Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 50 states in the United States by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each states over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 5 cities in the Indian River County, FL by Multi-Racial Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset explores the USDA (United States Department of Agriculture) Food and Nutrition Service Program - Food Distribution Program on Indian Reservations by recording the number of persons participating by state for the years 2003-2007. *FDPIR is an alternative to the Food Stamp Program for Indian tribal organizations which prefer food distribution. Participation numbers are 12-month averages. Data are subject to revision.
This map service displays data derived from the 2008-2012 American Community Survey (ACS). Values derived from the ACS and used for this map service include: Total Population, Population Density (per square mile), Percent Minority, Percent Below Poverty Level, Percent Age (less than 5, less than 18, and greater than 64), Percent Housing Units Built Before 1950, Percent (population) 25 years and over (with less than a High School Degree and with a High School Degree), Percent Linguistically Isolated Households, Population of American Indians and Alaskan Natives, Population of American Indians and Alaskan Natives Below Poverty Level, and Percent Low Income Population (Less Than 2X Poverty Level). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States.
This dataset is imported from the US Department of Commerce, National Telecommunications and Information Administration (NTIA) and its "Data Explorer" site. The underlying data comes from the US Census
dataset: Specifies the month and year of the survey as a string, in "Mon YYYY" format. The CPS is a monthly survey, and NTIA periodically sponsors Supplements to that survey.
variable: Contains the standardized name of the variable being measured. NTIA identified the availability of similar data across Supplements, and assigned variable names to ease time-series comparisons.
description: Provides a concise description of the variable.
universe: Specifies the variable representing the universe of persons or households included in the variable's statistics. The specified variable is always included in the file. The only variables lacking universes are isPerson and isHouseholder, as they are themselves the broadest universes measured in the CPS.
A large number of *Prop, *PropSE, *Count, and *CountSE columns comprise the remainder of the columns. For each demographic being measured (see below), four statistics are produced, including the estimated proportion of the group for which the variable is true (*Prop), the standard error of that proportion (*PropSE), the estimated number of persons or households in that group for which the variable is true (*Count), and the standard error of that count (*CountSE).
DEMOGRAPHIC CATEGORIES
us: The usProp, usPropSE, usCount, and usCountSE columns contain statistics about all persons and households in the universe (which represents the population of the fifty states and the District and Columbia). For example, to see how the prevelance of Internet use by Americans has changed over time, look at the usProp column for each survey's internetUser variable.
age: The age category is divided into five ranges: ages 3-14, 15-24, 25-44, 45-64, and 65+. The CPS only includes data on Americans ages 3 and older. Also note that household reference persons must be at least 15 years old, so the age314* columns are blank for household-based variables. Those columns are also blank for person-based variables where the universe is "isAdult" (or a sub-universe of "isAdult"), as the CPS defines adults as persons ages 15 or older. Finally, note that some variables where children are technically in the univese will show zero values for the age314* columns. This occurs in cases where a variable simply cannot be true of a child (e.g. the workInternetUser variable, as the CPS presumes children under 15 are not eligible to work), but the topic of interest is relevant to children (e.g. locations of Internet use).
work: Employment status is divided into "Employed," "Unemployed," and "NILF" (Not in the Labor Force). These three categories reflect the official BLS definitions used in official labor force statistics. Note that employment status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by work status, even if they are otherwise considered part of the universe for the variable of interest.
income: The income category represents annual family income, rather than just an individual person's income. It is divided into five ranges: below $25K, $25K-49,999, $50K-74,999, $75K-99,999, and $100K or more. Statistics by income group are only available in this file for Supplements beginning in 2010; prior to 2010, family income range is available in public use datasets, but is not directly comparable to newer datasets due to the 2010 introduction of the practice of allocating "don't know," "refused," and other responses that result in missing data. Prior to 2010, family income is unkown for approximately 20 percent of persons, while in 2010 the Census Bureau began imputing likely income ranges to replace missing data.
education: Educational attainment is divided into "No Diploma," "High School Grad," "Some College," and "College Grad." High school graduates are considered to include GED completers, and those with some college include community college attendees (and graduates) and those who have attended certain postsecondary vocational or technical schools--in other words, it signifies additional education beyond high school, but short of attaining a bachelor's degree or equivilent. Note that educational attainment is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by education, even if they are otherwise considered part of the universe for the variable of interest.
sex: "Male" and "Female" are the two groups in this category. The CPS does not currently provide response options for intersex individuals.
race: This category includes "White," "Black," "Hispanic," "Asian," "Am Indian," and "Other" groups. The CPS asks about Hispanic origin separately from racial identification; as a result, all persons identifying as Hispanic are in the Hispanic group, regardless of how else they identify. Furthermore, all non-Hispanic persons identifying with two or more races are tallied in the "Other" group (along with other less-prevelant responses). The Am Indian group includes both American Indians and Alaska Natives.
disability: Disability status is divided into "No" and "Yes" groups, indicating whether the person was identified as having a disability. Disabilities screened for in the CPS include hearing impairment, vision impairment (not sufficiently correctable by glasses), cognitive difficulties arising from physical, mental, or emotional conditions, serious difficulty walking or climbing stairs, difficulty dressing or bathing, and difficulties performing errands due to physical, mental, or emotional conditions. The Census Bureau began collecting data on disability status in June 2008; accordingly, this category is unavailable in Supplements prior to that date. Note that disability status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by disability status, even if they are otherwise considered part of the universe for the variable of interest.
metro: Metropolitan status is divided into "No," "Yes," and "Unkown," reflecting information in the dataset about the household's location. A household located within a metropolitan statistical area is assigned to the Yes group, and those outside such areas are assigned to No. However, due to the risk of de-anonymization, the metropolitan area status of certain households is unidentified in public use datasets. In those cases, the Census Bureau has determined that revealing this geographic information poses a disclosure risk. Such households are tallied in the Unknown group.
scChldHome:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 72 counties in the Wisconsin by Multi-Racial American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Description of the experiment setting: location, influential climatic conditions, controlled conditions (e.g. temperature, light cycle) In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis. FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Processing methods and equipment used Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2016. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency. Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2016. Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016. Study spatial scale (size of replicates and spatial scale of study area) In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) State Agency Data Submissions. PC2016 is a participant dataset consisting of 8,815,472 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data. PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 8.8 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public. National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The nationally representative sample is composed of 60,003 records. The distribution by category is 5,449 pregnant women, 4,661 breastfeeding women, 3,904 postpartum women, 13,999 infants, and 31,990 children. Level of subsampling (number and repeat or within-replicate sampling) The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers. Description of any gaps in the data or other limiting factors Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016. Outcome measurement methods and equipment used None Resources in this dataset:Resource Title: WIC Participant and Program Characteristics 2016. File Name: wicpc_2016_public.csvResource Description: The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.Resource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 Codebook. File Name: WICPC2016_PUBLIC_CODEBOOK.xlsxResource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data. File Name: WIC_PC_2016_SAS_SPSS_STATA_Files.zipResource Description: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
By Rajanand Ilangovan [source]
This Dataset provides an up-to-date analysis of crime trends in India from 2001 to the present. It contains complete information about different types of crimes such as rape, murder, and theft that were committed across India. By analyzing this dataset we can determine the areas where crimes were most prevalent, what type of offenders were usually involved in the crime and which year had the highest number of registered cases. Additionally, we can also analyse which group experienced most complaints and what kind of punishments or consequences they faced like departmental enquiries, magisterial enquiries or police personnel trials completed. This data set is perfect for further research into crime trends in India and will help us better understand why certain types of crimes take place more frequently than others
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
• Area Name (state or UT) where the crime was reported. • Year in which the crime was reported. • Subgroup (type of crime). • Number of cases registered, number of cases reported for departmental action etc., related to a particular type of crime and state/UT.
• Number of complaints/cases declared false/unsubstantiated, number of police personnel convictions etc., related to a particular type of crime and state/UT.
• Number of cases in which offenders were others known persons to the victims, neighbours or relatives to the victims etc., related to a particular type of crime and state/UT.By studying this dataset one might explore different angles by analysing factors like:
• What are the top states with high rate criminal activities? Which areas are relatively safer?
• Are any states witnessing higher incidences than national average levels? Alternatively, are there any regions which have recorded lower rates than national average levels?
• What is trend between sub crimes across India both regional & time wise? How has it changed over time ? (2001-20) ;
Movement among crimes on monthly basis during period 2001 - 2020 Comparison among ages , genders & professions involved with Crime Rates && Timeline comparison between Types Of Crime , Crimes Involving Police Personnel Contractors in Crimes as timeline . Immigration Report . Is absolute difference btw urban & rural up from previous years ? Open conversations about what government efforts need more focus & why . Fundamentals impacting reducing / increasing rate behind closed doors . Any impactful key insights about SelfDefence Degree given out that year highlighting decreasing / increasing amount if increase thenwhat extra activity got curated btw that law was enacted vs before enactment if possible Outliers Analysis on same murders done by pediphiles or sexual assault against women under minorities if exists
- Analyzing crime trends over time by analyzing the Year, Sub_group and Area_Name columns to understand different types of crimes and patterns of criminal activity in India.
Evaluating the effectiveness of police response to different types of crimes, such as comparing the CPA_-_Cases_Registered, CPA_-_Cases_Reported_for_Dept._Action and CPB_-_Police_PersonnelAcquitted data fields across different time periods, sub-groups and areas to assess how well law enforcement is responding to crimes reported.
Tracking changes in punishment awarded for different crimes by analyzing the CPC_-_Police_-Personnel_-Major-Punishment_-awarded data field for changes over ti...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tribal Census Tracts This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), depicts American Indian tribal census tracts. Per the USCB, “a tribal census tract is a relatively permanent statistical subdivision of a federally recognized American Indian reservation and/or off-reservation trust land, delineated by the American Indian tribal government and/or the Census Bureau for the purpose of presenting demographic data. For federally recognized American Indian Tribes with reservations and/or off-reservation trust lands with a population less than 2,400, a single tribal census tract is defined. Qualifying areas with a population greater than 2,400 could define additional tribal census tracts within their area."Tribal Census Tract T001 Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Tribal Census Tracts) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 95 (Series Information for Tribal Census Tract National TIGER/Line Shapefiles, Current)OGC API Features Link: (Tribal Census Tracts - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: Decoding State-County Census Tracts versus Tribal Census TractsFor feedback please contact: Esri_US_Federal_Data@esri.com NGDA Data Set This data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes." For other NGDA Content: Esri Federal Datasets
The U.S. Census defines Asian Americans as individuals having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent (U.S. Office of Management and Budget, 1997). As a broad racial category, Asian Americans are the fastest-growing minority group in the United States (U.S. Census Bureau, 2012). The growth rate of 42.9% in Asian Americans between 2000 and 2010 is phenomenal given that the corresponding figure for the U.S. total population is only 9.3% (see Figure 1). Currently, Asian Americans make up 5.6% of the total U.S. population and are projected to reach 10% by 2050. It is particularly notable that Asians have recently overtaken Hispanics as the largest group of new immigrants to the U.S. (Pew Research Center, 2015). The rapid growth rate and unique challenges as a new immigrant group call for a better understanding of the social and health needs of the Asian American population.
All the data for this dataset is provided from CARMA: Data from CARMA (www.carma.org) This dataset provides information about Power Plant emissions in India. Power Plant emissions from all power plants in India were obtained by CARMA for the past (2000 Annual Report), the present (2007 data), and the future. CARMA determine data presented for the future to reflect planned plant construction, expansion, and retirement. The dataset provides the name, company, parent company, city, state, lat/lon, and plant id for each individual power plant. Only Power Plants that had a listed longitude and latitude in CARMA's database were mapped. The dataset reports for the three time periods: Intensity: Pounds of CO2 emitted per megawatt-hour of electricity produced. Energy: Annual megawatt-hours of electricity produced. Carbon: Annual carbon dioxide (CO2) emissions. The units are short or U.S. tons. Multiply by 0.907 to get metric tons. Carbon Monitoring for Action (CARMA) is a massive database containing information on the carbon emissions of over 50,000 power plants and 4,000 power companies worldwide. Power generation accounts for 40% of all carbon emissions in the United States and about one-quarter of global emissions. CARMA is the first global inventory of a major, sector of the economy. The objective of CARMA.org is to equip individuals with the information they need to forge a cleaner, low-carbon future. By providing complete information for both clean and dirty power producers, CARMA hopes to influence the opinions and decisions of consumers, investors, shareholders, managers, workers, activists, and policymakers. CARMA builds on experience with public information disclosure techniques that have proven successful in reducing traditional pollutants. Please see carma.org for more information http://carma.org/region/detail/90
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 22 counties in the Maryland by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 592 cities in the Oklahoma by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This Global Dated Landslide Database (GDLDB) is part of the project WeMonitor (Weakly Supervised Deep Learning Models for Detecting and Monitoring Spatio-Temporal Anomalies in Optical and Radar Satellite Time Series), funded by the Helmholtz Imaging Platform. The aim is to develop a deep learning model that uses satellite image time series from Sentinel1/2 to automatically monitor changes caused, for example, by landslides, deforestation, large fires, dam failures, or the emergence of waste dumps. To train such a model, a reference dataset is required that shows the area and date of the changes as precise as possible. To allow for a generic and transferable model, the reference data also needs to cover the diversity of the process to be detected. Thus, the aim of the GDLDB is to comprise landslides of different sizes, shapes, and types, occurring at different seasons and in different regions with varying natural conditions and different triggering mechanisms such as rainfall and earthquake-induced landslides. To build the GDLDB, available local and regional landslide inventories from around the world are combined into one coherent database by verifying their location and date of occurrence with high-resolution remote sensing data. The selection criteria for the source inventories are the definition of the landslide location as polygons, at least a rough indication of the landslide origin date, and that the landslides occurred during the Sentinel-2 data availability from 2016 onwards. A total of 16 individual inventories are included (Table 1), one each from the USA, Dominica, Italy, Zimbabwe, southern India, Nepal, China, Papua New Guinea, and New Zealand, and two each from Kyrgyzstan, Japan, and the Philippines. In addition, a global inventory was added, including a small number of landslides from the USA, Peru, Chile, Europe, Pakistan, Nepal, India, and Taiwan, and a larger number of landslides from Indonesia. From each inventory, approximately 100 landslides were randomly selected to ensure an unbiased selection of landslides in terms of shape, size, and location. The original source inventories are produced using a variety of methods, including manual mapping in airborne data with ground verification and automatic identification in satellite remote sensing data. As a result, the mapping quality of the inventories varies greatly. In cases where landslides could not be verified by us using available optical remote sensing data (e.g. Sentinel-2, Planet Scope, and data available in Google Earth) new polygons are selected until the number of approximately 100 landslides is reached. In some inventories, the number of 100 landslides could not be guaranteed, due to a lack of suitable landslides (e.g., small size, incorrect classification) or the total number of landslides in the selected inventory was less than 100. For inventories with a lot of small landslides, that were difficult or impossible to observe, a size threshold of 1000m2 was introduced.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. A tribal block group is a cluster of census tabulation blocks within a single tribal census tract delineated by American Indian tribal participants or the Census Bureau for the purpose of presenting demographic data on their reservation and/or off-reservation trust land. The tribal block groups are defined independently of the standard county-based block group delineation. For federally recognized American Indian Tribes with reservations and/or off-reservation trust lands with a population less than 1,200, a single tribal block group is defined. Qualifying reservations and/or off-reservation trust lands with a population greater than 1,200 could define additional tribal block groups within their area without regard to the standard block group configuration. Tribal block groups do not necessarily contain tabulation blocks always beginning with the same number and could contain seemingly duplicate block numbers. Tabulation block numbers are still assigned by using standard block groups, not the tribal block groups. To better identify tribal block groups, the letter code range A through K (except I, which could be confused with a number 1) is used uniquely within each tribal census tract. The boundaries of tribal block groups are those delineated through the Participant Statistical Areas Program (PSAP) for the 2020 Census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 2 cities in the Luna County, NM by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 22 cities in the Marquette County, MI by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. A tribal census tract is a relatively permanent statistical subdivision of a federally recognized American Indian reservation and/or off-reservation trust land, delineated by the American Indian tribal government and/or the Census Bureau for the purpose of presenting demographic data. For the 2010 Census and beyond, tribal census tracts are defined independently of the standard county-based census tract delineation. For federally recognized American Indian Tribes with reservations and/or off-reservation trust lands with a population less than 2,400, a single tribal census tract is defined. Qualifying areas with a population greater than 2,400 could define additional tribal census tracts within their area. The tribal census tract codes for the 2020 Census are six characters long with a leading "T" alphabetic character followed by a five-digit numeric code, for example, T01000, which translates as tribal census tract 10. Tribal block groups nest within tribal census tracts. Since individual tabulation blocks are defined within the standard State-county-census tract geographic hierarchy, a tribal census tract can contain seemingly duplicate block numbers, thus tribal census tracts cannot be used to uniquely identify census tabulation blocks for the 2020 Census. The boundaries of tribal census tracts are those delineated through the Participant Statistical Areas Program (PSAP) for the 2020 Census.
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. A tribal census tract is a relatively permanent statistical subdivision of a federally recognized American Indian reservation and/or off-reservation trust land, delineated by the American Indian tribal government and/or the Census Bureau for the purpose of presenting demographic data. For the 2020 Census, tribal census tracts are defined independently of the standard county-based census tract delineation. For federally recognized American Indian Tribes with reservations and/or off-reservation trust lands with a population less than 2,400, a single tribal census tract is defined. Qualifying areas with a population greater than 2,400 could define additional tribal census tracts within their area. The tribal census tract codes for the 2020 Census are six characters long with a leading ""T"" alphabetic character followed by a five-digit numeric code, for example, T01000, which translates as tribal census tract 10. Tribal block groups nest within tribal census tracts. Since individual tabulation blocks are defined within the standard State-county-census tract geographic hierarchy, a tribal census tract can contain seemingly duplicate block numbers, thus tribal census tracts cannot be used to uniquely identify census tabulation blocks for the 2020 Census. The boundaries of tribal census tracts are those delineated through the Participant Statistical Areas Program (PSAP) for the 2020 Census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 484 cities in the Maine by Hispanic American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 50 states in the United States by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each states over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.