35 datasets found
  1. T

    United States Money Supply M2

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Money Supply M2 [Dataset]. https://tradingeconomics.com/united-states/money-supply-m2
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Jun 30, 2025
    Area covered
    United States
    Description

    Money Supply M2 in the United States increased to 21942 USD Billion in May from 21862.40 USD Billion in April of 2025. This dataset provides - United States Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. d

    Campaign Finance - State Filer Data

    • catalog.data.gov
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). Campaign Finance - State Filer Data [Dataset]. https://catalog.data.gov/dataset/campaign-finance-state-filer-data
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset contains data from financial statements of state committees that (1) contribute to or (2) receive funds from a San Francisco committee which was Primarily Formed for a local election, or (3) filed a Late Reporting Period statement with the SFEC during the 90 days before an election. The search period for financial statements begins two years before an election and runs through the next semi-annual filing deadline. The dataset currently filters by the elections of 2024-03-05 and 2024-11-05. B. HOW THE DATASET IS CREATED During an election period, an automated script runs nightly to examine filings by Primarily Formed San Francisco committees. If a primarily formed committee reports accepting money from or giving money to a second committee, that second committee's ID number is added to a filter list. If a committee electronically files a late reporting period form with the San Francisco Ethics Commission, the committee's ID number is also included in the filter list. The filter list is used in a second step that looks for filings by committees that file with the San Francisco Ethics Commission or the California Secretary of State. This dataset shows the committees that file with the California Secretary of State. The data comes from a nightly export of the Secretary of State's database. A second dataset includes Non-Primarily Formed committees that file with the San Francisco Ethics Commission. C. UPDATE PROCESS This dataset is rewritten nightly based on data derived from campaign filings. The update script runs automatically on a timer during the 90 days before an election. Refer to the "Data Last Updated" date in the section "About This Dataset" on the landing page to see when the script last ran successfully. D. HOW TO USE THIS DATASET Transactions from all FPPC Form 460 schedules are presented together, refer to the Form Type to differentiate. Transactions with a Form Type of D, E, F, G, H, F496, or F497P2 represent expenditures or money spent by the committee. Transactions with Form Type A, B1, C, I, F496P3, and F497P1 represent receipts or money taken in by the committee. Refer to the instructions for Forms 460, 496, and 497 for more details. Transactions on Form 460 Schedules D, F, G, and H are also reported on Schedule E. When doing summary statistics use care not to double count expenditures. Transactions from FPPC Form 496 and Form 497 filings are also in this dataset. Transactions that were reported on these forms are also reported on the Form 460 at the next filing deadline. If a 460 filing deadline has passed and the committee has filed a campaign statement, transactions on filings from the late reporting period should be disregarded. This dataset only shows transactions from the most recent filing version. Committee's amendments overwrite filings which come before in sequence. Campaign Committees are required to file statements according to a schedule set out by the California Fair Political Practices Commission. Depending on timing, transactions which have occurred may not be listed as they might not have been reported yet. E. RELATED DATASETS <a href=

  3. d

    Database on Ideology, Money in Politics, and Elections (DIME)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bonica, Adam (2023). Database on Ideology, Money in Politics, and Elections (DIME) [Dataset]. http://doi.org/10.7910/DVN/O5PX0B
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Bonica, Adam
    Time period covered
    Jan 1, 1979 - Jan 1, 2014
    Description

    Abstract: The Database on Ideology, Money in Politics, and Elections (DIME) is intended as a general resource for the study of campaign finance and ideology in American politics. The database was developed as part of the project on Ideology in the Political Marketplace, which is an on-going effort to perform a comprehensive ideological mapping of political elites, interest groups, and donors using the common-space CFscore scaling methodology (Bonica 2014). Constructing the database required a large-scale effort to compile, clean, and process data on contribution records, candidate characteristics, and election outcomes from various sources. The resulting database contains over 130 million political contributions made by individuals and organizations to local, state, and federal elections spanning a period from 1979 to 2014. A corresponding database of candidates and committees provides additional information on state and federal elections. The DIME+ data repository on congressional activity extends DIME to cover detailed data on legislative voting, lawmaking, and political rhetoric. (See http://dx.doi.org/10.7910/DVN/BO7WOW for details.) The DIME data is available for download as a standalone SQLite database. The SQLite database is stored on disk and can be accessed using a SQLite client or queried directly from R using the RSQLite package. SQLite is particularly well-suited for tasks that require searching through the database for specific individuals or contribution records. (Click here to download.) Overview: The database is intended to make data on campaign finance and elections (1) more centralized and accessible, (2) easier to work with, and (3) more versatile in terms of the types of questions that can be addressed. A list of the main value-added features of the database is below: Data processing: Names, addresses, and occupation and employer titles have been cleaned and standardized. Unique identifiers: Entity resolution techniques were used to assign unique identifiers for all individual and institutional donors included in the database. The contributor IDs make it possible to track giving by individuals across election cycles and levels of government. Geocoding: Each record has been geocoded and placed into congressional districts. The geocoding scheme relies on the contributor IDs to assign a complete set of consistent geo-coordinates to donors that report their full address in some records but not in others. This is accomplished by combining information on self-reported address across records. The geocoding scheme further takes into account donors with multiple addresses. Geocoding was performed using the Data Science Toolkit maintained by Pete Warden and hosted at http://www.datasciencetoolkit.org/. Shape files for congressional districts are from Census.gov (http://www.census.gov/rdo/data). Ideological measures: The common-space CFscores allow for direct distance comparisons of the ideal points of a wide range of political actors from state and federal politics spanning a 35 year period. In total, the database includes ideal point estimates for 70,871 candidates and 12,271 political committees as recipients and 14.7 million individuals and 1.7 million organizations as donors. Corresponding data on candidates, committees, and elections: The recipient database includes information on voting records, fundraising statistics, election outcomes, gender, and other candidate characteristics. All candidates are assigned unique identifiers that make it possible to track candidates if they campaign for different offices. The recipient IDs can also be used to match against the database of contribution records. The database also includes entries for PACs, super PACs, party committees, leadership PACs, 527s, state ballot campaigns, and other committees that engage in fundraising activities. Identifying sets of important political actors: Contribution records have been matched onto other publicly available databases of important political actors. Examples include: Fortune 500 directors and CEOs: (Data) (Paper) Federal court judges: (Data) (Paper} State supreme court justices: (Data) (Paper} Executives appointees to federal agencies: (Data) (Paper) Medical professionals: (Data) (Paper)

  4. T

    United States Money Supply M0

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Money Supply M0 [Dataset]. https://tradingeconomics.com/united-states/money-supply-m0
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Jun 30, 2025
    Area covered
    United States
    Description

    Money Supply M0 in the United States increased to 5748600 USD Million in June from 5648700 USD Million in May of 2025. This dataset provides - United States Money Supply M0 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. d

    Campaign Finance - Local Non-Primarily Formed Comittees

    • catalog.data.gov
    • data.sfgov.org
    • +1more
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). Campaign Finance - Local Non-Primarily Formed Comittees [Dataset]. https://catalog.data.gov/dataset/campaign-finance-local-non-primarily-formed-comittees
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset contains data from financial statements of campaign committees that file with the San Francisco Ethics Commission and (1) contribute to or (2) receive funds from a San Francisco committee which was Primarily Formed for a local election, or (3) filed a Late Reporting Period statement with the SFEC. Financial statements are included for a committee if they meet any of the three criteria for each election included in the search parameters and are not primarily formed for the election. The search period for financial statements begins two years before an election and runs through the next semi-annual filing deadline. The dataset currently filters by the elections of 2024-03-05 and 2024-11-05. B. HOW THE DATASET IS CREATED During an election period an automated script runs nightly to examine filings by Primarily Formed San Francisco committees. If a primarily formed committee reports accepting money from or giving money to a second committee, that second committee's ID number is added to a filter list. If a committee electronically files a late reporting period form with the San Francisco Ethics Commission, the committee's ID number is also included in the filter list. The filter list is used in a second step that looks for filings by committees that file with the San Francisco Ethics Commission or the California Secretary of State. This dataset shows the output of the second step for committees that file with the San Francisco Ethics Commission. The data comes from a nightly search of the Ethics Commission campaign database. A second dataset includes committees that file with the Secretary of State. C. UPDATE PROCESS This dataset is rewritten nightly and is based on data derived from campaign filings. The update script runs automatically on a timer during the 90 days before an election. Refer to the "Data Last Updated" date in the section "About This Dataset" on the landing page to see when the script last ran successfully. D. HOW TO USE THIS DATASET Transactions from all FPPC Form 460 schedules are presented together, refer to the Form Type to differentiate. Transactions from FPPC Form 461 and Form 465 filings are presented together, refer to the Form Type to differentiate. Transactions with a Form Type of D, E, F, G, H, F461P5, F465P3, F496, or F497P2 represent expenditures, or money spent by the committee. Transactions with Form Type A, B1, C, I, F496P3, and F497P1 represent receipts, or money taken in by the committee. Refer to the instructions for Forms 460, 496, and 497 for more details. Transactions on Form 460 Schedules D, F, G, and H are also reported on Schedule E. When doing summary statistics use care not to double count expenditures. Transactions from FPPC Form 496 and Form 497 filings are presented in this dataset. Transactions that were reported on these forms are also reported on the Form 460 at the next filing deadline. If a 460 filing deadline has passed and the committee has filed a campaign statement, transactions on 496/497 filings from the late reporting period should be disregarded. This dataset only shows transactions from the most recent filing version. Committee amendments overwrite filings which come before in sequence. Campaign Committees are required to file statements according to a schedule set out by the C

  6. Data from: Child Care and Development Fund (CCDF) Policies Database, 2015

    • childandfamilydataarchive.org
    ascii, delimited +5
    Updated Jan 23, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minton, Sarah; Giannarelli, Linda; Stevens, Kathryn (2017). Child Care and Development Fund (CCDF) Policies Database, 2015 [Dataset]. http://doi.org/10.3886/ICPSR36581.v1
    Explore at:
    stata, sas, spss, excel, ascii, delimited, rAvailable download formats
    Dataset updated
    Jan 23, 2017
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Minton, Sarah; Giannarelli, Linda; Stevens, Kathryn
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36581/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36581/terms

    Time period covered
    2009 - 2015
    Area covered
    United States
    Description

    USER NOTE: This database no longer contains the most up-to-date information. Some errors and missing data from the previous years have been fixed in the most recent data release in the CCDF Policies Database Series. The most recent release is a cumulative file which includes the most accurate version of this and all past years' data. Please do not use this study's data unless you are attempting to replicate the analysis of someone who specifically used this version of the CCDF Policies Database. For any other type of analysis, please use the most recent release in the CCDF Policies Database Series. The Child Care and Development Fund (CCDF) provides federal money to States and Territories to provide assistance to low-income families receiving or in transition from temporary public assistance, to obtain quality child care so they can work, attend training, or receive education. Within the broad federal parameters, states and territories set the detailed policies. Those details determine whether a particular family will or will not be eligible for subsidies, how much the family will have to pay for the care, how families apply for and retain subsidies, the maximum amounts that child care providers will be reimbursed, and the administrative procedures that providers must follow. Thus, while CCDF is a single program from the perspective of federal law, it is in practice a different program in every state and territory. The CCDF Policies Database project is a comprehensive, up-to-date database of inter-related sources of CCDF policy information that support the needs of a variety of audiences through (1) Analytic Data Files and (2) a Book of Tables. These are made available to researchers, administrators, and policymakers with the goal of addressing important questions concerning the effects of alternative child care subsidy policies and practices on the children and families served, specifically parental employment and self-sufficiency, the availability and quality of care, and children's development. A description of the Data Files and Book of Tables is provided below: 1. Detailed, longitudinal Analytic Data Files of CCDF policy information for all 50 States, the District of Columbia, and United States Territories that capture the policies actually in effect at a point in time, rather than proposals or legislation. They focus on the policies in place at the start of each fiscal year, but also capture changes during that fiscal year. The data are organized into 32 categories with each category of variables separated into its own dataset. The categories span five general areas of policy including: Eligibility Requirements for Families and Children (Datasets 1-5) Family Application, Terms of Authorization, and Redetermination (Datasets 6-13) Family Payments (Datasets 14-18) Policies for Providers, Including Maximum Reimbursement Rates (Datasets 19-27) Overall Administrative and Quality Information Plans (Datasets 28-32) The information in the Data Files is based primarily on the documents that caseworkers use as they work with families and providers (often termed "caseworker manuals"). The caseworker manuals generally provide much more detailed information on eligibility, family payments, and provider-related policies than the documents submitted by states and territories to the federal government. The caseworker manuals also provide ongoing detail for periods in between submission dates. Each dataset contains a series of variables designed to capture the intricacies of the rules covered in the category. The variables include a mix of categorical, numeric, and text variables. Every variable has a corresponding notes field to capture additional details related to that particular variable. In addition, each category has an additional notes field to capture any information regarding the rules that is not already outlined in the category's variables. 2. The Book of Tables is available as seven datasets (Datasets 33-39) and they present key aspects of the differences in CCDF funded programs across all states and territories as of October 1, 2015. The Book of Tables includes variables that are calculated using several variables from the Data Files (Datasets 1-32). The Book of Tables summarizes a subset of the information available in the Data Files, and includes information about eligibility requirements for families; application,

  7. New York State RGGI Auction Proceeds

    • data.ny.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Energy Research and Development Authority (NYSERDA) (2025). New York State RGGI Auction Proceeds [Dataset]. https://data.ny.gov/Energy-Environment/New-York-State-RGGI-Auction-Proceeds/vxtc-b4mv
    Explore at:
    csv, application/rdfxml, application/rssxml, xml, json, tsvAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    New York State Energy Research and Development Authorityhttps://www.nyserda.ny.gov/
    Authors
    New York State Energy Research and Development Authority (NYSERDA)
    Area covered
    New York
    Description

    The Regional Greenhouse Gas Initiative (RGGI) is a multi-state cap-and-trade mechanism where polluters of greenhouse gas emissions must either reduce emissions or purchase emissions allowances. New York State allocates funds received from selling allowances to the New York State Energy Research and Development Authority (NYSERDA) to manage programs aimed at reducing fossil fuel consumption. The New York State RGGI Auction Proceeds dataset provides the results from each allowance auction including the allowance clearing price, the total number of allowances sold by the State, and the value earned by the State from selling allowances.

    The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit https://nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.

  8. d

    County Expenditures of State Lottery Funds - Multi-Year Report

    • catalog.data.gov
    • data.oregon.gov
    Updated Jul 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.oregon.gov (2025). County Expenditures of State Lottery Funds - Multi-Year Report [Dataset]. https://catalog.data.gov/dataset/county-expenditures-of-state-lottery-funds-multi-year-report
    Explore at:
    Dataset updated
    Jul 19, 2025
    Dataset provided by
    data.oregon.gov
    Description

    County Expenditures of State Lottery Funds: Data and informational reporting required under House Bill 3188 (2011). Visit the Oregon Transparency website for more information. https://www.oregon.gov/transparency/Pages/index.aspx

  9. A

    ‘US Public Food Assistance’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Apr 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2019). ‘US Public Food Assistance’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-us-public-food-assistance-5075/ca5319fe/?iid=006-512&v=presentation
    Explore at:
    Dataset updated
    Apr 22, 2019
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘US Public Food Assistance’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jpmiller/publicassistance on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    This dataset focuses on public assistance programs in the United States that provide food, namely SNAP and WIC. If you are interested in a broader picture of food security across the world, please see Food Security Indicators for the World 2016-2020.

    Initial coverage was for the Special Supplemental Nutrition Program for Women, Infants, and Children Program, or simply WIC. The program allocates Federal and State funds to help low-income women and children up to age five who are at nutritional risk. Funds are used to provide supplemental foods, baby formula, health care, and nutrition education.

    Starting with version 5, the dataset also covers the US Supplemental Nutrition Assistance Program, more commonly known as SNAP. The program is the successor to the Food Stamps program previously in place. The program provides food assistance to low-income families in the form of a debit card. A 2016 study using POS data from SNAP-eligible vendors showed the three most purchased types of food to be meats, sweetened beverages, and vegetables.

    Content

    Files may include participation data and spending for state programs, and poverty data for each state. Data for WIC covers fiscal years 2013-2016, which is actually October 2012 through September 2016. Data for SNAP covers 2015 to 2020.

    Motivation

    My original purpose here is two-fold:

    • Explore various aspects of US Public Assistance. Show trends over recent years and better understand differences across state agencies. Although the federal government sponsors the program and provides funding, program are administered at the state level and can widely vary. Indian nations (native Americans) also administer their own programs.

    • Share with the Kaggle Community the joy - and pain - of working with government data. Data is often spread across numerous agency sites and comes in a variety of formats. Often the data is provided in Excel, with the files consisting of multiple tabs. Also, files are formatted as reports and contain aggregated data (sums, averages, etc.) along with base data.

    As of March 2nd, I am expanding the purpose to support the M5 Forecasting Challenges here on Kaggle. Store sales are partly driven by participation in Public Assistance programs. Participants typically receive the items free of charge. The store then recovers the sale price from the state agencies administering the program.

    Additional Content Ideas

    The dataset can benefit greatly from additional content. Economics, additional demographics, administrative costs and more. I'd like to eventually explore the money trail from taxes and corporate subsidies, through the government agencies, and on to program participants. All community ideas are welcome!

    --- Original source retains full ownership of the source dataset ---

  10. d

    Data from: Modoc County

    • datasets.ai
    Updated Sep 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2024). Modoc County [Dataset]. https://datasets.ai/datasets/modoc-county-ce3d4
    Explore at:
    Dataset updated
    Sep 14, 2024
    Dataset authored and provided by
    State of California
    Area covered
    Modoc County
    Description
    Data Lens pages offer users an easy, interactive way to track notable debt data findings and trends in graphical form.

    By default, data are offered for a 30-year window. You can narrow the time range by clicking and dragging the cursor on the sale date chart.

    You can also select any column on any chart to filter all of the data. For example, if you select an issuer type column, all of the other charts will change to reflect data for just that issuer type, with a comparison to the total.

    By default, data are offered for the sum of principal amounts. You can use the dropdown arrow to sum on different categories. Although you can choose any category, the most meaningful are principal amounts, new money, and refunding amounts. You can also choose to view the data by the number of rows in our dataset.

    A data field may show no value if the debt issuer failed to provide the data, the data type did not apply to the debt issuance in question, or if the data was not collected at the time the issuance took place.
  11. Insurance Policy Assets, Liabilities, and Premiums

    • kaggle.com
    Updated Jan 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Insurance Policy Assets, Liabilities, and Premiums [Dataset]. https://www.kaggle.com/datasets/thedevastator/ny-insurance-policy-assets-liabilities-and-premi/versions/2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 7, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    NY Insurance Policy Assets, Liabilities, and Premiums Annually

    Investigating the Impact of Financial Health on Health Insurance Costs

    By State of New York [source]

    About this dataset

    This dataset tracks health insurance premiums written in New York annually since 2004. It provides vital insight into the amount of money and risk taken on by insurance companies in the state: including what types of insurers are writing policies, how much they are taking on in assets and liabilities, and how this has shifted over time. This data will be invaluable to those looking to understand large scale trends in terms of the health insurance industry. The data has been updated as recently as 2021, so it provides a comprehensive picture of changes year-over-year spanning nearly two decades

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains vital information regarding health insurance premiums, assets and liabilities related to policies written in New York annually. It is designed to provide key insights into the performance of insurance companies in New York state.

    The data consists of Type of Insurer, Company Name, Year, Assets, Liabilities and Premium Written for each policy written in every year since 2009. This data can be used to gain greater insight into the performance of certain companies within this industry over time as well as creating benchmarked comparison metrics against other companies within this market space.

    For individual or team exploration projects – you may want to compare one company’s yearly assets/liabilities or premiums against the average value for that same period in order to identify high or low performing periods or take a look at how some variables changed across a 5 year (or wider) timescale e.g compare how did assets/liabilites changed over the duration of 5 years?

    By utilizing basic data visualizations like scatterplots and bar graphs we can start gaining more insights from our analysis by looking at potential correlations between variables such as: Are premium prices related to their assets? Does company size have an impact on the premium price? Have liabilities remained constant compared with past years?

    Administrators in management roles could also use this dataset to track yearly changes within their own companys results- such as tracking existing trends over longer periods with pay attention for changes which require further investigation/ research as necessary .

    All in all this data set is a great tool for students , researchers & analysts alike!

    Research Ideas

    • Establishing a baseline of average health insurance premiums in New York by year across different insurers.
    • Comparing insurance company assets and liabilities with their premium-written to provide an understanding of how profitable they are in the New York market.
    • Tracking the growth and success of health insurers in the New York over time to understand changes in industry trends or policy standards

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: health-insurance-premiums-on-policies-written-in-new-york-annually-1.csv | Column name | Description | |:--------------------|:--------------------------------------------------------------------------------------------------------------------------------| | Type of Insurer | This column indicates the type of insurer that wrote the policy. (String) | | Company Name | This column indicates the name of the company that wrote the policy. (String) | | Year | This column indicates the year that the policy was written in. (Integer) | | Assets | This column indicates the total assets of the company that wrote the policy. (Integer) | | Liabilities | This column indicates the total liabilities of the company that wrote the policy. (Integer) | | Premium Written | This column indicates the total amount paid by an individual or organization for a given product or service annually. (Integer) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit State of New York.

  12. Child Care and Development Fund (CCDF) Policies Database, United States,...

    • childandfamilydataarchive.org
    ascii, delimited +5
    Updated Nov 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minton, Sarah; Dwyer, Kelly; Todd, Margaret; Kwon, Danielle (2023). Child Care and Development Fund (CCDF) Policies Database, United States, 2009-2022 [Dataset]. http://doi.org/10.3886/ICPSR38908.v1
    Explore at:
    excel, r, stata, ascii, sas, spss, delimitedAvailable download formats
    Dataset updated
    Nov 27, 2023
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Minton, Sarah; Dwyer, Kelly; Todd, Margaret; Kwon, Danielle
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38908/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38908/terms

    Time period covered
    Jan 1, 2009 - Dec 31, 2022
    Area covered
    United States
    Description

    The Child Care and Development Fund (CCDF) provides federal money to states and territories to provide assistance to low-income families, to obtain quality child care so they can work, attend training, or receive education. Within the broad federal parameters, States and Territories set the detailed policies. Those details determine whether a particular family will or will not be eligible for subsidies, how much the family will have to pay for the care, how families apply for and retain subsidies, the maximum amounts that child care providers will be reimbursed, and the administrative procedures that providers must follow. Thus, while CCDF is a single program from the perspective of federal law, it is in practice a different program in every state and territory. The CCDF Policies Database project is a comprehensive, up-to-date database of CCDF policy information that supports the needs of a variety of audiences through (1) analytic data files, (2) a project website and search tool, and (3) an annual report (Book of Tables). These resources are made available to researchers, administrators, and policymakers with the goal of addressing important questions concerning the effects of child care subsidy policies and practices on the children and families served. A description of the data files, project website and search tool, and Book of Tables is provided below: 1. Detailed, longitudinal analytic data files provide CCDF policy information for all 50 states, the District of Columbia, and the United States territories and outlying areas that capture the policies actually in effect at a point in time, rather than proposals or legislation. They capture changes throughout each year, allowing users to access the policies in place at any point in time between October 2009 and the most recent data release. The data are organized into 32 categories with each category of variables separated into its own dataset. The categories span five general areas of policy including: Eligibility Requirements for Families and Children (Datasets 1-5) Family Application, Terms of Authorization, and Redetermination (Datasets 6-13) Family Payments (Datasets 14-18) Policies for Providers, Including Maximum Reimbursement Rates (Datasets 19-27) Overall Administrative and Quality Information Plans (Datasets 28-32) The information in the data files is based primarily on the documents that caseworkers use as they work with families and providers (often termed "caseworker manuals"). The caseworker manuals generally provide much more detailed information on eligibility, family payments, and provider-related policies than the CCDF Plans submitted by states and territories to the federal government. The caseworker manuals also provide ongoing detail for periods in between CCDF Plan dates. Each dataset contains a series of variables designed to capture the intricacies of the rules covered in the category. The variables include a mix of categorical, numeric, and text variables. Most variables have a corresponding notes field to capture additional details related to that particular variable. In addition, each category has an additional notes field to capture any information regarding the rules that is not already outlined in the category's variables. Beginning with the 2020 files, the analytic data files are supplemented by four additional data files containing select policy information featured in the annual reports (prior to 2020, the full detail of the annual reports was reproduced as data files). The supplemental data files are available as 4 datasets (Datasets 33-36) and present key aspects of the differences in CCDF-funded programs across all states and territories as of October 1 of each year (2009-2022). The files include variables that are calculated using several variables from the analytic data files (Datasets 1-32) (such as copayment amounts for example family situations) and information that is part of the annual project reports (the annual Book of Tables) but not stored in the full database (such as summary market rate survey information from the CCDF plans). 2. The project website and search tool provide access to a point-and-click user interface. Users can select from the full set of public data to create custom tables. The website also provides access to the full range of reports and products released under the CCDF Policies Data

  13. d

    Santa Cruz County

    • datasets.ai
    Updated Oct 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2024). Santa Cruz County [Dataset]. https://datasets.ai/datasets/santa-cruz-county-bcb4b
    Explore at:
    Dataset updated
    Oct 7, 2024
    Dataset authored and provided by
    State of California
    Area covered
    Santa Cruz County
    Description
    Data Lens pages offer users an easy, interactive way to track notable debt data findings and trends in graphical form.

    By default, data are offered for a 30-year window. You can narrow the time range by clicking and dragging the cursor on the sale date chart.

    You can also select any column on any chart to filter all of the data. For example, if you select an issuer type column, all of the other charts will change to reflect data for just that issuer type, with a comparison to the total.

    By default, data are offered for the sum of principal amounts. You can use the dropdown arrow to sum on different categories. Although you can choose any category, the most meaningful are principal amounts, new money, and refunding amounts. You can also choose to view the data by the number of rows in our dataset.

    A data field may show no value if the debt issuer failed to provide the data, the data type did not apply to the debt issuance in question, or if the data was not collected at the time the issuance took place.
  14. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Mar 31, 2025
    Area covered
    United States
    Description

    Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  15. w

    Global Financial Inclusion (Global Findex) Database 2014 - United States

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 29, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2015). Global Financial Inclusion (Global Findex) Database 2014 - United States [Dataset]. https://microdata.worldbank.org/index.php/catalog/2507
    Explore at:
    Dataset updated
    Oct 29, 2015
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2014
    Area covered
    United States
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    National Coverage

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Sample survey data [ssd]

    Frequency of data collection

    Triennial

    Sampling procedure

    As in the first edition, the indicators in the 2014 Global Findex are drawn from survey data covering almost 150,000 people in more than 140 economies-representing more than 97 percent of the world's population. The survey was carried out over the 2014 calendar year by Gallup, Inc. as part of its Gallup World Poll, which since 2005 has continually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 140 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. The set of indicators will be collected again in 2017.

    Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or is the customary methodology. In most economies the fieldwork is completed in two to four weeks. In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid. In economies where cultural restrictions dictate gender matching, respondents are randomly selected through the Kish grid from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size in United States was 1,021 individuals.

    Mode of data collection

    Other [oth]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on cash withdrawals, saving using an informal savings club or person outside the family, domestic remittances, school fees, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden, “The Global Findex Database 2014: Measuring Financial Inclusion around the World.” Policy Research Working Paper 7255, World Bank, Washington, D.C.

  16. A

    ‘County Expenditures of State Lottery Funds - Multi-Year Report’ analyzed by...

    • analyst-2.ai
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘County Expenditures of State Lottery Funds - Multi-Year Report’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-county-expenditures-of-state-lottery-funds-multi-year-report-701c/c18b657e/?iid=002-018&v=presentation
    Explore at:
    Dataset updated
    Jan 27, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘County Expenditures of State Lottery Funds - Multi-Year Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/281e7b65-6a4d-4caf-9517-991752e322e6 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    County Expenditures of State Lottery Funds: Data required under House Bill 3188 (2011). Visit the Oregon Transparency website for more information. https://www.oregon.gov/transparency/Pages/index.aspx

    --- Original source retains full ownership of the source dataset ---

  17. T

    United States Fed Funds Interest Rate

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Fed Funds Interest Rate [Dataset]. https://tradingeconomics.com/united-states/interest-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Jul 14, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 4, 1971 - Jun 18, 2025
    Area covered
    United States
    Description

    The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  18. w

    Global Financial Inclusion (Global Findex) Database 2017 - United States

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 31, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2018). Global Financial Inclusion (Global Findex) Database 2017 - United States [Dataset]. https://microdata.worldbank.org/index.php/catalog/3238
    Explore at:
    Dataset updated
    Oct 31, 2018
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2017
    Area covered
    United States
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.

    Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.\

    The sample size was 1005.

    Mode of data collection

    Other [oth]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.

    Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank

  19. Instagram accounts with the most followers worldwide 2024

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

                  The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
    
                  How popular is Instagram?
    
                  Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
    
                  Who uses Instagram?
    
                  Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
    
                  Celebrity influencers on Instagram
                  Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
    
  20. kickstarter NLP

    • kaggle.com
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ÓscarVilla (2018). kickstarter NLP [Dataset]. https://www.kaggle.com/oscarvilla/kickstarter-nlp/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 9, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    ÓscarVilla
    Description

    introduction:

    "Kickstarter is an American public-benefit corporation2 based in Brooklyn, New York, that maintains a global crowdfunding platform focused on creativity and merchandising.3 The company's stated mission is to "help bring creative projects to life".4 Kickstarter has reportedly received more than $1.9 billion in pledges from 9.4 million backers to fund 257,000 creative projects, such as films, music, stage shows, comics, journalism, video games, technology and food-related projects.[5]

    People who back Kickstarter projects are offered tangible rewards or experiences in exchange for their pledges.[6] This model traces its roots to subscription model of arts patronage, where artists would go directly to their audiences to fund their work"Wikipedia

    So, what if you can predict if a project will be or not to be able to get the money from their backers?

    Content

    The datastet contains the blurbs or short description of 215513 projects runned along 2017, all written in english and all labeled with "successful" or "failed", if they get the money or not, respectively. From those texts you can train linguistics models for description, and even embeddings relative to the case.

    All this data were colected from the webrobots.io, who did the web scrapping and have a lot more of data. Then cleaned and tidied, keeping just the two columns we are interested by now and the projects with blurbs or descriptions in english and with final state of "successful" or "failed".

    Acknowledgements

    This dataset wouldn't be here without the help of webrobots and the incredible help of the tidyverse ecosystem packages.

    Photo by Pablo Rebolledo on Unsplash.

    Inspiration

    Can you create a model with an accuracy upper to 0.67? How about the quality and utility of the embeddings generated from this data? If you get a major accuracy, please, contact me.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Money Supply M2 [Dataset]. https://tradingeconomics.com/united-states/money-supply-m2

United States Money Supply M2

United States Money Supply M2 - Historical Dataset (1959-01-31/2025-06-30)

Explore at:
35 scholarly articles cite this dataset (View in Google Scholar)
json, xml, csv, excelAvailable download formats
Dataset updated
Jun 24, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1959 - Jun 30, 2025
Area covered
United States
Description

Money Supply M2 in the United States increased to 21942 USD Billion in May from 21862.40 USD Billion in April of 2025. This dataset provides - United States Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu