Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
This dataset identifies the number of individually-owned domestic wells, and the number of households relying upon domestic water supply in the state of California. The number of wells and households are summarized for each Public Land Survey System (PLSS) section. The well locations were determined from more than 635,000 scanned well-completion reports (WCRs) provided by the California Department of Water Resources in 2011. This is only a partial sample of the total number of WCRs (estimated at 1 to 2 million in total). The number of domestic wells was estimated based upon a spatially distributed and randomized survey that determined the Township Ratio (TR) for each township in the state (4,692 in total). Each township generally contains 36 sections (6 x 6). The total number of wells within a section was multiplied by the corresponding TR to estimate the number of domestic wells within each section. See the "TRatio" column in the attribute table. Each section within the same township will have the same Township Ratio. The domestic household data are from the 1990 US Census. These data were provided at the census tract level and were subsequently aggregated to PLSS sections that contained a domestic well. In the case where census tract data identified households using domestic supply, but there were no domestic wells within the tract, the household data were distributed evenly to all sections within the tract. In San Luis Obispo County, the scanned WCRs were incomplete. Therefore, a surrogate method was used. The total number of households reported by the 1990 census did not change; only the distribution of where those households existed within the tract changed. A WCR was considered an individually-owned domestic well if the primary use of the well was identified as being domestic, the owner was an individual, and the well was not destroyed as of 1990. See the larger body work (Johnson and Belitz 2015) for more details.
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Context
The dataset tabulates the Non-Hispanic population of United States by race. It includes the distribution of the Non-Hispanic population of United States across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of United States across relevant racial categories.
Key observations
Of the Non-Hispanic population in United States, the largest racial group is White alone with a population of 193.34 million (71.80% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Race & Ethnicity. You can refer the same here
This Religion and State-Minorities (RASM) dataset is supplemental to the Religion and State Round 2 (RAS2) dataset. It codes the RAS religious discrimination variable using the minority as the unit of analysis (RAS2 uses a country as the unit of analysis and, is a general measure of all discrimination in the country). RASM codes religious discrimination by governments against all 566 minorities in 175 countries which make a minimum population cut off. Any religious minority which is at least 0.25 percent of the population or has a population of at least 500,000 (in countries with populations of 200 million or more) are included. The dataset also includes all Christian minorities in Muslim countries and all Muslim minorities in Christian countries for a total of 597 minorities. The data cover 1990 to 2008 with yearly codings.
These religious discrimination variables are designed to examine restrictions the government places on the practice of religion by minority religious groups. It is important to clarify two points. First, these variables focus on restrictions on minority religions. Restrictions that apply to all religions are not coded in this set of variables. This is because the act of restricting or regulating the religious practices of minorities is qualitatively different from restricting or regulating all religions. Second, this set of variables focuses only on restrictions of the practice of religion itself or on religious institutions and does not include other types of restrictions on religious minorities. The reasoning behind this is that there is much more likely to be a religious motivation for restrictions on the practice of religion than there is for political, economic, or cultural restrictions on a religious minority. These secular types of restrictions, while potentially motivated by religion, also can be due to other reasons. That political, economic, and cultural restrictions are often placed on ethnic minorities who share the same religion and the majority group in their state is proof of this.
This set of variables is essentially a list of specific types of religious restrictions which a government may place on some or all minority religions. These variables are identical to those included in the RAS2 dataset, save that one is not included because it focuses on foreign missionaries and this set of variables focuses on minorities living in the country. Each of the items in this category is coded on the following scale:
0. The activity is not restricted or the government does not engage in this practice.
1. The activity is restricted slightly or sporadically or the government engages in a mild form of this practice or a severe form sporadically.
2. The activity is significantly restricted or the government engages in this activity often and on a large scale.
A composite version combining the variables to create a measure of religious discrimination against minority religions which ranges from 0 to 48 also is included.
ARDA Note: This file was revised on October 6, 2017. At the PIs request, we removed the variable reporting on the minority's percentage of a country's population after finding inconsistencies with the reported values. For detailed data on religious demographics, see the "/data-archive?fid=RCSREG2" Target="_blank">Religious Characteristics of States Dataset Project.
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Labor Force Participation Rate in the United States decreased to 62.40 percent in May from 62.60 percent in April of 2025. This dataset provides the latest reported value for - United States Labor Force Participation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
This site provides access to download an ArcGIS geodatabase or shapefiles for the 2017 Texas Address Database, compiled by the Center for Water and the Environment (CWE) at the University of Texas at Austin, with guidance and funding from the Texas Division of Emergency Management (TDEM). These addresses are used by TDEM to help anticipate potential impacts of serious weather and flooding events statewide. This is part of the Texas Water Model (TWM), a project to adapt the NOAA National Water Model [1] for use in Texas public safety. This database was compiled over the period from June 2016 to December 2017. A number of gaps remain (towns and cities missing address points), see Address Database Gaps spreadsheet below [4]. Additional datasets include administrative boundaries for Texas counties (including Federal and State disaster-declarations), Councils of Government, and Texas Dept of Public Safety Regions. An Esri ArcGIS Story Map [5] web app provides an interactive map-based portal to explore and access these data layers for download.
The address points in this database include their "height above nearest drainage" (HAND) as attributes in meters and feet. HAND is an elevation model developed through processing by the TauDEM method [2], built on USGS National Elevation Data (NED) with 10m horizontal resolution. The HAND elevation data and 10m NED for the continental United States are available for download from the Texas Advanced Computational Center (TACC) [3].
The complete statewide dataset contains about 9.28 million address points representing a population of about 28 million. The total file size is about 5GB in shapefile format. For better download performance, the shapefile version of this data is divided into 5 regions, based on groupings of major watersheds identified by their hydrologic unit codes (HUC). These are zipped by region, with no zipfile greater than 120mb: - North Tx: HUC1108-1114 (0.52 million address points) - DFW-East Tx: HUC1201-1203 (3.06 million address points) - Houston-SE Tx: HUC1204 (1.84 million address points) - Central Tx: HUC1205-1210 (2.96 million address points) - Rio Grande-SW Tx: HUC2111-1309 (2.96 million address points)
Additional state and county boundaries are included (Louisiana, Mississippi, Arkansas), as well as disaster-declaration status.
Compilation notes: The Texas Commission for State Emergency Communications (CSEC) provided the first 3 million address points received, in a single batch representing 213 of Texas' 254 counties. The remaining 41 counties were primarily urban areas comprising about 6.28 million addresses (totaling about 9.28 million addresses statewide). We reached the GIS data providers for these areas (see Contributors list below) through these emergency communications networks: Texas 9-1-1 Alliance, the Texas Emergency GIS Response Team (EGRT), and the Texas GIS 9-1-1 User Group. The address data was typically organized in groupings of counties called Councils of Governments (COG) or Regional Planning Commissions (RPC) or Development Councils (DC). Every county in Texas belongs to a COG, RPC or DC. We reconciled all counties' addresses to a common, very simple schema, and merged into a single geodatabase.
November 2023 updates: In 2019, TNRIS took over maintenance of the Texas Address Database, which is now a StratMap program updated annually [6]. In 2023, TNRIS also changed its name to the Texas Geographic Information Office (TxGIO). The datasets available for download below are not being updated, but are current as of the time of Hurricane Harvey.
References: [1] NOAA National Water Model [https://water.noaa.gov/map] [2] TauDEM Downloads [https://hydrology.usu.edu/taudem/taudem5/downloads.html] [3] NFIE Continental Flood Inundation Mapping - Data Repository [https://web.corral.tacc.utexas.edu/nfiedata/] [4] Address Database Gaps, Dec 2017 (download spreadsheet below) [5] Texas Address and Base Layers Story Map [https://www.hydroshare.org/resource/6d5c7dbe0762413fbe6d7a39e4ba1986/] [6] TNRIS/TxGIO StratMap Address Points data downloads [https://tnris.org/stratmap/address-points/]
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
The Business Dynamics Statistics (BDS) includes measures of establishment openings and closings, firm startups, job creation and destruction by firm size, age, and industrial sector, and several other statistics on business dynamics. The U.S. economy is comprised of over 6 million establishments with paid employees. The population of these businesses is constantly churning -- some businesses grow, others decline and yet others close. New businesses are constantly replenishing this pool. The BDS series provide annual statistics on gross job gains and losses for the entire economy and by industrial sector, state, and MSA. These data track changes in employment at the establishment level, and thus provide a picture of the dynamics underlying aggregate net employment growth.
There is a longstanding interest in the contribution of small businesses to job and productivity growth in the U.S. Some recent research suggests that it is business age rather than size that is the critical factor. The BDS permits exploring the respective contributions of both firm age and size.
BDS is based on data going back through 1976. This allows business dynamics to be tracked, measured and analyzed for young firms in their first critical years as well as for more mature firms including those that are in the process of reinventing themselves in an ever changing economic environment.
If you need help understanding the terms used, check out these definitions.
Key | List of... | Comment | Example Value |
---|---|---|---|
State | String | The state that this report was made for (full name, not the two letter abbreviation). | "Alabama" |
Year | Integer | The year that this report was made for. | 1978 |
Data.DHS Denominator | Integer | The Davis-Haltiwanger-Schuh (DHS) denominator is the two-period trailing moving average of employment, intended to prevent transitory shocks from distorting net growth. In other words, this value roughly represents the employment for the area, but is resistant to sudden, spiking growth. | 972627 |
Data.Number of Firms | Integer | The number of firms in this state during this year. | 54597 |
Data.Calculated.Net Job Creation | Integer | The sum of the Job Creation Rate minus the Job Destruction Rate. | 74178 |
Data.Calculated.Net Job Creation Rate | Float | The sum of the Job Creation Rate and the Job Destruction Rate, minus the Net Job Creation Rate. | 7.627 |
Data.Calculated.Reallocation Rate | Float | The sum of the Job Creation Rate and the Job Destruction Rate, minus the absolute Net Job Creation Rate. | 29.183 |
Data.Establishments.Entered | Integer | The number of establishments that entered during this time. Entering occurs when an establishment did not exist in the previous year. | 10457 |
Data.Establishments.Entered Rate | Float | The number of establishments that entered during this time divided by the number of establishments. Entering occurs when an establishment did not exist in the previous year. | 16.375 |
Data.Establishments.Exited | Integer | The number of establishments that exited during this time. Exiting occurs when an establishment has positive employment in the previous year and zero this year. | 7749 |
Data.Establishments.Exited Rate | Float | The number of establishments that exited during this time divided by the number of establishments. Exiting occurs when an establishment has positive employment in the previous year and zero this year. | 12.135 |
Data.Establishments.Physical Locations | Integer | The number of establishments in this region during this time. | 65213 |
Data.Firm Exits.Count | Integer | The number of firms that exited this year. | 5248 |
Data.Firm Exits.Establishment Exit | Integer | The number of establishments exited because of firm deaths. | 5329 |
Data... |
This metadata record describes a series of data sets of natural and anthropogenic landscape features linked to NHDPlus Version 2.1’s (NHDPlusV2) approximately 2.7 million stream segments, their associated catchments, and their upstream watersheds within the conterminous United States. The data were linked to four spatial components of NHDPlusV2: individual reach catchments, riparian buffer zones around individual reaches, reach catchments accumulated downstream through the river network, and riparian buffer zones accumulated downstream through the river network. All data can be linked to NHDPlus using the COMID field in these tables and the ComID in the flowline shapefiles or FEATUREID in the catchment ones in the NHDPlus data suite. The datasets were derived using a topologically reconditioned version of the NHDPlusv2 routing network (Schwarz and Wieczorek, 2018). This database is used for the routing of upstream watersheds only. No cartographic changes were made to the original NHDPlusv2 in either the flowline or reach catchment line work. These data are listed under 13 themes which include: 1) Best Management Practices, characteristics such as agricultural management practices and land in conservation practices. 2) Chemical, characteristics such as nitrogen application or toxicity weighted use. 3) Climate and Water Balance Model, characteristics such as model outputs of runoff, actual evapotranspiration or ground water storage. 4) Climate, characteristics such as mean precipitation, temperature, relative humidity, or evapotranspiration. 5) Geology, characteristics such as Hunt or Soller surficial geologies. 6) Hydrologic, characteristics such as base flow or infiltration excess overland flow.Hydrologic Modifications, characteristics such as dam storage or tile drains. 7) Hydrologic Modifications, characteristics such as dam storage or tile drains. 8) Landscape, characteristics such as NLCD, CDL or NWALT. 9) Population Infrastructure, characteristics such as population, housing, and road densities. 10) Regions, characteristics such as EcoRegions, Physiography or Hydrologic Landscapes. 11) Soils, characteristics such as STATSGO, soil salinity, and soil restrictive layer. 12) Topographic Characteristics, characteristics such as basin area, slope and elevation. 13) Water use, characteristics such as estimated freshwater withdrawls and estimated freshwater consumption by thermo-electric power plants These data allow researchers and managers to acquire landscape information for both catchments (for example, the nearby landscape flowing directly into streams) and full upstream watersheds of specific stream reaches anywhere in the within the conterminous United States without having to perform specialized geospatial processing. Aside from comma separated text files, parquet files with the same file structure were also added to each data file under each child item theme. This format will allow researchers to acquire all the information from this data release in an efficient and consistent manner by utilizing and thereby adhering to the FAIR guidelines outlined in Lightsom and others (USGS, 2022).
Estimated number of persons by quarter of a year and by year, Canada, provinces and territories.
The number of social media users in the United States was forecast to continuously increase between 2024 and 2029 by in total 26 million users (+8.55 percent). After the ninth consecutive increasing year, the social media user base is estimated to reach 330.07 million users and therefore a new peak in 2029. Notably, the number of social media users of was continuously increasing over the past years.The shown figures regarding social media users have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
This dataset provides county-level data for Nitrogen fertilizer applied to county croplands [1000 kg N/yr]. This includes only those crops used in an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. Cropland area statistics are from the National Agricultural Statistical Service (NASS) for 1990 for most crops, though some are 1992 data from the Census of Agriculture. Data represent total of irrigated and non-irrigated areas. (see NASS Crops County Data).
This is based on 'typical' nitrogen fertilization rates for each of the crops. The fertilizer application rates (see Table below) were derived from USDA NASS state agricultural statistics bulletins.
Crop Typical' N Fert. Rate (kg N/ha) Alfalfa 0 Barley 75 Corn (grain & silage) 125 Cotton 100 Edible Bean 0 Idle Cropland 0 Non-Legume Hay 25 Oats 75 Pasture 0 Peanut 0 Potatoes 250 Rice 140 Sorghum 75 Soybean 0 Spring Wheat 50 Sugarbeets 150 Sugarcane 200 Sunflower 100 Tobacco 100 Vegetables 100 Winter Wheat 75
County crop areas were multiplied by the nitrogen fertilization rates given above to determine total N-fertilization of these croplands per year. The 1990 national total N fertilizer use calculated by this method (8.5 million tonnes N/yr) is 83% of the 1990 national N-fertilizer sales (10.3 million tonnes N/yr). The sales total is expected to be larger because it will include fertilizer sold for other uses (eg. lawns, golf courses, other non-crop uses) as well as farm-use fertilizer applied to crops not included in the crop database (eg. vineyards, orchards, sod). The source for N fertilizer sales is American Assoc. of Plant Food Control Officials, 103 Regulatory Services Building; University of Kentucky; Lexington, KY 40546-0275; Phone (606)257-2668 fax (606)257-7351.
EOS-WEBSTER provides seven datasets which provide county-level data on agricultural management, crop production, livestock, soil properties, geography and population. These datasets were assembled during the mid-1990's to provide driving variables for an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. The data (except nitrogen fertilizer use) were all derived from publicly available, national databases. Each dataset has a separate DIF.
The US County data has been divided into seven datasets.
US County Data Datasets:
1) Agricultural Management 2) Crop Data (NASS Crop data) 3) Crop Summary (NASS Crop data) 4) Geography and Population 5) Land Use 6) Livestock Populations 7) Soil Properties
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.
The number of Reddit users in the United States was forecast to continuously increase between 2024 and 2028 by in total 10.3 million users (+5.21 percent). After the ninth consecutive increasing year, the Reddit user base is estimated to reach 208.12 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like Mexico and Canada.
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia counties by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.