is due to the library district’s population decrease.

    Data was sourced from the Illinois Public Library Annual Report (IPLAR), an annual report from the Illinois State Library and Office of the Illinois Secretary of State. The population data included in the IPLAR dataset is sourced from the 2020 Census. To be consistent with the data source, we have also calculated the percentage of residents with library cards based on the number of cardholders divided by the total 2020 Census population.

    Source: Illinois State Library, Office of the Illinois Secretary of State.

  11. Series Information for Core-Based Statistical Areas National TIGER/Line...

    • datasets.ai
    23, 55, 57
    Updated Sep 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau, Department of Commerce (2024). Series Information for Core-Based Statistical Areas National TIGER/Line Shapefiles, Current [Dataset]. https://datasets.ai/datasets/series-information-for-core-based-statistical-areas-national-tiger-line-shapefiles-current
    Explore at:
    23, 57, 55Available download formats
    Dataset updated
    Sep 8, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau, Department of Commerce
    Description

    This is a series-level metadata record. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.

    Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urban areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban areas of at least 10,000 population but less than 50,000 population.

    The CBSA boundaries are those defined by OMB based on the 2020 Census and published in 2023.

  12. USA Urban Areas (below 1:500k)

    • data.lojic.org
    • data-lojic.hub.arcgis.com
    • +1more
    Updated Apr 22, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). USA Urban Areas (below 1:500k) [Dataset]. https://data.lojic.org/datasets/esri::usa-urban-areas?layer=3
    Explore at:
    Dataset updated
    Apr 22, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer presents the Census 2010 Urbanized Areas (UA) and Urban Clusters (UC). A UA consists of contiguous, densely settled census block groups (BGs) and census blocks that meet minimum population density requirements (1000ppsm /500ppsm), along with adjacent densely settled census blocks that together encompass a population of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks that meet minimum population density requirements, along with adjacent densely settled census blocks that together encompass a population of at least 2,500 people, but fewer than 50,000 people. The dataset covers the 50 States plus the District of Columbia within United States.

  13. Data from: Porpoise Observation Database (NRM)

    • gbif.org
    • researchdata.se
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linnea Cervin; Linnea Cervin (2024). Porpoise Observation Database (NRM) [Dataset]. http://doi.org/10.15468/yrxfxp
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    Swedish Museum of Natural History
    Authors
    Linnea Cervin; Linnea Cervin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This data set contains observations of dead or alive harbor porpoises made by the public, mostly around the Swedish coast. A few observations are from Norwegian, Danish, Finish and German waters. Each observation of harbor porpoise is verified at the Swedish Museum of Natural History before it is approved and published on the web. The verification consists of controlling the accuracy of number of animals sighted, if the coordinates are correct and if pictures are attached that they really show a porpoise and not another species. If any of these three seem unlikely, the reporter is contacted and asked more detailed questions. The report is approved or denied depending on the answers given. Pictures and movies that can’t be uploaded to the database due to size problems are saved at the museum server and marked with the identification number given by the database. By the end of the year the data is submitted to HELCOM who then summarize all the member state’s data from the Baltic proper to the Kattegat basin. The porpoise is one of the smallest tooth whales in the world and the only whale species that breeds in Swedish waters. They are to be found in temperate water in the northern hemisphere where they live in small groups of 1-3 individuals. The females give birth to a calf in the summer months which then suckles for about 10 months before it is left on its own and she has a new calf. The porpoises around Sweden are divided in to three groups that don’t mix very often. The North Sea population is found on the west coast in Skagerrak down to the Falkenberg area. The Belt Sea population is to be found a bit north of Falkenberg down to Blekinge archipelago in the Baltic. The Baltic proper population is the smallest population and consists only of a few hundred animals and is considered as an endangered sub species. They are most commonly found from the Blekinge archipelago up to Åland Sea with a hot spot area south of Gotland at Hoburg’s bank and the Mid-Sea bank. The Porpoise Observation Database was started in 2005 at the request of the Swedish Environmental Protection Agency to get a better understanding of where to find porpoises with the idea to use the public to expand the “survey area”. The first year 26 sightings were reported, where 4 was from the Baltic Sea. The museum is particularly interested in sightings from the Baltic Sea due to the low numbers of animals and lack of data and knowledge about this group. In the beginning only live sightings were reported but later also found dead animals were added. Some of the animals that are reported dead are collected. Depending on where it is found and its state of decay, the animal can be subsampled in the field. A piece of blubber and some teeth are then send in by mail and stored in the Environmental Specimen Bank at the Swedish Museum of Natural History in Stockholm. If the whole animal is collected an autopsy is performed at the National Veterinary Institute in Uppsala to try and determine cause of death. Organs, teeth and parasites are sampled and saved at the Environmental Specimen Bank as well. Information about the animal i.e. location, founding date, sex, age, length, weight, blubber thickness as well as type of organ and the amount that is sampled is then added to the Specimen Bank database. If there is an interest in getting samples or data from the Specimen Bank, one have to send in an application to the Department of Environmental research and monitoring and state the purpose of the study and the amount of samples needed.

  14. K

    US Communities

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Federal Emergency Management Agency (FEMA) (2018). US Communities [Dataset]. https://koordinates.com/layer/25566-us-communities/
    Explore at:
    mapinfo mif, csv, mapinfo tab, pdf, shapefile, dwg, kml, geopackage / sqlite, geodatabaseAvailable download formats
    Dataset updated
    Sep 3, 2018
    Dataset authored and provided by
    US Federal Emergency Management Agency (FEMA)
    Area covered
    Description

    The Census data utilized for developing the Community Layer used 2010 TIGER/Line shapefile datasets (TIGER = Topologically Integrated Geographic Encoding and Referencing). TIGER/Line shapefiles are available for free download from the US Census Bureau and include various legal and statistical geographic areas for which the Census tabulates data. The shapefiles are designed to be used in a GIS environment, with the ability to directly link the geographic areas to Census data via a unique GEOID number.The following TIGER/Line datasets should be used: - Counties and Equivalent Entities –primary legal divisions within each state (counties, parishes, etc)- County Subdivisions –includes both legal areas (Minor Civil Divisions or MCDs) and various statistical areas- Places –includes both legal areas (Incorporated Places) and statistical areas (Census Designated Places or CDPs)- Blocks –the smallest geographical area for which Census population counts are recorded; blocks never cross boundaries of any entity for which the Census Bureau tabulates data, including counties, county subdivisions, places, and American Indian, Alaska Native, and Native Hawaiian (AIANNH) areas- American Indian, Alaska Native, and Native Hawaiian (AIANNH) AreasExtracting and Formatting CIS DataA key component of the community layer is the ability to link CIS information spatially. Data from CIS cannot directly be joined with Census data. The two datasets have community name discrepancies which impede an exact match. Therefore, CIS data needs to be formatted to match Census community names. A custom report can be obtained from CIS to include a CID number, Community Name, County, State, Community Status, and Tribal status for all CIS records. Make sure all CID numbers are six digits and you follow the CIS community naming convention outlined in Table 4.2.1.1 in the Community Layer Update Technical Guide 20131206. Converting the CIS name“ADDISON, VILLAGE OF” to “ADDISON TOWN”involves removing unneeded spaces, comma, and preposition to make the join successful to the Census data. Using a comprehensive report at a national level gains efficiencies as bulk edits can be made. Data for each state should be extracted as needed by separating the CIS data into each type of community corresponding to the Census geography layers used, and a new JoinID column (e.g. ADDISON TOWN) can be created for each dataset allowing the CIS data to be joined to the Census data.

  15. u

    U.S. Census Blocks

    • colorado-river-portal.usgs.gov
    • geospatial.gis.cuyahogacounty.gov
    • +8more
    Updated Jun 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). U.S. Census Blocks [Dataset]. https://colorado-river-portal.usgs.gov/datasets/fedmaps::u-s-census-blocks-1
    Explore at:
    Dataset updated
    Jun 29, 2021
    Dataset authored and provided by
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    U.S. Census BlocksThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census Blocks in the United States. A brief description of Census Blocks, per USCB, is that "Census blocks are statistical areas bounded by visible features such as roads, streams, and railroad tracks, and by nonvisible boundaries such as property lines, city, township, school district, county limits and short line-of-sight extensions of roads." Also, "the smallest level of geography you can get basic demographic data for, such as total population by age, sex, and race."Census Block 1007Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Blocks) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 69 (Series Information for 2020 Census Block State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Blocks - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocksFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  16. USA Urban Areas (1:500k-1.5M)

    • atlas.eia.gov
    • mapdirect-fdep.opendata.arcgis.com
    • +3more
    Updated Apr 22, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). USA Urban Areas (1:500k-1.5M) [Dataset]. https://atlas.eia.gov/maps/esri::usa-urban-areas-1500k-1-5m
    Explore at:
    Dataset updated
    Apr 22, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer presents the Census 2010 Urbanized Areas (UA) and Urban Clusters (UC). A UA consists of contiguous, densely settled census block groups (BGs) and census blocks that meet minimum population density requirements (1000ppsm /500ppsm), along with adjacent densely settled census blocks that together encompass a population of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks that meet minimum population density requirements, along with adjacent densely settled census blocks that together encompass a population of at least 2,500 people, but fewer than 50,000 people. The dataset covers the 50 States plus the District of Columbia within United States.

  17. K

    US Core Based Statistical Areas

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Feb 1, 2001
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Transportation Statistics (BTS) (2018). US Core Based Statistical Areas [Dataset]. https://koordinates.com/layer/22838-us-core-based-statistical-areas/
    Explore at:
    mapinfo mif, dwg, shapefile, kml, mapinfo tab, csv, geodatabase, geopackage / sqlite, pdfAvailable download formats
    Dataset updated
    Feb 1, 2001
    Dataset authored and provided by
    US Bureau of Transportation Statistics (BTS)
    Area covered
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population, and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSAs for the 2010 Census are those defined by OMB and published in December 2009.

    © The United States CBSA Boundaries files were compiled from a variety of sources including the US Bureau of the Census, and data supplied by individual states. This layer is sourced from maps.bts.dot.gov.

  18. USA Urban Areas

    • atlas.eia.gov
    • data.lojic.org
    • +4more
    Updated Apr 22, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). USA Urban Areas [Dataset]. https://atlas.eia.gov/maps/432bb9246fdd467c88136e6ffeac2762
    Explore at:
    Dataset updated
    Apr 22, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of June 2023 and will retire in December 2025. A new version of this item is available for your use.The layers going from 1:1 to 1:1.5M present the 2010 Census Urbanized Areas (UA) and Urban Clusters (UC). A UA consists of contiguous, densely settled census block groups (BGs) and census blocks that meet minimum population density requirements (1000 people per square mile (ppsm) / 500 ppsm), along with adjacent densely settled census blocks that together encompass a population of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks that meet minimum population density requirements, along with adjacent densely settled census blocks that together encompass a population of at least 2,500 people, but fewer than 50,000 people. The dataset covers the 50 States plus the District of Columbia within United States. The layer going over 1:1.5M presents the urban areas in the United States derived from the urban areas layer of the Digital Chart of the World (DCW). It provides information about the locations, names, and populations of urbanized areas for conducting geographic analysis on national and large regional scales. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA Census Urban Areas.

  19. US Census - ACS and Decennial files **

    • redivis.com
    application/jsonl +7
    Updated Jul 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Impact Data Collaborative (2023). US Census - ACS and Decennial files ** [Dataset]. https://redivis.com/datasets/b2fz-a8gwpvnh4
    Explore at:
    avro, csv, spss, stata, sas, parquet, application/jsonl, arrowAvailable download formats
    Dataset updated
    Jul 4, 2023
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Area covered
    United States
    Description

    Abstract

    Dataset quality **: Medium/high quality dataset, not quality checked or modified by the EIDC team

    Census data plays a pivotal role in academic data research, particularly when exploring relationships between different demographic characteristics. The significance of this particular dataset lies in its ability to facilitate the merging of various datasets with basic census information, thereby streamlining the research process and eliminating the need for separate API calls.

    The American Community Survey is an ongoing survey conducted by the U.S. Census Bureau, which provides detailed social, economic, and demographic data about the United States population. The ACS collects data continuously throughout the decade, gathering information from a sample of households across the country, covering a wide range of topics

    Methodology

    The Census Data Application Programming Interface (API) is an API that gives the public access to raw statistical data from various Census Bureau data programs.

    We used this API to collect various demographic and socioeconomic variables from both the ACS and the Deccenial survey on different geographical levels:

    ZCTAs:

    ZIP Code Tabulation Areas (ZCTAs) are generalized areal representations of United States Postal Service (USPS) ZIP Code service areas. The USPS ZIP Codes identify the individual post office or metropolitan area delivery station associated with mailing addresses. USPS ZIP Codes are not areal features but a collection of mail delivery routes.

    Census Tract:

    Census Tracts are small, relatively permanent statistical subdivisions of a county or statistically equivalent entity that can be updated by local participants prior to each decennial census as part of the Census Bureau’s Participant Statistical Areas Program (PSAP).

    Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. A census tract usually covers a contiguous area; however, the spatial size of census tracts varies widely depending on the density of settlement. Census tract boundaries are delineated with the intention of being maintained over a long time so that statistical comparisons can be made from census to census.

    Block Groups:

    Block groups (BGs) are the next level above census blocks in the geographic hierarchy (see Figure 2-1 in Chapter 2). A BG is a combination of census blocks that is a subdivision of a census tract or block numbering area (BNA). (A county or its statistically equivalent entity contains either census tracts or BNAs; it can not contain both.) A BG consists of all census blocks whose numbers begin with the same digit in a given census tract or BNA; for example, BG 3 includes all census blocks numbered in the 300s. The BG is the smallest geographic entity for which the decennial census tabulates and publishes sample data.

    Census Blocks:

    Census blocks, the smallest geographic area for which the Bureau of the Census collects and tabulates decennial census data, are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps.

  20. 2023 Cartographic Boundary File (KML), Core Based Statistical Areas (CBSA)...

    • catalog.data.gov
    • datasets.ai
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2024). 2023 Cartographic Boundary File (KML), Core Based Statistical Areas (CBSA) for United States, 1:20,000,000 [Dataset]. https://catalog.data.gov/dataset/2023-cartographic-boundary-file-kml-core-based-statistical-areas-cbsa-for-united-states-1-20000
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urban areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban areas of at least 10,000 population but less than 50,000 population. The generalized boundaries in this file are based on those defined by OMB based on the 2020 Census and published in 2023.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2025). United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/454c7ad4-f122-11ef-8c1b-3860777c1fe6/

United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition

Explore at:
csv, jsonAvailable download formats
Dataset updated
Feb 22, 2025
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
United States
Variables measured
Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

Key observations

The largest age group in United States was for the group of age 30 to 34 years years with a population of 23.06 million (6.94%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.34 million (1.91%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

Age groups:

  • Under 5 years
  • 5 to 9 years
  • 10 to 14 years
  • 15 to 19 years
  • 20 to 24 years
  • 25 to 29 years
  • 30 to 34 years
  • 35 to 39 years
  • 40 to 44 years
  • 45 to 49 years
  • 50 to 54 years
  • 55 to 59 years
  • 60 to 64 years
  • 65 to 69 years
  • 70 to 74 years
  • 75 to 79 years
  • 80 to 84 years
  • 85 years and over

Variables / Data Columns

  • Age Group: This column displays the age group in consideration
  • Population: The population for the specific age group in the United States is shown in this column.
  • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu