100+ datasets found
  1. h

    100-richest-people-in-world

    • huggingface.co
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nate Raw (2023). 100-richest-people-in-world [Dataset]. https://huggingface.co/datasets/nateraw/100-richest-people-in-world
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 2, 2023
    Authors
    Nate Raw
    License

    https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

    Area covered
    World
    Description

    Dataset Card for 100 Richest People In World

      Dataset Summary
    

    This dataset contains the list of Top 100 Richest People in the World Column Information:-

    Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain

      Join our Community
    
    
    
    
    
    
    
    
    
      Supported Tasks and Leaderboards
    

    [More Information Needed]

      Languages
    

    [More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.

  2. Farm Income and Wealth Statistics

    • catalog.data.gov
    • datadiscoverystudio.org
    • +1more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economic Research Service, Department of Agriculture (2025). Farm Income and Wealth Statistics [Dataset]. https://catalog.data.gov/dataset/farm-income-and-wealth-statistics
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Description

    Estimates of farm sector income with component accounts for the United States and for States.

  3. F

    Households; Net Worth, Level

    • fred.stlouisfed.org
    json
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Households; Net Worth, Level [Dataset]. https://fred.stlouisfed.org/series/BOGZ1FL192090005Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Households; Net Worth, Level (BOGZ1FL192090005Q) from Q4 1987 to Q1 2025 about net worth, Net, households, and USA.

  4. United States COVID-19 County Level of Community Transmission as Originally...

    • catalog.data.gov
    Updated Oct 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). United States COVID-19 County Level of Community Transmission as Originally Posted [Dataset]. https://catalog.data.gov/dataset/united-states-covid-19-county-level-of-community-transmission-as-originally-posted
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Announcement Beginning October 20, 2022, CDC will report and publish aggregate case and death data from jurisdictional and state partners on a weekly basis rather than daily. As a result, community transmission levels data reported on data.cdc.gov will be updated weekly on Thursdays, typically by 8 PM ET, instead of daily. This public use dataset has 7 data elements reflecting community transmission levels for all available counties. This dataset contains reported daily transmission level at the county level and contains the same values used to display transmission maps on the COVID Data Tracker. Each day, the dataset is appended to contain the most recent day's data. Transmission level is set to low, moderate, substantial, or high using the calculation rules below. Currently, CDC provides the public with two versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Originally Posted dataset), updated daily with the most recent day’s data, and an historical dataset with the county-level transmission data from January 1, 2021 (Historical Changes dataset). Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making. CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00). Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00). If the two metrics suggest different transmission levels, the higher level is selected. Transmission categories include: Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%; Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%; Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%; High Transmission Threshold: Counties with 100 or more total cases per 100,000

  5. o

    Data from: GEOWEALTH-US: Spatial wealth inequality data for the United...

    • openicpsr.org
    delimited
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Suss; Dylan Connor; Tom Kemeny (2023). GEOWEALTH-US: Spatial wealth inequality data for the United States, 1960-2020 [Dataset]. http://doi.org/10.3886/E192306V4
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    University of Toronto
    Arizona State University
    London School of Economics
    Authors
    Joel Suss; Dylan Connor; Tom Kemeny
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2020
    Area covered
    United States
    Description

    Wealth inequality has been sharply rising in the United States and across many other high-income countries. Due to a lack of data, we know little about how this trend has unfolded across locations within countries. Investigating this subnational geography of wealth is crucial, as from one generation to the next, wealth powerfully shapes opportunity and disadvantage across individuals and communities. Using machine-learning-based imputation to link newly assembled national historical surveys conducted by the U.S. Federal Reserve to population survey microdata, the data presented in this paper addresses this gap. The Geographic Wealth Inequality Database ("GEOWEALTH-US") provides the first estimates of the level and distribution of wealth at various geographical scales within the United States from 1960 to 2020. The GEOWEALTH-US database enables new lines investigation into the contribution of inter-regional wealth patterns to major societal challenges including wealth concentration, spatial income inequality, equality of opportunity, housing unaffordability, and political polarization.

  6. w

    Dataset of book subjects that contain A political economy of the United...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain A political economy of the United States, China, and India : prosperity with inequality [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=A+political+economy+of+the+United+States%2C+China%2C+and+India+%3A+prosperity+with+inequality&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India, China, United States
    Description

    This dataset is about book subjects. It has 12 rows and is filtered where the books is A political economy of the United States, China, and India : prosperity with inequality. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  7. d

    Associated Data for Predicting Flood Damage Across the Conterminous United...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Associated Data for Predicting Flood Damage Across the Conterminous United States [Dataset]. https://catalog.data.gov/dataset/associated-data-for-predicting-flood-damage-across-the-conterminous-united-states
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Contiguous United States, United States
    Description

    This data release contains the associated data described in the related primary publication, “Predicting Flood Damage Probability Across the Conterminous United States” (Collins et al. [2022], see Cross Reference section). Publicly available geospatial datasets and random forest algorithms were used to analyze the spatial distribution and underlying drivers of flood damage probability caused by excessive rainfall and overflowing water bodies across the conterminous United States. Datasets contain input files for predictor and response variables used in the analysis and output files of flood damage probabilities generated from the analysis.

  8. c

    USA hotels dataset from booking

    • crawlfeeds.com
    csv, zip
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). USA hotels dataset from booking [Dataset]. https://crawlfeeds.com/datasets/usa-hotels-dataset-from-booking
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Area covered
    United States
    Description

    The USA Hotels Dataset from Booking.com is a rich collection of data related to hotels across the United States, extracted from Booking.com. This dataset includes essential information about hotel listings, such as hotel names, locations, prices, star ratings, customer reviews, and amenities offered. It's an ideal resource for researchers, data analysts, and businesses looking to explore the hospitality industry, analyze customer preferences, and understand pricing patterns in the U.S. hotel market.

    Access 3 million+ US hotel reviews — submit your request today.

    Key Features:

    • Hotel Information: Includes hotel names, addresses, star ratings, and descriptions.
    • Pricing Data: Nightly rates, discounts, and price variations by room type and season.
    • Customer Reviews: Aggregated ratings and detailed user feedback from verified guests.
    • Amenities: Detailed list of amenities provided by each hotel (e.g., Wi-Fi, parking, spa, swimming pool).
    • Geographical Information: Hotel locations including city, state, and proximity to major landmarks.

    Use Cases:

    • Sentiment Analysis: Analyze customer reviews to gauge hotel service quality and guest satisfaction.
    • Price Analysis: Compare pricing across different hotels, locations, and time periods to identify trends.
    • Recommendation Systems: Build recommendation engines based on customer ratings, reviews, and preferences.
    • Tourism and Hospitality Research: Understand patterns in hotel demand and services across various U.S. cities.

  9. U.S. median household income 2023, by state

    • statista.com
    • ai-chatbox.pro
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by state [Dataset]. https://www.statista.com/statistics/233170/median-household-income-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the real median household income in the state of Alabama was 60,660 U.S. dollars. The state with the highest median household income was Massachusetts, which was 106,500 U.S. dollars in 2023. The average median household income in the United States was at 80,610 U.S. dollars.

  10. w

    Dataset of book subjects that contain American appeasement : United States...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain American appeasement : United States foreign policy and Germany, 1933-1938 [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=American+appeasement+%3A+United+States+foreign+policy+and+Germany%2C+1933-1938&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany, United States
    Description

    This dataset is about book subjects. It has 1 row and is filtered where the books is American appeasement : United States foreign policy and Germany, 1933-1938. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  11. United States US: Land Area Where Elevation is Below 5 Meters: % of Total...

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-land-area-where-elevation-is-below-5-meters--of-total-land-area
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 1.168 % in 2010. This stayed constant from the previous number of 1.168 % for 2000. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 1.168 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 1.168 % in 2010 and a record low of 1.168 % in 2010. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Land area below 5m is the percentage of total land where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  12. d

    Combined wildfire datasets for the United States and certain territories,...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Combined wildfire datasets for the United States and certain territories, 1800s-Present [Dataset]. https://catalog.data.gov/dataset/combined-wildfire-datasets-for-the-united-states-and-certain-territories-1800s-present
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    First, we would like to thank the wildland fire advisory group. Their wisdom and guidance helped us build the dataset as it currently exists. This dataset is comprised of two different zip files. Zip File 1: The data within this zip file are composed of two wildland fire datasets. (1) A merged dataset consisting of 40 different wildfire and prescribed fire layers. The original 40 layers were all freely obtained from the internet or provided to the authors free of charge with permission to use them. The merged layers were altered to contain a consistent set of attributes including names, IDs, and dates. This raw merged dataset contains all original polygons many of which are duplicates of the same fire. This dataset also contains all the errors, inconsistencies, and other issues that caused some of the data to be excluded from the combined dataset. Care should be used when working with this dataset as individual records may contain errors that can be more easily identified in the combined dataset. (2) A combined wildland fire polygon dataset composed of both wildfires and prescribed fires ranging in years from mid 1800s to the present that was created by merging and dissolving fire information from 40 different original wildfire datasets to create one of the most comprehensive wildfire datasets available. Attributes describing fires that were reported in the various sources are also merged, including fire names, fire codes, fire IDs, fire dates, fire causes. Zip File 2: The fire polygons were turned into 30 meter rasters representing various summary counts: (a) count of all wildland fires that burned a pixel, (b) count of wildfires that burned a pixel, (c) the first year a wildfire burned a pixel, (d) the most recent year a wildfire burned a pixel, and (e) count of prescribed fires that burned a pixel.

  13. United States US: Urban Population Living in Areas Where Elevation is Below...

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-urban-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 2.264 % in 2010. This records an increase from the previous number of 2.246 % for 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 2.264 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.329 % in 1990 and a record low of 2.246 % in 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  14. T

    United States GDP per capita

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States GDP per capita [Dataset]. https://tradingeconomics.com/united-states/gdp-per-capita
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2024
    Area covered
    United States
    Description

    The Gross Domestic Product per capita in the United States was last recorded at 66682.61 US dollars in 2024. The GDP per Capita in the United States is equivalent to 528 percent of the world's average. This dataset provides - United States GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  15. T

    United States Disposable Personal Income

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Disposable Personal Income [Dataset]. https://tradingeconomics.com/united-states/disposable-personal-income
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - May 31, 2025
    Area covered
    United States
    Description

    Disposable Personal Income in the United States decreased to 22454.56 USD Billion in May from 22579.58 USD Billion in April of 2025. This dataset provides - United States Disposable Personal Income - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  16. United States US: Population Living in Areas Where Elevation is Below 5...

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data was reported at 2.513 % in 2010. This records an increase from the previous number of 2.502 % for 2000. United States US: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data is updated yearly, averaging 2.513 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.575 % in 1990 and a record low of 2.502 % in 2000. United States US: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Population below 5m is the percentage of the total population living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  17. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp
    Explore at:
    csv, application/rdfxml, xml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.

    Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.

    CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:

    https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

    https://www.cdc.gov/covid-data-tracker/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Archived Data Notes:

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths. 

    November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.

    January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.

    January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.

    February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.

    February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.

    February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.

    February 16, 2023: Due to a reporting cadence change, Maine’s

  18. M

    American Community Survey 5-Year Summary File

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html, shp +1
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metropolitan Council (2024). American Community Survey 5-Year Summary File [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metc-society-census-acs
    Explore at:
    html, fgdb, shp, xlsx, gpkgAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    Metropolitan Council
    Description

    The American Community Survey (ACS) provides detailed demographic, social, economic, commuting and housing statistics based on continuous survey data collection. Data collected over the most recent 5 years are batched, summarized and published the following December.

    These files contain summary data for Census Block Groups (CensusACSBlockGroup.xlsx), Tracts (CensusACSTract.xlsx), minor civil divisions (CensusACSMCD.xlsx), school districts (CensusACSSchoolDistrict.xlsx), and ZIP code tabulation areas (CensusACSZipCode.xlsx). No shapefiles are included, but these data files can be joined to associated shapefile datasets available elsewhere on this site. To facilitate this, the data files are also available as DBF tables and in a geodatabase.

    Starting with the 2016-2020 data, tract and block group boundaries are those used in the 2020 Census. Starting with the 2017-2021 data, ZIP Code Tabulation Areas are those defined based on the 2020 Census. If you need the most recent ACS data for the tract and block group boundaries used in the 2010 Census, contact Matt Schroeder (information below).

  19. T

    United States Households Debt To GDP

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Households Debt To GDP [Dataset]. https://tradingeconomics.com/united-states/households-debt-to-gdp
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1947 - Dec 31, 2024
    Area covered
    United States
    Description

    Households Debt in the United States decreased to 69.20 percent of GDP in the fourth quarter of 2024 from 70.50 percent of GDP in the third quarter of 2024. This dataset provides - United States Households Debt To Gdp- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  20. o

    Places - United States of America

    • public.opendatasoft.com
    • data.smartidf.services
    • +1more
    csv, excel, geojson +1
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Places - United States of America [Dataset]. https://public.opendatasoft.com/explore/dataset/georef-united-states-of-america-place/
    Explore at:
    geojson, csv, json, excelAvailable download formats
    Dataset updated
    Jun 6, 2024
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for places and equivalent entities in United States of America.This layer both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nate Raw (2023). 100-richest-people-in-world [Dataset]. https://huggingface.co/datasets/nateraw/100-richest-people-in-world

100-richest-people-in-world

nateraw/100-richest-people-in-world

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Aug 2, 2023
Authors
Nate Raw
License

https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

Area covered
World
Description

Dataset Card for 100 Richest People In World

  Dataset Summary

This dataset contains the list of Top 100 Richest People in the World Column Information:-

Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain

  Join our Community









  Supported Tasks and Leaderboards

[More Information Needed]

  Languages

[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.

Search
Clear search
Close search
Google apps
Main menu