https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
THIS DATASET WAS LAST UPDATED AT 8:10 PM EASTERN ON MARCH 24
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Herbarium has ca. 45,000 specimens and is one of the two largest herbaria in South Dakota. BHSC features the world’s largest collection of the distinctive vascular flora of the ecologically unique Black Hills of South Dakota and Wyoming. The collection contains vascular plants, algae, bryophytes and lichens. In addition, the collection consists of approximately 4000 specimens of fungi and slime molds, which include nearly all of the South Dakota state records. The extant vascular plant collection includes a limited number of specimens from around the world; including collections by A. Eastwood, P.O. Schallert, L.S. Rose, J.A. Calder, B.C. Tharp, W.H. Duncan, A.E. Radford, J.M. Gillet, C.G. Pringle, O. Degner, P.A. Munz, E.J. Palmer, K. Biswas, and B. Rosengurtt. Other important collections include those of F.L. Bennett (former BHSC Curator) and M.L. Kravig (Orchidologist). BHSC is also home to one of the largest collections of Miocene age plant fossils from the Great Plains of North America, with at least 10,000 fossils housed from throughout the Great Plains. Type collections of several fossil species from J.R. Thomasson and M.L. Gabel are held in the collection. Grasses (Poaceae), hackberries (Celtis, Ulmaceae), sedges (Cyperaceae) and borages (Boraginaceae) are well represented.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployment Rate - 16-19 Yrs., Black or African American (LNS14000018) from Jan 1972 to Feb 2025 about 16 to 19 years, African-American, household survey, unemployment, rate, and USA.
In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.
What is the NCIC?
The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.
Missing people in the United States
A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft.This dataset contains data for zip codes 5 digits in United States of America.ZIP Code Tabulation Areas (ZCTAs) are approximate area representations of U.S. Postal Service (USPS) ZIP Code service areas that the Census Bureau creates to present statistical data for each decennial census. The Census Bureau delineates ZCTA boundaries for the United States, Puerto Rico, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands once each decade following the decennial census. Data users should not use ZCTAs to identify the official USPS ZIP Code for mail delivery. The USPS makes periodic changes to ZIP Codes to support more efficient mail delivery.Processors and tools are using this data.EnhancementsAdd ISO 3166-3 codes.Simplify geometries to provide better performance across the services.Add administrative hierarchy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The RRING Work Package 3 (WP3) objective was to clarify how Research Funding Organisations (RFOs) and Research Performing Organisations (RPOs) operated within region-specific research and innovation environments. It explored how they navigated the governance and regulatory frameworks for Responsible Research and Innovation (RRI), as well as offering their perspectives on the entities responsible for RRI-related policy and action in their locales.
This data set covers the global survey research part, which was designed to contextualise how RPOs and RFOs interacted within the research environment and with non-academic stakeholders. Countries were grouped according to the UNESCO regions of the world and key results per region are listed below. For a detailed analysis and further findings of the work completed under WP3 of the RRING project, please refer to the full deliverable document "State of the Art of RRI in the Five UNESCO World Regions" [link to be inserted].
European and North American States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (92%), followed by diverse perspectives (88%), and gender equality (79%). Including ethnic minorities was the area which garnered the least attitudinal support (71%). Respondents took the most practical steps towards engaging with diverse perspectives (63%), and the least towards inclusion of ethnic minorities (24%).
‘Anticipative and reflective’: Respondents widely agreed (82%) with the importance of ensuring R&I work does not cause concerns for society, but only 37% confirmed they had taken practical steps to ensure this.
‘Open and transparent’: Vast majorities of respondents agreed on the importance of keeping R&I methods open and transparent (94%), with 65% also confirming they take practical steps to do this. An equally high number agreed on the importance of making the results of R&I work accessible to as wide a public as possible (94%), and 68% confirmed this through their reported actions. This indicated the smallest value-action gap of all RRI measures for respondents from European and North American countries. Attitudinal agreement on the importance of making data freely available to the public was lower (83%), as was the practical action aspect for this measure (45%).
‘Responsive and adaptive to change’: Most respondents agreed (89%) that it was important to ensure their work addresses societal needs, and 62% confirmed that they take practical steps towards this aim.
Latin American and Caribbean States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of gender equality in R&I (86%), followed by ensuring ethical principles are applied (85%), and diverse perspectives incorporated (83%). Including ethnic minorities was the area which garnered the least attitudinal support (77%). Respondents took the most practical steps towards ensuring ethical principles guide their work (50%), and the least towards including ethnic minorities (25%), but the smallest value action gap was found for gender equality.
‘Anticipative and reflective’: Respondents agreed (79%) that it is important to ensure R&I work does not cause concerns for society, but only 29% confirmed they had taken practical steps to ensure this.
‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (89%), with 45% indicating they had taken practical action. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (88%), and 44% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was slightly lower (81%), as was the practical action aspect for this measure (35%).
‘Responsive and adaptive to change’: Most respondents agreed (84%) that it was important to ensure their work addresses societal needs, and 49% confirmed that they take practical steps towards this aim.
Asian and Pacific States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (90%), followed by diverse perspectives (89%), and gender equality (86%). Including ethnic minorities was the area which garnered the least attitudinal support (76%). Respondents took the most practical steps towards engaging with diverse perspectives (65%), and the least towards including ethnic minorities (30%).
‘Anticipative and reflective’: Respondents widely agreed (78%) with the importance of ensuring R&I work does not cause concerns for society, and 42% confirmed they had taken practical steps to ensure this.
‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (91%), with 58% indicating they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (89%), and 64% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was lower (79%), as was the practical action aspect for this measure (40%).
‘Responsive and adaptive to change’: Most respondents agreed (92%) that it was important to ensure their work addresses societal needs, and 69% confirmed that they take practical steps towards this aim. This was the RRI measure with the smallest valueaction gap for respondents from the Asian and Pacific region.
Arab States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (93%), followed by diverse perspectives (81%), and gender equality (85%). Including ethnic minorities was the area which garnered the least attitudinal support (74%). Respondents took the most practical steps towards engaging with diverse perspectives (66%), which equated to one of two equally small value-action gaps for respondents from Arab states, and the least practical steps towards inclusion of ethnic minorities (22%).
‘Anticipative and reflective’: A high proportion of respondents (85%) agreed that it is important to ensure R&I work does not cause concerns for society. However, only 38% confirmed they had taken practical steps to ensure this.
‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (89%), with 59% also confirming they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (90%), and 66% backed this up with practical action. Ensuring public accessibility of research results was the second of two measures with equally small value-action gaps. Attitudinal agreement on the importance of making data freely available to the public was much lower (78%), which also reflected the practical action aspect for this measure (49%).
‘Responsive and adaptive to change’: Most respondents agreed (96%) that it was important to ensure their work addresses societal needs, and 68% confirmed that they take practical steps to achieve this.
African States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring engagement with diverse perspectives and expertise in R&I (91%), followed by ensuring ethical principles are applied (90%), and gender equality (89%). Including ethnic minorities was the area which garnered the least attitudinal support (74%). Respondents took the most practical steps towards ensuring ethical principles guide their work (57%), and the least towards including ethnic minorities (32%).
‘Anticipative and reflective’: The majority of respondents (85%) agreed that it is important to ensure R&I work does not cause concerns for society, with 59% confirming that they take practical steps to ensure this.
‘Open and transparent’: A high proportion of respondents agreed on the importance of keeping R&I methods open and transparent (90%), with 54% also confirming they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (86%), and 56% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was significantly lower (73%), as was the practical action aspect for this measure (38%).
‘Responsive and adaptive to change’: Respondents mostly agreed (92%) that it was important to ensure their work addresses societal needs, and 64% confirmed that they take practical steps towards this aim. This was the RRI measure with the smallest valueaction gap for respondents from African states.
Note: Please refer to the "RRING WP3 - Survey Data Documentation" document for detailed instructions on how to use this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: 11/1/2023: Publication of the COVID data will be delayed because of technical difficulties. Note: 9/20/2023: With the end of the federal emergency and reporting requirements continuing to evolve, the Indiana Department of Health will no longer publish and refresh the COVID-19 datasets after November 15, 2023 - one final dataset publication will continue to be available. Vaccination demographics data by county/region, by race, by ethnicity, by gender, and by age. Fields with less than 5 results have been marked as suppressed. Note: 3/22/2023: Due to a technical issue updates are delayed for COVID data. New files will be published as soon as they are available. Historical Changes: 1/5/2023: Due to a technical issue the COVID datasets were not updated on 1/4/23. Updates will be published as soon as they are available. 9/29/22: Due to a technical difficulty, the weekly COVID datasets were not generated yesterday. They will be updated with current data today - 9/29 - and may result in a temporary discrepancy with the numbers published on the dashboard until the normal weekly refresh resumes 10/5. 9/27/2022: As of 9/28, the Indiana Department of Health (IDOH) is moving to a weekly COVID update for the dashboard and all associated datasets to continue to provide trend data that is applicable and usable for our partners and the public. This is to maintain alignment across the nation as states move to weekly updates. 8/19/2022 - The first and second dose columns are being removed as of 8/22/22 as the Health department has transitioned to reporting on Fully/Partially vaccinated. The final historical file including these columns from 8/19 will continue to be available. 2/10/2022: Data was not published on 2/9/2022 due to a technical issue, but updated data was released 2/10/2022. 10/13/2021: This dataset now includes columns for new and total booster shots administered. Please see the data dictionary for additional details. 08/06/2021: There are updates today to county-level vaccination rates to reflect a correction to records that were assigned to the wrong location based on ZIP code. 06/23/2021: COVID Hub files will no longer be updated on Saturdays. The normal refresh of these files has been changed to Mon-Fri. 06/10/2021: COVID Hub files will no longer be updated on Sundays. The normal refresh of these files has been changed to Mon-Sat. 06/07/2021: Today’s new counts include doses newly reported to the Indiana Department of Health on Saturday and Sunday. 06/03/2021: Individuals are able to update their personal and demographic information during the vaccination registration process. Today’s data reflects changes made by individuals to their race, ethnicity, or county of residence over the course of their vaccination series. 05/13/2021: The 12-15 year-old age group has been added into the dataset as of today. 05/06/2021: On Monday 5/3, individuals classified as "Unknown" county of residence were inadvertently converted to "Out of State." These individuals have been corrected in today's dataset. 03/11/2021: This dataset has been updated to include totals and newly administered single dose vaccination data. Additionally the existing age groups have been further stratified into a 16-19 year old age group, and 5 year groups for 20-79 year olds.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2018-08-10.[NOTE: Includes firms with payroll at any time during 2016. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2016 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status or that were publicly held or not classifiable by gender, ethnicity, race, or veteran status. Percentages are for respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for U.S. Employer Firms by Outcome of Business Advice or Mentoring by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016. ..Release Schedule. . This file was released in August 2018.. ..Key Table Information. . These data are related to all other 2016 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2016 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2016 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. In this file, "respondent firms" refers to all firms that reported gender, ethnicity, race, or veteran status for at least one owner or returned a survey form with at least one item completed and were publicly held or not classifiable by gender, ethnicity, race, and veteran status.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for U.S. Employer Firms by Outcome of Business Advice or Mentoring by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 contains data on:. . Number of firms with paid employees. Sales and receipts for firms with paid employees. Number of employees for firms with paid employees. Annual payroll for firms with paid employees. Percent of respondent firms with paid employees. Percent of sales and receipts of respondent firms with paid employees. Percent of number of employees of respondent firms with paid employees. Percent of annual payroll of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of respondent firms. . All firms. Female-owned. Male-owned. Equally male-/female-owned. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Equally minority/nonminority. Nonminority. Veteran-owned. Equally veteran-/nonveteran-owned. Nonveteran-owned. All firms classifiable by gender, ethnicity, race, and veteran status. Publicly held and other firms not classifiable by gender, ethnicity, race, and veteran status. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 10 years in business. Firms with 11 to 15 years in business. ...
The northern Sierra Nevada foothills wildlife connectivity project modeled wildlife corridors for 9 focal species between 238 landscape blocks within the northern Sierra Nevada foothills and neighboring ecoregions. We followed the least-cost corridor techniques described by Beier et al. (2007). This analysis identified the least-cost corridor, or the best potential route for each species, between neighboring landscape blocks. The data needed for a least-cost corridor analysis are a resistance raster and landscape blocks. The resistance raster is the inverse of the species distribution model (SDM) output (i.e., Maxent or BioView habitat models, which rank habitat suitability across the landscape from 0-100 for each species). We identified habitat patches for each focal species within each landscape block, and connected those habitat patches using the least-cost corridor models. The least-cost corridor model does not identify barriers, risk and dispersal. We removed urban areas and areas of unsuitable/non-restorable habitat from the corridors and then inspected the corridor to make sure they were continuous. We examined the amount of predicted suitable habitat in each corridor, and measured the distance between habitat patches within each corridor to make sure it was within the maximum dispersal distance for that focal species. If the corridors did not meet these rules then habitat patches on the border of the corridor were added to meet the selection requirements. For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vaccines are one of the most successful tools for protecting the public’s health. However, widespread vaccine hesitancy in the Southern United States is preventing effective mitigation of the current COVID-19 pandemic. The purpose of this study was to assess COVID-19 vaccine acceptance among adults living in a largely rural Southern state. This cross-sectional study collected data from 1,164 Arkansas residents between October 3 and October 17, 2020 using random digit dialing. The primary outcome was a multidimensional COVID-19 vaccine acceptance measure with scores between -3 to +3. The full COVID-19 vaccine acceptance scale was measured along with perceived vaccine safety, effectiveness, acceptance, value, and legitimacy subscales. Statistical analyses were conducted using multivariable linear regression. Results indicated Black participants had the lowest overall vaccine acceptance (0.5) compared to White participants (1.2). Hispanic participants had the highest scores (1.4). In adjusted models, Black participants had 0.81 points lower acceptance than White participants, and Hispanic participants had 0.35 points higher acceptance. Hispanic participants had the highest scores for all five vaccine acceptance subscales, relatively equivalent to White participants. Black participants had consistently lower scores, especially perceived vaccine safety (mean -0.2, SD 0.1). In conclusion, the lowest vaccine acceptance rates were among Black participants particularly on perceived vaccine safety. While Black participants had the lowest acceptance scores, Hispanic participants had the highest. This variability shows the value of a multidimensional vaccine acceptance measure to inform COVID-19 vaccination campaign strategies.
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black). Later vintages of this layer have a different age group for children that includes age 18. This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The DXY decreased 0.1629 or 0.16% to 104.3841 on Thursday March 27 from 104.5470 in the previous trading session. United States Dollar - values, historical data, forecasts and news - updated on March of 2025.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
NOTE: As of 2/16/2023 this table is no longer being updated. For information on COVID-19 Updated (Bivalent) Booster Coverage, go to https://data.ct.gov/Health-and-Human-Services/COVID-19-Updated-Bivalent-Booster-Coverage-By-Race/8267-bg4w.
Important change as of June 1, 2022
As of June 1, 2022, we will be using 2020 DPH provisional census estimates* to calculate vaccine coverage percentages by age at the state level. 2020 estimates will replace the 2019 estimates that have been used. Caution should be taken when making comparisons of percentages calculated using the 2019 and 2020 census estimates since observed difference may result from the shift in the denominator. The age groups in the state-level data tables will also be changing as a result of the switch to the new denominator.
This table shows the number and percent of people that have initiated COVID-19 vaccination, are fully vaccinated and had additional dose 1 by race / ethnicity and age group.
All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. The age groups in the state-level data tables will also be changing as a result of the switch to the new denominator.
Population size estimates are based on 2019 DPH census estimates until 5/26/2022. From 6/1/2022, 2020 DPH provisional census estimates are used.
In the data shown here, a person who has received at least one dose of COVID-19 vaccine is considered to have initiated vaccination. A person is considered fully vaccinated if he/she has completed a primary vaccination series by receiving 2 doses of the Pfizer, Novavax or Moderna vaccines or 1 dose of the Johnson & Johnson vaccine. The fully vaccinated are a subset of the people who have received at least one dose.
A person who completed a Pfizer, Moderna, Novavax or Johnson & Johnson primary series (as defined above) and then had an additional monovalent dose of COVID-19 vaccine is considered to have had additional dose 1. The additional dose may be Pfizer, Moderna, Novavax or Johnson & Johnson and may be a different type from the primary series. For people who had a primary Pfizer or Moderna series, additional dose 1 was counted starting August 18th, 2021. For people with a Johnson & Johnson primary series additional dose 1 was counted starting October 22nd, 2021. For most people, additional dose 1 is a booster. However, additional dose 1 may represent a supplement to the primary series for a people who is moderately or severely immunosuppressed. Bivalent booster administrations are not included in the additional dose 1 calculations.
The percent with at least one dose many be over-estimated, and the percent fully vaccinated and with additional dose 1 may be under-estimated because of vaccine administration records for individuals that cannot be linked because of differences in how names or date of birth are reported.
Race and ethnicity data may be self-reported or taken from an existing electronic health care record. Reported race and ethnicity information is used to create a single race/ethnicity variable. People with Hispanic ethnicity are classified as Hispanic regardless of reported race. People with a missing ethnicity are classified as non-Hispanic. People with more than one race are classified as multiple races.
A vaccine coverage percentage cannot be calculated for people classified as NH Other race or NH Unknown race since there are not population size estimates for these groups. Data quality assurance activities suggest that in at least some cases NH Other may represent a missing value. Vaccine coverage estimates in specific race/ethnicity groups may be underestimated as result of the classification of records as NH Unknown Race or NH Other Race.
Connecticut COVID-19 Vaccine Program providers are required to report information on all COVID-19 vaccine doses administered to CT WiZ, the Connecticut Immunization Information System. This includes doses given to residents of CT and to residents of other states vaccinated in CT. Data on doses administered to CT residents out-of-state are being added to CT WiZ jurisdiction-by-jurisdiction. Doses administered by some Federal entities (including Department of Defense, Department of Correction, Department of Veteran’s Affairs, Indian Health Service) are not yet reported to CT WiZ. Data reported here reflect the vaccination records reported to CT WiZ. However, once CT residents who have received doses in each jurisdiction are added to CT WiZ, the records for residents of that jurisdiction vaccinated in CT are removed. For example, when CT residents vaccinated in NYC were added, NYC residents vaccinated in CT were removed.
Note: This dataset takes the place of the original "COVID-19 Vaccinations by Race/Ethnicity" dataset (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/xkga-ifz3 ), which will not be updated after 5/20/2021 and “COVID-19 Vaccinations by Race / Ethnicity” dataset (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/ybkg-w5x2), which will not be updated after 10/20/2021.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2018-08-10.[NOTE: Includes firms with payroll at any time during 2016. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2016 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status or that were publicly held or not classifiable by gender, ethnicity, race, or veteran status. Percentages are for respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for U.S. Employer Firms by Percent of Total Sales of Goods/Services Exported Outside the United States by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016. ..Release Schedule. . This file was released in August 2018.. ..Key Table Information. . These data are related to all other 2016 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2016 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2016 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. In this file, "respondent firms" refers to all firms that reported gender, ethnicity, race, or veteran status for at least one owner or returned a survey form with at least one item completed and were publicly held or not classifiable by gender, ethnicity, race, and veteran status.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for U.S. Employer Firms by Percent of Total Sales of Goods/Services Exported Outside the United States by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 contains data on:. . Number of firms with paid employees. Sales and receipts for firms with paid employees. Number of employees for firms with paid employees. Annual payroll for firms with paid employees. Percent of respondent firms with paid employees. Percent of sales and receipts of respondent firms with paid employees. Percent of number of employees of respondent firms with paid employees. Percent of annual payroll of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of respondent firms. . All firms. Female-owned. Male-owned. Equally male-/female-owned. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Equally minority/nonminority. Nonminority. Veteran-owned. Equally veteran-/nonveteran-owned. Nonveteran-owned. All firms classifiable by gender, ethnicity, race, and veteran status. Publicly held and other firms not classifiable by gender, ethnicity, race, and veteran status. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 1...
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Aim: Isolation by Distance (IBD) is a genetic pattern in which populations geographically closer to one another are more genetically similar to each other than populations which are farther apart. Black cherry (Prunus serotina Ehrh.) (Rosaceae) is a forest tree species widespread in eastern North America, and found sporadically in the southwestern United States, Mexico, and Guatemala. IBD has been studied in relatively few North American plant taxa, and no study has rigorously sampled across the range of such a widespread species. In this study, IBD and overall genetic structure were assessed in eastern black cherry (P. serotina Ehrh. subsp. serotina), the widespread subspecies of eastern North America. Location: Eastern North America Taxon: Prunus serotina Ehrh. Rosaceae Methods: Dense sampling across the entire range of eastern black cherry was made possible by genotyping 15 microsatellite loci in 439 herbarium samples from all portions of the range. Mantel tests and STRUCTURE analyses were performed to evaluate the hypothesis of IBD and genetic structure. Results: Mantel tests demonstrated significant but weak IBD, while STRUCTURE analyses revealed no clear geographic pattern of genetic groups. Main conclusions: The modest geographic/genetic structure across the eastern black cherry range suggests widespread gene flow in this taxon. This is consistent with P. serotina's status as a disturbance-associated species. Further studies should similarly evaluate IBD in species characteristic of low-disturbance forests.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 5001, 5002, 5005,.., 5999 within census tract 1210.02 are also within BG 5 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 5,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The BG boundaries in this release are those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2010 Census.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.