In 2021, about **** million people aged 65 years or older were living in California -- the most out of any state. In that same year, Florida, Texas, New York, and Pennsylvania rounded out the top five states with the most people aged 65 and over living there.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
For more than three decades UCSUR has documented the status of older adults in the County along multiple life domains. Every decade we issue a comprehensive report on aging in Allegheny County and this report represents our most recent effort. It documents important shifts in the demographic profile of the population in the last three decades, characterizes the current status of the elderly in multiple life domains, and looks ahead to the future of aging in the County. This report is unique in that we examine not only those aged 65 and older, but also the next generation old persons, the Baby Boomers. Collaborators on this project include the Allegheny County Area Agency on Aging, the United Way of Allegheny County, and the Aging Institute of UPMC Senior Services and the University of Pittsburgh.
The purpose of this report is to provide a comprehensive analysis of aging in Allegheny County. To this end, we integrate survey data collected from a representative sample of older county residents with secondary data available from Federal, State, and County agencies to characterize older individuals on multiple dimensions, including demographic change and population projections, income, work and retirement, neighborhoods and housing, health, senior service use, transportation, volunteering, happiness and life satisfaction, among others. Since baby boomers represent the future of aging in the County we include data for those aged 55-64 as well as those aged 65 and older.
Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the State Line, ID population pyramid, which represents the State Line population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of United States. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 202.77 million (61% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Global population aging poses an unprecedented challenge and calls for a rising effort in eldercare and healthcare. Steady-state visual evoked potential based brain-computer interface (SSVEP-BCI) boasts its high transfer rate and shows great promise in real-world applications to support aging. Public database is critically important for designing the SSVEP-BCI systems. However, the SSVEP-BCI database tailored for the elder is scarce in existing studies. Therefore, in this study, we present a large eldercare-oriented BEnchmark database of SSVEP-BCI for The Aging population (eldBETA). The eldBETA database consisted of the 64-channel electroencephalogram (EEG) from 100 elder subjects, each of whom performed seven blocks of 9-target SSVEP-BCI task. We expect that the eldBETA database would provide a substrate for the design and optimization of the BCI systems intended for the elders.
The Longitudinal Aging Study in India (LASI) aims to understand the situation of India’s elderly population by collecting data on their health, social situations, and economic circumstances. It will provide a foundation for innovative, rigorous, and multidisciplinary studies of aging in India that will inform policy and advance scientific knowledge. Its goal is to provide data harmonized with the Health and Retirement Study (HRS) and its sister studies around the world. A pilot study has been conducted that includes household survey data, Computer-Assisted Personal Interviews (CAPI) and molecular biomarkers. The results of the pilot study will inform the design of a full-scale, nationally representative LASI, with a sample of roughly 30,000 to be followed longitudinally (with refresher populations added as needed). Due to its harmonized design with parallel international studies, LASI will contribute to scientific insights and policy development in other countries as well. LASI will ultimately be part of a worldwide effort aimed at understanding how different institutions, cultures, and policies can understand and prepare for population ageing.
You can download the pilot data at the Harvard Program on the Global Demography of Aging website
Methodology
The LASI pilot survey targeted 1,600 individuals aged 45 and older and their spouses, and will inform the design and rollout of a full-scale, nationally representative LASI survey. The expectation is that LASI will be a biennial survey and will be representative of Indians aged 45 and older, with no upper age limit.
1,600 age-qualifying individuals were drawn from a stratified, multistage area probability sampling design. After a series of pre-pilot studies designed to test the instrument and the key ideas behind it, pilot data were collected through face-to-face interviews over three month time periods. Descriptive analyses of the data will be performed and lessons will be drawn to inform the launching of a full-scale LASI survey.
The LASI pilot survey was conducted in four states: Karnataka, Kerala, Punjab, and Rajasthan. To capture regional variation we have included two northern states (Punjab and Rajasthan) and two southern states (Karnataka and Kerala). Karnataka and Rajasthan were included in the Study on Global AGEing and Adult Health (SAGE), which will enable us to compare our findings with the SAGE data. The inclusion of Kerala and Punjab demonstrates our aim to obtain a broader representation of India, where geographic variations accompanied by socioeconomic and cultural differences call for careful study and deliberation. Punjab is an example of an economically developed state, while Rajasthan is relatively poor, with very low female literacy, high fertility, and persisting gender disparities. Kerala, which is known for its relatively efficient health care system, has undergone rapid social development and is included as a potential harbinger of how other Indian states might evolve.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract This paper aims to analyze the relationship between the cost of health care and the aging of the population assisted by a self-managed plan, reflecting on the ways to address the challenge arising from this conjunction of population demographic changes. This is a descriptive study of the 1997-2016 period based on secondary data from the management operator of the health plan under study and from another administrative database of a self-managing provider with broad nationwide coverage. Older adults (over 60 years) increased 55% during the study period. On the other hand, the so-called “very old” (over 80 years) grew 332.8%. The population above 60 years corresponds to 25.7% of the total, and accounts for 68.8% of expenses. Most of the population covered (84,6%) is located in the State of Rio de Janeiro, which has the highest per capita health care cost in Brazil. We found a relationship between aging of the beneficiary population and increased expenditure. It is imperative to invest in health promotion and disease prevention initiatives as a way of improving the quality of life and financial sustainability of the plan, and define a subsystem that delimits and regulates access to the network and is accepted by the beneficiaries.
These data are part of NACJD's Fast Track Release and are distributed as they there received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except of the removal of direct identifiers. Users should refer to the accompany readme file for a brief description of the files available with this collections and consult the investigator(s) if further information is needed.The objectives of the study were: (1) To determine the nature, incidence, and prevalence of fraud victimization among elderly consumers in Arizona and Florida; (2) To identify risk and protective factors associated with fraud victimization in this population; and (3) To evaluate the elderly population's awareness and use of state-based programs, including reporting behavior to law enforcement.The study is comprised of data from telephone surveys of 2,000 aged 60 years and older Arizona (n = 1,000) and Florida (n = 1,000). The survey was obtained via computer assisted telephone interviewing (CATI) administered by Precision Research in June and July of 2011. Data were collected seven days a week during specific times of the day that had the greatest probability of contacting a respondent. The interviews were primarily conducted in English but a Spanish survey instrument was constructed and used when necessary.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Weighted logistic regression to determine the odds of low muscle mass presence by hyperuricemia or SUA in the female population.
Purpose: The multi-country Study on Global Ageing and Adult Health (SAGE) is run by the World Health Organization's Multi-Country Studies unit in the Innovation, Information, Evidence and Research Cluster. SAGE is part of the unit's Longitudinal Study Programme which is compiling longitudinal data on the health and well-being of adult populations, and the ageing process, through primary data collection and secondary data analysis. SAGE baseline data (Wave 0, 2002/3) was collected as part of WHO's World Health Survey http://www.who.int/healthinfo/survey/en/index.html (WHS). SAGE Wave 1 (2007/10) provides a comprehensive data set on the health and well-being of adults in six low and middle-income countries: China, Ghana, India, Mexico, Russian Federation and South Africa. Objectives: To obtain reliable, valid and comparable health, health-related and well-being data over a range of key domains for adult and older adult populations in nationally representative samples To examine patterns and dynamics of age-related changes in health and well-being using longitudinal follow-up of a cohort as they age, and to investigate socio-economic consequences of these health changes To supplement and cross-validate self-reported measures of health and the anchoring vignette approach to improving comparability of self-reported measures, through measured performance tests for selected health domains To collect health examination and biomarker data that improves reliability of morbidity and risk factor data and to objectively monitor the effect of interventions
Additional Objectives: To generate large cohorts of older adult populations and comparison cohorts of younger populations for following-up intermediate outcomes, monitoring trends, examining transitions and life events, and addressing relationships between determinants and health, well-being and health-related outcomes To develop a mechanism to link survey data to demographic surveillance site data To build linkages with other national and multi-country ageing studies To improve the methodologies to enhance the reliability and validity of health outcomes and determinants data To provide a public-access information base to engage all stakeholders, including national policy makers and health systems planners, in planning and decision-making processes about the health and well-being of older adults
Methods: SAGE's first full round of data collection included both follow-up and new respondents in most participating countries. The goal of the sampling design was to obtain a nationally representative cohort of persons aged 50 years and older, with a smaller cohort of persons aged 18 to 49 for comparison purposes. In the older households, all persons aged 50+ years (for example, spouses and siblings) were invited to participate. Proxy respondents were identified for respondents who were unable to respond for themselves. Standardized SAGE survey instruments were used in all countries consisting of five main parts: 1) household questionnaire; 2) individual questionnaire; 3) proxy questionnaire; 4) verbal autopsy questionnaire; and, 5) appendices including showcards. A VAQ was completed for deaths in the household over the last 24 months. The procedures for including country-specific adaptations to the standardized questionnaire and translations into local languages from English follow those developed by and used for the World Health Survey.
Content Household questionnaire 0000 Coversheet 0100 Sampling Information 0200 Geocoding and GPS Information 0300 Recontact Information 0350 Contact Record 0400 Household Roster 0450 Kish Tables and Household Consent 0500 Housing 0600 Household and Family Support Networks and Transfers 0700 Assets and Household Income 0800 Household Expenditures 0900 Interviewer Observations
Individual questionnaire 1000 Socio-Demographic Characteristics 1500 Work History and Benefits 2000 Health State Descriptions and Vignettes 2500 Anthropometrics, Performance Tests and Biomarkers 3000 Risk Factors and Preventive Health Behaviours 4000 Chronic Conditions and Health Services Coverage 5000 Health Care Utilization 6000 Social Cohesion 7000 Subjective Well-Being and Quality of Life (WHOQoL-8 and Day Reconstruction Method) 8000 Impact of Caregiving 9000 Interviewer Assessment
National coverage
households and individuals
The household section of the survey covered all households in 19 of the 28 states in India which covers 96% of the population. Institutionalised populations are excluded. The individual section covered all persons aged 18 years and older residing within individual households.
Sample survey data [ssd]
World Health Survey Sampling India has 28 states and seven union territories. 19 of the 28 states were included in the design representing 96% of the population. India used a stratified multistage cluster sample design. Six states were selected in accordance with their geographic location and level of development. Strata were defined by the 6 states:(Assam, Karnataka, Maharashtra, Rajasthan, Uttar Pradesh and West Bengal), and locality (urban or rural). There are 12 strata in total. The 2000 Census demarcation was used as the sampling frame. Two stage and three stage sampling was adopted in rural and urban areas, respectively. In rural areas PSUs(villages) were selected probability proportional to size. The measure of size being the 2001 Census population in the village. SSUs (households) were selected using systematic sampling. TSUs (individuals) were selected using Kish tables. In urban areas, PSUs(city wards) were selected probability proportional to size. SSUs(census enumeration blocks), two were randomly selected from each PSU. TSU (households) were selected using systematic sampling. QSU (individuals) were selected as in rural areas. A sample of 379 EAs was selected as the primary sampling units(PSU).
SAGE Sampling The SAGE sample was pre-determined as all PSUs and households selected for the WHS/SAGE Wave 0 survey were included. Exceptions are three PSUs in Assam which were replaced as they were inaccessible due to flooding. And a further six PSUs were omitted for which the household roster information was not available. In each selected EA, a listing of the households was conducted to classify each household into the following mutually exclusive categories: 1)Households with a WHS/SAGE Wave 0 respondent aged 50-plus: all members aged 50-plus including the WHS/SAGE Wave 0 respondent were eligible for the individual interview. 2)Households with a WHS/SAGE Wave 0 respondent aged 47-49: all members aged 50-plus including the WHS/SAGE Wave 0 respondent aged 47-49 was eligible for the individual interview. 3)Households with a WHS/SAGE Wave 0 female respondent aged 18-46: all females members aged 18-49 including the WHS/SAGE Wave 0 female respondent aged 18-46 were eligible for the individual interview. 4)Households with a WHS/SAGE Wave 0 male respondent aged 18-46: three households were selected using systematic sampling and one male aged 18-49 was eligible for the individual interview. In the households not selected, all members aged 50-plus were eligible for the individual interview.
Stages of selection Strata: State, Locality=12 PSU: EAs=375 surveyed SSU: Households=10424 surveyed TSU: Individual=12198 surveyed
Face-to-face [f2f] PAPI
The questionnaires were based on the WHS Model Questionnaire with some modification and many new additions. A household questionnaire was administered to all households eligible for the study. A Verbal Autopsy questionnaire was administered to households that had a death in the last 24 months. An Individual questionniare was administered to eligible respondents identified from the household roster. A Proxy questionnaire was administered to individual respondents who had cognitive limitations. A Womans Questionnaire was administered to all females aged 18-49 years identified from the household roster. The questionnaires were developed in English and were piloted as part of the SAGE pretest in 2005. All documents were translated into Hindi, Assamese, Kanada and Marathi. SAGE generic questionnaires are available as external resources.
Data editing took place at a number of stages including: (1) office editing and coding (2) during data entry (3) structural checking of the CSPro files (4) range and consistency secondary edits in Stata
Household Response rate=88% Cooperation rate=92%
Individual: Response rate=68% Cooperation rate=92%
Measurement of skull ossification patterns is a standard method for aging various mammalian species and has been used to age Russian, Californian, and Alaskan sea otter populations. Cementum annuli counts have also been verified as an accurate aging method for the Alaskan sea otter population. In this study, cementum annuli count results and skull ossification patterns were compared as methods for aging the northern sea otter (Enhydra lutris kenyoni) population in Washington State. Significant agreement was found between the two methods suggesting that either method could be used to age the Washington population of otters. This study also found that ossification of the squamosal-jugal suture at the ventral glenoid fossa can be used to accurately differentiate male subadults from adults. To assist field biologists or others without access to cementum annuli or skull ossification analysis techniques, a suite of morphologic, physiologic, and developmental characteristics were analyzed to assess whether a set of these more easily accessible parameters could also reliably predict age class for the Washington population of otters. Tooth condition score, evidence of reproductive activity in females, and tooth eruption pattern were identified as the most useful criteria for classifying Washington sea otters as pups, juveniles, subadults, or adults/aged adults. A simple decision tree based on characteristics accessible in the field or at necropsy was created that can be used to reliably predict age class of Washington sea otters as determined by cementum annuli.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the State Line population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of State Line. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 3 (100% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the State Center population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of State Center. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 883 (57.04% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Center Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the State College population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of State College. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 - 64 years with a poulation of 35,231 (87.31% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State College Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of United States by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for United States. The dataset can be utilized to understand the population distribution of United States by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in United States. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for United States.
Key observations
Largest age group (population): Male # 30-34 years (11.65 million) | Female # 30-34 years (11.41 million). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Gender. You can refer the same here
Not seeing a result you expected?
Learn how you can add new datasets to our index.
In 2021, about **** million people aged 65 years or older were living in California -- the most out of any state. In that same year, Florida, Texas, New York, and Pennsylvania rounded out the top five states with the most people aged 65 and over living there.