The dataset consists of three raster GeoTIFF files describing the following soil properties in the US: available water capacity, field capacity, and soil porosity. The input data were obtained from the gridded National Soil Survey Geographic (gNATSGO) Database and the Gridded Soil Survey Geographic (gSSURGO) Database with Soil Data Development tools provided by the Natural Resources Conservation Service. The soil characteristics derived from the databases were Available Water Capacity (AWC), Water Content (one-third bar) (WC), and Bulk Density (one-third bar) (BD) aggregated as weighted average values in the upper 1 m of soil. AWC and WC layers were converted to mm/m to express respectively available water capacity and field capacity in 1 m of soil, and BD layer was used to produce soil porosity raster assuming that the average particle density of soils is equal to 2.65 g/cm3. For each soil property, soil maps with CONUS, Alaska, and Hawaii geographic coverages were derived from separate databases and combined into one file. To replace no data values within a raster, we used data values statistically derived from neighboring cell values. The final product is provided in a GeoTIFF format and therefore can be easily integrated into raster-based models requiring estimates of soil characteristics in the US.
The U.S. Geological Survey (USGS) Integrated Water Availability Assessments (IWAAs) Program is designed to deliver nationally consistent assessments of water supplies for human and ecological needs, and to identify factors that influence water availability. In support of these studies, a National-Extent Hydrogeologic Framework (NEHF) is under development. The NEHF is a three-dimensional digital representation of the subsurface of the United States. Three depth zones are of particular interest: a shallow zone within which groundwater interacts with streams (meters to tens of meters); an intermediate zone comprised of potable water (tens to hundreds of meters); and deep, saline groundwater (hundreds of meters to kilometers). Laterally, the NEHF will be developed at a 1-kilometer (km) resolution across the continental United States (CONUS). Vertically, the NEHF will extend from the land surface to a depth of several kilometers. The vertical resolution of the NEHF will vary, with relatively fine resolution at shallow depth and relatively coarse resolution at depth. Soils are a part of the shallow groundwater system, and soil properties can be used to develop predictive models for characteristics of the deeper subsurface. The NEHF is utilizing the Polaris soil properties data set (Chaney et al, 2019) because it harmonizes the previously published Soil Survey Geographic Database (SSURGO, USDA NRCS, 2023) and the National Cooperative Soil Survey Soil Characterization (USDA, 2023) databases. The Polaris database includes soil properties such as soil texture, which is the percentage of sand, silt, or clay present in a soil as well as saturated hydraulic conductivity (Ksat), which indicates the ease with which water can move through the soil. Soil hydraulic conductivity can vary spatially, and representative values of a heterogeneous distribution can be obtained in one of several ways, including the geometric mean. The geometric mean provides an estimate of the mean value of a log-normal distribution; soil hydraulic conductivity is often log-normally distributed. Raster data are provided at a 30-meter (m) resolution across the contiguous United States for six depth zones: 0-5 centimeters (cm), 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm. The rasters in this Data Release provide a weighted average value over the six depth intervals rescaled to a resolution of 1-km and 100-m. These rasters can be used in the development of the NEHF and for other purposes. A total of 11 rasters are included in the data release. They include the following: Soil Texture (SoilTextureRasters_100m.7z; SoilTextureRasters_1km.7z): Values range from 1 - 99% (values may not add up to 100% as they represent a weighted mean, as well as a change in resolution from the source files). The specific ranges for each property can be found in the metadata.xml files for each raster. Mean Percent Sand at 1-km and 100-m resolution (2 rasters: sand_1km.tif and sand_100m.tif). Mean Percent Clay at 1-km and 100-m resolution (2 rasters: clay_1km.tif and clay_100m.tif) Mean Percent Silt at 1-km and 100-m resolution (2 rasters: silt_1km.tif and silt_100m.tif) Classified Soil Texture at 1km (1 raster: texture_3class.tif): The above three soil texture rasters were classified into three categories based on the percentages of each soil property within a 1-km cell. Saturated Hydraulic Conductivity (SaturatedHydraulicConductivity_100m.7z; SaturatedHydraulicConductivity_1km.7z): Values range from -2.4 to 2.1 in the logarithmic scale, and 0-126.3 for the arithmetic mean. The specific ranges for each property can be found in the metadata.xml files for each raster. Logarithmic Saturated Hydraulic Soil Conductivity (KSat) at 1-km and 100-m resolution (2 rasters: KSat_Log_100m.tif; KSat_Log_100m.tif): KSat rasters in the Polaris Soils database were provided as logarithmic values. Arithmetic Saturated Hydraulic Soil Conductivity (KSat) at 1-km and 100-m resolution (2 rasters: KSat_Arithmetic_100m.tif; KSat_Arithmetic_100m.tif): The logarithmic values were transformed into the arithmetic values to determine a geometric mean value.
The United States Department of Agriculture, Natural Resource Conservation Service (USDA, NRCS) has developed the U.S. General Soil Map (STATSGO2) Database (formerly known as the State Soil Geographic (STATSGO) database). Data are available for all 50 states as well as for Puerto Rico. Soil maps for the STATSGO2 database are made by generalizing detailed soil survey data. The mapping scale for STATSGO2 map is 1:250,000 (with the exception of Alaska, which is 1:1,000,000). The level of mapping is designed to be used for broad planning and management uses covering state, regional, and multi-state areas. STATSGO2 data are designed for use in a geographic information system (GIS).
Digitizing is done by line segment (vector) format in accordance with Natural Resources Conservation Service (NRCS) digitizing standards. The base map used is the U.S. Geological Survey 1:250,000 topographic quadrangles. The number of soil polygons per quadrangle map is between 100 and 400. The minimum area mapped is about 1,544 acres.
STATSGO2 data are collected in 1:250,000 quadrangle units. Map unit delineations match at state boundaries. States have been joined as one complete seamless data base to form statewide coverage. Composition of soil map units was coordinated across state boundaries, so that component identities and relative extents would match.
Each STATSGO2 map is linked to the Soil Interpretations Record (SIR) attribute database. The attribute database gives the proportionate extent of the component soils and their properties for each map unit. The STATSGO map units consist of 1 to 21 components each. The Soil Interpretations Record database includes over 25 physical and chemical soil properties, interpretations, and productivity. Examples of information that can be queried from the database are available water capacity, soil reaction, salinity, flooding, water table, bedrock, and interpretations for engineering uses, cropland, woodland, rangeland, pastureland, wildlife, and recreation development.
STATSGO2 data are available in the USGS Digital Line Graph (DLG-3) Optional distribution format. NRCS soil map symbols are not normally carried within the DLG-3 file; however, these map symbols are made available as a unique ascii file when NRCS soils data are distributed in the DLG-3 format. STATSGO2 data are also available in ArcInfo 7.0 coverage and GRASS 4.13 vector formats. Both DOS/Windows and UNIX compatible file formats are available. Data are available via ftp by state including Puerto Rico. The complete data set is also available on CD-ROM for a fee.
This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Map_Units.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Resolution/Tolerance: 1 meter/2 metersNumber of Features: 36,543,233Feature Request Limit: 10,000Source: USDA Natural Resources Conservation ServicePublication Date: October 1, 2019ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/rest/servicesData from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Resolution/Tolerance: 1 meter/2 metersNumber of Features: 36,543,233Feature Request Limit: 10,000Source: USDA Natural Resources Conservation ServicePublication Date: October 1, 2019ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/rest/servicesData from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Hydric soils are defined as those soils that are sufficiently wet in the upper part to develop anaerobic conditions during the growing season. The Hydric Soils section presents the most current information about hydric soils. The lists of hydric soils were created by using National Soil Information System (NASIS) database selection criteria that were developed by the National Technical Committee for Hydric Soils. These criteria are selected soil properties that are documented in Soil Taxonomy (Soil Survey Staff, 1999) and were designed primarily to generate a list of potentially hydric soils from the National Soil Information System (NASIS) database. It updates information that was previously published in Hydric Soils of the United States and coordinates it with information that has been published in the Federal Register. It also includes the most recent set of field indicators of hydric soils. The database selection criteria are selected soil properties that are documented in Soil Taxonomy and were designed primarily to generate a list of potentially hydric soils from soil survey databases. Only criteria 1, 3, and 4 can be used in the field to determine hydric soils; however, proof of anaerobic conditions must also be obtained for criteria 1, 3, and 4 either through data or best professional judgment (from Tech Note 1). The primary purpose of these selection criteria is to generate a list of soil map unit components that are likely to meet the hydric soil definition. Caution must be used when comparing the list of hydric components to soil survey maps. Many of the soils on the list have ranges in water table depths that allow the soil component to range from hydric to nonhydric depending on the location of the soil within the landscape as described in the map unit. Lists of hydric soils along with soil survey maps are good off-site ancillary tools to assist in wetland determinations, but they are not a substitute for observations made during on-site investigations. The list of field indicators of hydric soils — The field indicators are morphological properties known to be associated with soils that meet the definition of a hydric soil. Presence of one or more field indicators suggests that the processes associated with hydric soil formation have taken place on the site being observed. The field indicators are essential for hydric soil identification because once formed, they persist in the soil during both wet and dry seasonal periods. The Hydric Soil Technical Notes — Contain National Technical Committee for Hydric Soils (NTCHS) updates, insights, standards, and clarifications. Users can query the database by State or by Soil Survey Area. Resources in this dataset:Resource Title: Website Pointer to Hydric Soils . File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/use/hydric/ Includes description of Criteria, Query by State or Soil Survey Area, national Technical Committee for Hydric Soils. Technical Notes, and Related Links. Report Metadata:
Criteria:
The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are based on those as of January 1, 2020, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Number of Features: 36,569,286Source: USDA Natural Resources Conservation ServicePublication Date: December 2021Data from the gSSURGO database was used to create this layer.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope were tied the first value in the table was selected.Percent AlfisolsPercent AndisolsPercent AridisolsPercent EntisolsPercent GelisolsPercent HistosolsPercent InceptisolsPercent MollisolsPercent SpodosolsPercent UltisolsPercent VertisolsSoil Order - Dominant ConditionEsri Popup StringThis field contains a text string calculated by Esri that is used to create a basic pop-up using some of the more popular SSURGO attributes.Map Unit KeyThe Mapunit key field is found
More details about each file are in the individual file descriptions.
This is a dataset from the Department of Housing and Urban Development hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according to the frequency that the data updates. Explore the HUD using Kaggle and all of the data sources available through the HUD organization page!
This dataset is maintained using FRED's API and Kaggle's API.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The SSURGO database contains information about soil as collected by the National Cooperative Soil Survey over the course of a century. The information can be displayed in tables or as maps and is available for most areas in the United States and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS (Natural Resources Conservation Service). The information was gathered by walking over the land and observing the soil. Many soil samples were analyzed in laboratories. The maps outline areas called map units. The map units describe soils and other components that have unique properties, interpretations, and productivity. The information was collected at scales ranging from 1:12,000 to 1:63,360. More details were gathered at a scale of 1:12,000 than at a scale of 1:63,360. The mapping is intended for natural resource planning and management by landowners, townships, and counties. Some knowledge of soils data and map scale is necessary to avoid misunderstandings. The maps are linked in the database to information about the component soils and their properties for each map unit. Each map unit may contain one to three major components and some minor components. The map units are typically named for the major components. Examples of information available from the database include available water capacity, soil reaction, electrical conductivity, and frequency of flooding; yields for cropland, woodland, rangeland, and pastureland; and limitations affecting recreational development, building site development, and other engineering uses. SSURGO datasets consist of map data, tabular data, and information about how the maps and tables were created. The extent of a SSURGO dataset is a soil survey area, which may consist of a single county, multiple counties, or parts of multiple counties. SSURGO map data can be viewed in the Web Soil Survey or downloaded in ESRI® Shapefile format. The coordinate systems are Geographic. Attribute data can be downloaded in text format that can be imported into a Microsoft® Access® database. A complete SSURGO dataset consists of:
GIS data (as ESRI® Shapefiles) attribute data (dbf files - a multitude of separate tables) database template (MS Access format - this helps with understanding the structure and linkages of the various tables) metadata
Resources in this dataset:Resource Title: SSURGO Metadata - Tables and Columns Report. File Name: SSURGO_Metadata_-_Tables_and_Columns.pdfResource Description: This report contains a complete listing of all columns in each database table. Please see SSURGO Metadata - Table Column Descriptions Report for more detailed descriptions of each column.
Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Metadata - Table Column Descriptions Report. File Name: SSURGO_Metadata_-_Table_Column_Descriptions.pdfResource Description: This report contains the descriptions of all columns in each database table. Please see SSURGO Metadata - Tables and Columns Report for a complete listing of all columns in each database table.
Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Data Dictionary. File Name: SSURGO 2.3.2 Data Dictionary.csvResource Description: CSV version of the data dictionary
This data release presents data used for analyzing spatial and temporal differences in soil surface roughness within selected biocrust communities. These records were collected by ground-based lidar for 121, 1m x 3m soil plots with biological soil crusts (biocrusts). Roughness was estimated from 5 mm resolution data (CloudCompare v. 2.10.2, 2019) for two Great Basin Desert sites (UTTR-1; UTTR-2) in December 2015 and one Chihuahuan Desert site (JER) in February 2016. Data were again collected in June 2018 for UTTR-1 and UTTR-2. Additional field and laboratory data were included within this study to understand differences in soil surface roughness between UTTR and JER as well as between the 2016 and 2018 surveys at UTTR. The associated manuscript (see Larger Work Citation) reports that soil surfaces at the UTTR are significantly rougher than JER for undisturbed biocrust but not necessarily for disturbed biocrust. Additionaly, discuss that once biocrust is disturbed, soil surface roughness can increase with biocrust recovery. These data can be further used to represent surface conditions at the time of collection at individual soil plots within both study areas, providing further information on spatial and temporal variability in roughness as well as other field and laboratory parameters included in this release.
Note: This dataset has been superseded by the dataset found at "End-Use Load Profiles for the U.S. Building Stock" (submission 4520; linked in the submission resources), which is a comprehensive and validated representation of hourly load profiles in the U.S. commercial and residential building stock. The End-Use Load Profiles project website includes links to data viewers for this new dataset. For documentation of dataset validation, model calibration, and uncertainty quantification, see Wilson et al. (2022). These data were first created around 2012 as a byproduct of various analyses of solar photovoltaics and solar water heating (see references below for are two examples). This dataset contains several errors and limitations. It is recommended that users of this dataset transition to the updated version of the dataset posted in the resources. This dataset contains weather data, commercial load profile data, and residential load profile data. Weather The Typical Meteorological Year 3 (TMY3) provides one year of hourly data for around 1,000 locations. The TMY weather represents 30-year normals, which are typical weather conditions over a 30-year period. Commercial The commercial load profiles included are the 16 ASHRAE 90.1-2004 DOE Commercial Prototype Models simulated in all TMY3 locations, with building insulation levels changing based on ASHRAE 90.1-2004 requirements in each climate zone. The folder names within each resource represent the weather station _location of the profiles, whereas the file names represent the building type and the representative city for the ASHRAE climate zone that was used to determine code compliance insulation levels. As indicated by the file names, all building models represent construction that complied with the ASHRAE 90.1-2004 building energy code requirements. No older or newer vintages of buildings are represented. Residential The BASE residential load profiles are five EnergyPlus models (one per climate region) representing 2009 IECC construction single-family detached homes simulated in all TMY3 locations. No older or newer vintages of buildings are represented. Each of the five climate regions include only one heating fuel type; electric heating is only found in the Hot-Humid climate. Air conditioning is not found in the Marine climate region. One major issue with the residential profiles is that for each of the five climate zones, certain _location-specific algorithms from one city were applied to entire climate zones. For example, in the Hot-Humid files, the heating season calculated for Tampa, FL (December 1 - March 31) was unknowingly applied to all other locations in the Hot-Humid zone, which restricts heating operation outside of those days (for example, heating is disabled in Dallas, TX during cold weather in November). This causes the heating energy to be artificially low in colder parts of that climate zone, and conversely the cooling season restriction leads to artificially low cooling energy use in hotter parts of each climate zone. Additionally, the ground temperatures for the representative city were used across the entire climate zone. This affects water heating energy use (because inlet cold water temperature depends on ground temperature) and heating/cooling energy use (because of ground heat transfer through foundation walls and floors). Representative cities were Tampa, FL (Hot-Humid), El Paso, TX (Mixed-Dry/Hot-Dry), Memphis, TN (Mixed-Humid), Arcata, CA (Marine), and Billings, MT (Cold/Very-Cold). The residential dataset includes a HIGH building load profile that was intended to provide a rough approximation of older home vintages, but it combines poor thermal insulation with larger house size, tighter thermostat setpoints, and less efficient HVAC equipment. Conversely, the LOW building combines excellent thermal insulation with smaller house size, wider thermostat setpoints, and more efficient HVAC equipment. However, it is not known how well these HIGH and LOW permutations represent the range of energy use in the housing stock. Note that on July 2nd, 2013, the Residential High and Low load files were updated from 366 days in a year for leap years to the more general 365 days in a normal year. The archived residential load data is included from prior to this date.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer represents the National Cooperative Soil Survey laboratory data of soil properties for soil samples taken at sites or points on the Earth’s globe – mainly from the United States of America but includes many countries. Sites are identified by unique site identifiers, though a site may be revisited over time producing more than one data set per site. A particular site will have one or more pedons or soil profiles with one or more soil horizons defined. Each horizon may have one or more soil samples that have been analyzed at a National Cooperative Soil Survey laboratory to produce measured and calculated values of soil properties, such as bulk density, particle size distribution, and pH.
This dataset is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This dataset consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. The soil map units are linked to attributes in the National Soil Information System (NASIS) relational database, which gives the proportionate extent of the component soils and their properties.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USDA-ARS U.S. National Fungus Collections (BPI) currently houses approximately one-million reference specimens. Data associated with over 925,000 specimens have been computerized and are available on-line. In addition reports of fungi on plants provide a comprehensive account of the host range and geographic distribution of fungi on plants throughout the world. Data are continuously added to the databases from herbarium specimens and newly published fungus-host distributions and disease reports. Additional databases contain taxonomic literature references and accurate scientific names of plant pathogenic fungi.
[NOTE - 11/24/2021: this dataset supersedes an earlier version https://doi.org/10.15482/USDA.ADC/1518654 ] Data sources. Time series data on cattle fever tick incidence, 1959-2020, and climate variables January 1950 through December 2020, form the core information in this analysis. All variables are monthly averages or sums over the fiscal year, October 01 (of the prior calendar year, y-1) through September 30 of the current calendar year (y). Annual records on monthly new detections of Rhipicephalus microplus and R. annulatus (cattle fever tick, CFT) on premises within the Permanent Quarantine Zone (PQZ) were obtained from the Cattle Fever Tick Eradication Program (CFTEP) maintained jointly by the United States Department of Agriculture (USDA), Animal Plant Health Inspection Service and the USDA Animal Research Service in Laredo, Texas. Details of tick survey procedures, CFTEP program goals and history, and the geographic extent of the PQZ are in the main text, and in the Supporting Information (SI) of the associated paper. Data sources on oceanic indicators, on local meteorology, and their pretreatment are detailed in SI. Data pretreatment. To address the low signal-to-noise ratio and non-independence of observations common in time series, we transformed all explanatory and response variables by using a series of six consecutive steps: (i) First differences (year y minus year y-1) were calculated, (ii) these were then converted to z scores (z = (x- μ) / σ, where x is the raw value, μ is the population mean, σ is the standard deviation of the population), (iii) linear regression was applied to remove any directional trends, (iv) moving averages (typically 11-year point-centered moving averages) were calculated for each variable, (v) a lag was applied if/when deemed necessary, and (vi) statistics calculated (r, n, df, P<, p<). Principal component analysis (PCA). A matrix of z-score first differences of the 13 climate variables, and CFT (1960-2020), was entered into XLSTAT principal components analysis routine; we used Pearson correlation of the 14 x 60 matrix, and Varimax rotation of the first two components. Autoregressive Integrated Moving Average (ARIMA). An ARIMA (2,0,0) model was selected among 7 test models in which the p, d, and q terms were varied, and selection made on the basis of lowest RMSE and AIC statistics, and reduction of partial autocorrelation outcomes. A best model linear regression of CFT values on ARIMA-predicted CFT was developed using XLSTAT linear regression software with the objective of examining statistical properties (r, n, df, P<, p<), including the Durbin-Watson index of order-1 autocorrelation, and Cook’s Di distance index. Cross-validation of the model was made by withholding the last 30, and then the first 30 observations in a pair of regressions. Forecast of the next major CFT outbreak. It is generally recognized that the onset year of the first major CFT outbreak was not 1959, but may have occurred earlier in the decade. We postulated the actual underlying pattern is fully 44 years from the start to the end of a CFT cycle linked to external climatic drivers. (SI Appendix, Hypothesis on CFT cycles). The hypothetical reconstruction was projected one full CFT cycle into the future. To substantiate the projected trend, we generated a power spectrum analysis based on 1-year values of the 1959-2020 CFT dataset using SYSTAT AutoSignal software. The outcome included a forecast to 2100; this was compared to the hypothetical reconstruction and projection. Any differences were noted, and the start and end dates of the next major CFT outbreak identified. Resources in this dataset: Resource Title: CFT and climate data. File Name: climate-cft-data2.csv Resource Description: Main dataset; see data dictionary for information on each column Resource Title: Data dictionary (metadata). File Name: climate-cft-metadata2.csv Resource Description: Information on variables and their origin Resource Title: fitted models. File Name: climate-cft-models2.xlsx Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excel; XLSTAT,url: https://www.xlstat.com/en/; SYStat Autosignal,url: https://www.systat.com/products/AutoSignal/
The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) is an ongoing multiinstitutional, international effort addressing the response of biogeography and biogeochemistry to environmental variability in climate and other drivers in both space and time domains. The objectives of VEMAP are the intercomparison of biogeochemistry models and vegetationtype distribution models (biogeography models) and determination of their sensitivity to changing climate, elevated atmospheric carbon dioxide concentrations, and other sources of altered forcing. Soil properties were based on a 10-km gridded EPA soil database developed by Kern (1994, 1995). Two soil coverages are provided in the Kern data set: one from the USDA Soil Conservation Service (SCS) national soil database (NATSGO) and the other from the United Nations Food and Agriculture Organization soil database (FAO 1974- 78). Only the SCS NATSGO soils are included in the VEMAP set. Physical consistency in soils data was incorporated by representing a grid cell's soil by a set of dominant (modal) soil profiles, rather than by a simple average of soil properties. Because soil processes, such as soil organic matter turnover and water balance, are non-linearly related to soil texture and other soil parameters, simulations based on dominant soil profiles and their frequency distribution can account for soil dynamics that would be lost if averaged soil properties were used. To spatially aggregate Kern data to the 0.5 degree grid, we used cluster analysis to group the subgrid 10-km elements into up to 4 modal soil catagories (Kittel et al. 1995). In this statistical approach, cell soil properties are represented by the set of modal soils, rather than by an "average soil." We also provide cell- averaged soil data. Please see the associated Data Set Revision page for an explanation of recent changes made to this data set. A complete users guide to the VEMAP Phase I database which includes more information about this data set can be found at ftp://daac.ornl.gov/data/vemap-1/comp/Phase_1_User_Guide.pdf. ORNL DAAC maintains additional information associated with the VEMAP Project. Data Citation: This data set should be cited as follows: Kittel, T. G. F., N. A. Rosenbloom, T. H. Painter, D. S. Schimel, H. H. Fisher, A. Grimsdell, VEMAP Participants, C. Daly, and E. R. Hunt, Jr. 2002. VEMAP Phase I Database, revised. Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nathan A. Slaton, Rajveer Singh, Uzair Ahmad, Cheri Villines, Russell Delong, and Otis Robinson[Note: Updated for 2025 release]. The database contains select properties of 16,728 dairy, poultry, and swine manure samples submitted between 1 January 2005 and 31 December 2024 to the University of Arkansas Division of Agriculture Fayetteville Agricultural Diagnostic Laboratory (FADL). Most samples were submitted by clients with active animal production farms to determine manure properties for nutrient management planning. Most samples are from farms within Arkansas (4,862) followed by Tennessee (386), and Oklahoma (206). Many of the samples from 2005–2022 do not include a county and state of origin, but Arkansas is the primary state of origin for these samples in the database. Metadata describing the production system, manure collection and storage, age, and bedding was provided by clients and assumed to be reasonably accurate. Animal type, Bedding type, and Manure type metadata not provided by the client were listed as “Unknown”. Metadata for Sample age (days), State, County, and some analytes were sometimes missing and left as blank cells.We could not find a single literature source that describes all production systems and manure/litter types, but the information in Malone (1992), Key et al. (2011), and USDA-NRCS (2012), describe animal production systems, manure forms, and the factors that influence litter/manure production in animal production systems in the USA that may help understand the types of litter/manure forms included in this database.Poultry litter (Dry) SamplesThe database includes information for >14,000 poultry samples submitted from 1 January 2005 through 31 December 2024. Samples in the database represented Broiler, Hen, Pullet, Turkey, Cornish, Rooster, and Unknown (no animal-specific production system noted). An example manure submission form is shown in Figure 1. Manure types include Cake, Cleanout, Compost, Dead bird compost, Deep stack, Dry stack, Fresh litter, In-house, Lagoon liquid, Lagoon sludge, Loose, Pellets, Sludge, and Unknown. Bedding materials include Rice (Oryza sativa L.) hulls, Sawdust, Wood shavings, mixtures of Rice hulls and Sawdust, Rice hulls and Wood shavings, Wood shavings and Sawdust, Straw and Wood shavings, and Unknown.Arkansas clients usually deliver samples directly to the FADL or a local county Extension office where a sample submission form (Figure 1) is completed, and the sample is shipped to the laboratory. Samples from Oklahoma are often delivered directly to the FADL. When a sample arrives at the lab, the date received and the lab identification number are added to the sample’s submission form, which is filed for record-keeping. The lab identification numbers contain 5-6 digits, are numbered sequentially in the order received at the lab, and represent information including (from left to right): Letter M (Manure; note some samples include M and others do not because “M” was omitted when entered into the database); first or second number (1-10 or 20) stands for the year; and the last 4 numbers in the lab number are the order the sample was logged in at the FADL. The dataset also includes columns for the year and date received.Using a scoop or spatula, the bulk manure sample (as received) is split into two representative subsamples (~100 mL or cm3 each) and placed into plastic bags. The subsamples are refrigerated at 4°C until further analysis. One of the subsamples is homogenized and ground using a coffee bean grinder for pH, electrical conductivity, and total nutrient analysis. The second subsample remains unaltered (as-received) and is used for moisture determination and water-extractable phosphorus (WEP) analysis. A homogenized, ground subsample was initially used for WEP, but starting in 2009, the unaltered, “as-received” sample has been used for WEP analysis. The change was made because of speculation that homogenizing the subsample increased the WEP, and the research performed to develop the Arkansas P index used unaltered, “as-received” litter. Any remaining bulk sample is stored at room temperature until analysis is complete and the results are reported to the client. The FADL has participated in the Minnesota Manure Proficiency Program (https://www.mda.state.mn.us/pesticide-fertilizer/certified-testing-laboratories-manure-soil) as part of the quality assurance and control program since 2005.The database includes two columns for WEP data (i.e., Arkansas WEP and Universal WEP). Water-extractable P was originally performed using the 10:1 water/litter (v:w) ratio, identified as the Arkansas method (Wolf et al., 2009). The Universal WEP method (Spargo, 2022; Wolf et al., 2009) is now used to determine water-extractable nutrients in manure samples. The Arkansas WEP method was used on poultry litter samples through 2009 since this was required for samples submitted from the Eucha-Spavinaw watershed (Sharpley et al., 2009; 2010). Beginning in 2010, the laboratory switched WEP analyses to the Universal WEP method. The Universal water-extraction method (100:1) is the only method used for the determination of water-extractable potassium (WEK).The counties and states of sample origin were not recorded in the original poultry litter dataset but were added for samples submitted beginning 1 January 2023. The county and state details were added to random samples that were checked for accuracy of analytical information. Please note that even when the county of litter origin is provided, it may not be accurate since the county of Extension office that received the sample may not be consistent with the county of production. Information included in the column identified as “Clients” has two levels: “ESWMT” (Eucha-Spavinaw Watershed Management Team) and “Other”. Samples with the client identified as ESWMT were submitted from poultry farms located within the Eucha-Spavinaw watershed (DeLaune et al., 2006; Sharpley et al., 2009). The ESWMT label identified these samples for the analysis requirements set by the watershed regulations, requiring all poultry litter samples be analyzed for WEP (OCCWQD, 2007).Dairy and Swine Liquid Manure SamplesThe database includes dairy and swine manure properties and metadata for 678 dairy and 1934 swine samples submitted from 1 January 2007 through 31 December 2024. The dairy and swine data include samples of dry and liquid manure forms. Most samples include geographic origin metadata at the state and county levels. Metadata for dairy and swine sample manure types include Cleanout, Compost, Dry stack, Fresh from floor, Lagoon sludge, Lagoon liquid, Milk wash water, Pit, Holding Pond, Settling basin liquid, Settling basin sludge, Sludge, Tank, Wash water, and Unknown. Sample age metadata should be used with caution since some values are very low (e.g., 1-7 days) and may misrepresent the requested information.Clients are provided with 500 ml (16.9 oz; 73×164 mm D×H: 53 mm cap) leakproof bottles and shipping boxes (Figure 2). Upon delivery, samples are refrigerated until the analyses are completed. The analyses performed were based on client requests and include the percent solids for liquid samples or percent moisture for dry samples.References1. DeLaune, P.B., Haggard, B.E., Daniel, T.C., Chaubey, I., & Cochran, M.J. (2006). The Eucha/Spavinaw phosphorus index: A court mandated index for litter management. J. Soil Water Cons., 61(2), 96–105.2. Key, N., McBride, W.D., Ribaudo, M., & Sneeringer, S. (2011). Trends and developments in hog manure management: 1998-2009. EIB-81. USDA, Econ. Res. Serv., Washington, DC.3. Malone, G.W. (1992). Nutrient enrichment in integrated broiler production systems. Poult. Sci., 71(7), 1117–1122.4. Oklahoma Conservation Commission Water Quality Division (OCCWQD). (2007). Watershed based plan for the lake Eucha/lake Spavinaw watershed. Oklahoma Conservation Commission. https://conservation.ok.gov/wp-content/uploads/2021/07/Eucha_Spavinaw-Watershed-Based-Plan-2009.pdf5. Sharpley, A., Herron, S., West, C., & Daniel, T. (2009). Outcomes of phosphorus-based nutrient management in the Eucha-Spavinaw watershed. In A.J. Franzluebbers (Ed), Farming with grass: Achieving sustainable mixed agricultural landscapes (pp. 192–204). Soil and Water Conservation Society, Ankeny, IA.6. Sharpley, A., Moore, P., VanDavender, K., Daniels, M., Delp, W., Haggard, B., Daniel, T., & Baber, A. (2010). Arkansas phosphorus index. FSA-9531. University of Arkansas Coop. Ext. Serv. https://www.uaex.uada.edu/publications/PDF/FSA-9531.pdf7. Spargo, J.T. (2022). M-6.1 Water extractable phosphorus, 100:1 solution to solids ratio. In M.L. Wilson & S. Cortus (Eds.), Recommended Methods of Manure Analysis (2nd ed., pp. 83–86). University of Minnesota Libraries Publishing, Minneapolis, MN.8. United States Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS). (2012). Chapter 4: Agricultural waste characteristics. In Part 651: Agricultural Waste Management Field Handbook. USDA, Soil Cons. Serv., Washington, DC.9. Wolf, A.M., Moore, P.A., Jr., Kleinman, P.J.A., & Sullivan, D.M. (2009). Water-extractable phosphorus in animal manure and biosolids. In J.L. Kovar & G.M. Pierzynski (Eds.), Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MOD-LSP project contains MODIS-based land and surface (soil and vegetation) parameters for the Variable Infiltration Capacity (VIC) model (Liang et al., 1994), release 5.0 and later (Hamman et al., 2018). The MOD-LSP spatial domain covers the continental United States, Mexico, and southern Canada; the associated domain files can be found in the PITRI archive (Bohn et al. 2018). This spatial domain and 0.625° (6 km) grid resolution are compatible with the gridded daily meteorological forcings of Livneh et al. (2015) ("L2015" hereafter) (http://ciresgroups.colorado.edu/livneh/data/daily-observational-hydrometeorology-data-set-north-american-extent), which can be disaggregated to hourly time step via the MetSim tool (Bennett et al. 2018) using the aforementioned PITRI domain files (Bohn et al. 2018).
These parameters have two main purposes: (1) to improve upon previous widely-used parameters over the region (e.g., L2015) with updated, higher-resolution land cover maps and spatially explicit observations of surface properties; and (2) to expand from a single parameter set corresponding to one point in time to a series of parameter sets that account for temporal variability at seasonal to decadal scales.
A detailed description of methods, the data sources and purposes of different VIC parameter sets within MOD-LSP, and how to use them with VIC, can be found in the MOD-LSP User Guide.pdf, included here. The scripts that were used to create the MOD-LSP parameters are archived on Zenodo and GitHub (Bohn 2019).
If you wish to present or publish results that use these parameter sets, please cite the following paper:
Bohn, T. J., and E. R. Vivoni, 2019b: MOD-LSP, MODIS-based land surface properties for assessing land cover variability and change over North America. Sci. Data, 6, 144, doi: 10.1038/s41597-019-0150-2.
In addition, if you use the domain files associated with the PITRI precipitation disaggregation to accompany the MOD-LSP parameter files in VIC simulations, please cite the following paper:
Bohn, T. J., K. M. Whitney, G. Mascaro, and E. R. Vivoni, 2019: A deterministic approach for approximating the diurnal cycle of precipitation for use in large-scale hydrological modeling. J. Hydrometeorol., 20, 297–317, doi:10.1175/JHM-D-18-0203.1.
Contents:
This data set provides a soil map with estimates of soil carbon (C) in g C/m2 for 20-cm layers from the surface to one meter depth for the conterminous United States.STATSGO v.1 (State Soil Geographic Database, Soil Survey Staff, 1994) data were used to estimate by 20-cm intervals to a 1-m depth the mean soil carbon for each of the STATSGO-delineated soil map units. These map units are the polygons represented in the provided Shapefile data product.
The dataset consists of three raster GeoTIFF files describing the following soil properties in the US: available water capacity, field capacity, and soil porosity. The input data were obtained from the gridded National Soil Survey Geographic (gNATSGO) Database and the Gridded Soil Survey Geographic (gSSURGO) Database with Soil Data Development tools provided by the Natural Resources Conservation Service. The soil characteristics derived from the databases were Available Water Capacity (AWC), Water Content (one-third bar) (WC), and Bulk Density (one-third bar) (BD) aggregated as weighted average values in the upper 1 m of soil. AWC and WC layers were converted to mm/m to express respectively available water capacity and field capacity in 1 m of soil, and BD layer was used to produce soil porosity raster assuming that the average particle density of soils is equal to 2.65 g/cm3. For each soil property, soil maps with CONUS, Alaska, and Hawaii geographic coverages were derived from separate databases and combined into one file. To replace no data values within a raster, we used data values statistically derived from neighboring cell values. The final product is provided in a GeoTIFF format and therefore can be easily integrated into raster-based models requiring estimates of soil characteristics in the US.