This dataset contains shoreline positions derived from available Landsat satellite imagery for five states (Delaware, Maryland, Viginia, Georgia, and Florida) along the U.S. Atlantic coast for the time period 1984 to 2021. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in KMZ format. Significant uncertainty is associated with the locations of shorelines in extremely dynamic regions, including at the locations of river mouths, tidal inlets, capes, and ends of spits. These data are readily viewable in Google Earth. For best display of results, it is recommended to turn off any 3D viewing. For technical users and researchers, data can be ingested into Global Mapper or QGIS for more detailed analysis. Similar shoreline positions for North Carolina and South Carolina are available from Barnard and others, 2023 at https://doi.org/10.5066/P9W91314.
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal Buffers (this dataset)Without Coastal BuffersPlace AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.
The Office of the Geographer’s Global Large Scale International Boundary Detailed Polygons file combines two datasets, the Office of the Geographer’s Large Scale International Boundary Lines and NGA shoreline data. The LSIB is believed to be the most accurate worldwide (non- W. Europe) international boundary vector line file available. The lines reflect U.S. government (USG) policy and thus not necessarily de facto control. The 1:250,000 scale World Vector Shoreline (WVS) coastline data was used in places and is generally shifted by several hundred meters to over a km. There are no restrictions on use of this public domain data. The Tesla Government PiX team performed topology checks and other GIS processing while merging data sets, created more accurate island shoreline in numerous cases, and worked closely with the US Dept. of State Office of the Geographer on quality control checks.
Methodology:
Tesla Government’s Protected Internet Exchange (PiX) GIS team converted the LSIB linework and the island data provided by the State Department to polygons. The LSIB Admin 0 world polygons (Admin 0 polygons) were created by conflating the following datasets: Eurasia_Oceania_LSIB7a_gen_polygons, Africa_Americas_LSIB7a_gen_polygons, Africa_Americas_LSIB7a, Eurasia_LSIB7a, additional updates from LSIB8, WVS shoreline data, and other shoreline data from United States Government (USG) sources.
The two simplified polygon shapefiles were merged, dissolved, and converted to lines to create a single global coastline dataset. The two detailed line shapefiles (Eurasia_LSIB7a and Africa_Americas_LSIB7a) were merged with each other and the coastlines to create an international boundary shapefile with coastlines. The dataset was reviewed for the following topological errors: must not self overlap, must not overlap, and must not have dangles. Once all topological errors were fixed, the lines were converted to polygons. Attribution was assigned by exploding the simplified polygons into multipart features, converting to centroids, and spatially joining with the newly created dataset. The polygons were then dissolved by country name.
Another round of QC was performed on the dataset through the data reviewer tool to ensure that the conversion worked correctly. Additional errors identified during this process consisted of islands shifted from their true locations and not representing their true shape; these were adjusted using high resolution imagery whereupon a second round of QC was applied with SRTM digital elevation model data downloaded from USGS. The same procedure was performed for every individual island contained in the islands from other USG sources.
After the island dataset went through another round of QC, it was then merged with the Admin 0 polygon shapefile to form a comprehensive world dataset. The entire dataset was then evaluated, including for proper attribution for all of the islands, by the Office of the Geographer.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Note: The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services beginning in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.This dataset is regularly updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications. PurposeCounty boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This feature layer is for public use. Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal Buffers (this dataset)Without Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal BuffersCity and County AbbreviationsUnincorporated Areas (Coming Soon)Census Designated PlacesCartographic CoastlinePolygonLine source (Coming Soon) Working with Coastal Buffers The dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except OFFSHORE and AREA_SQMI to get a version with the correct identifiers. Point of ContactCalifornia Department of Technology, Office of Digital Services, gis@state.ca.gov Field and Abbreviation DefinitionsCDTFA_COUNTY: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.CDTFA_COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system. The boundary data originate with CDTFA's teams managing tax rate information, so this field is preserved and flows into this dataset.CENSUS_GEOID: numeric geographic identifiers from the US Census BureauCENSUS_PLACE_TYPE: City, County, or Town, stripped off the census name for identification purpose.GNIS_PLACE_NAME: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.CDT_COUNTY_ABBR: Abbreviations of county names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 3 characters.CDT_NAME_SHORT: The name of the jurisdiction (city or county) with the word "City" or "County" stripped off the end. Some changes may come to how we process this value to make it more consistent.AREA_SQMI: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.OFFSHORE: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".PRIMARY_DOMAIN: Currently empty/null for all records. Placeholder field for official URL of the city or countyCENSUS_POPULATION: Currently null for all records. In the future, it will include the most recent US Census population estimate for the jurisdiction.GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead. Boundary AccuracyCounty boundaries were originally derived from a 1:24,000 accuracy dataset, with improvements made in some places to boundary alignments based on research into historical records and boundary changes as CDTFA learns of them. City boundary data are derived from pre-GIS tax maps, digitized at BOE and CDTFA, with adjustments made directly in GIS for new annexations, detachments, and corrections.Boundary accuracy within the dataset varies. While CDTFA strives to correctly include or exclude parcels from jurisdictions for accurate tax assessment, this dataset does not guarantee that a parcel is placed in the correct jurisdiction. When a parcel is in the correct jurisdiction, this dataset cannot guarantee accurate placement of boundary lines within or between parcels or rights of way. This dataset also provides no information on parcel boundaries. For exact jurisdictional or parcel boundary locations, please consult the county assessor's office and a licensed surveyor. CDTFA's data is used as the best available source because BOE and CDTFA receive information about changes in jurisdictions which otherwise need to be collected independently by an agency or company to compile into usable map boundaries. CDTFA maintains the best available statewide boundary information. CDTFA's source data notes the following about accuracy: City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties. In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose. SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon. Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts,
There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Historical shoreline positions serve as easily understood features that can be used to describe the movement of beaches through time. These data are used to calculate rates of shoreline change for the U.S. Geological Survey's (USGS) National Assessment of Shoreline Change Project. Each shoreline may represent a compilation of data from one or more sources for one or more dates provided by one or more agencies. Details regarding source are provided in the 'Data Quality Information' section of the individual shoreline metadata report. To make this shoreline data more accessible to the public and other agencies, the USGS created this web service. This web service was created utilizing Esri ArcServer. Vector shoreline layers were collected, organized by state, and symbology made consistent among similar data sets. This service meets open geospatial consortium standards.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains shoreline positions derived from available Landsat satellite imagery for four states (Texas, Louisiana, Mississippi, and Florida) along the U.S. Gulf coast for the time period 1984 to 2022. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in CSV format. Significant uncertainty is associated with the locations of shorelines in extremely dynamic regions, including at the locations of river mouths, tidal inlets, capes, and ends of spits. These data are readily viewable in a text or spreadsheet editor. For technical users and researchers, data can be ingested into Global Mapper or QGIS or similar for more detailed analysis. Similar shoreline positions for North Carolina and South Carolina are available from Barnard and others, 2023 at https://doi.org/10.5066/P9W91314.
Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow, and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present shoreline changes. There is also need for a comprehensive analysis of shoreline movement that is regionally consistent. To meet these national needs, the USGS National Assessment of Shoreline Change Project has collected and analyzed a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. This dataset consists of long-term (100+ years) shoreline change rates. Rate calculations were computed using the Digital Shoreline Analysis System (DSAS), an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate based on all available shoreline data. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate long-term rates. To make these results more accessible to the public and other agencies, the USGS created this web service. This web service was created utilizing Esri ArcServer. This service meets open geospatial consortium standards. The data compilation used to derive the shoreline change rates is available in a service with the title USGS Map service: National Shoreline Change - Historic Shorelines by State. The reference baseline used to derive the shoreline change rates is available in a service with the title USGS Map service: National Shoreline Change - Offshore Baseline. The locations of the transects used in the change rate calculation are available in a service with the title USGS Map service: National Shoreline Change - Intersection Points. The geographic information system (GIS) data layers from this web service are cataloged by state for ease of access.
This data release contains foreshore slopes for primarily open-ocean sandy beaches along the East Coast of the United States (Maine through Florida). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 1997 and 2018. The shoreline positions have been previously published, but the slopes have not. An along-shore reference baseline was defined, and then 20-meter spaced cross-shore beach transects were created perpendicular to the baseline. All data points within 1 meter (along-shore) of each transect were associated with that transect. For each transect, the points on the foreshore were identified, and a linear regression was fit through the foreshore points. Beach slope was defined as the slope of the regression. The regression was evaluated at the elevation of mean high water (MHW) to yield the cross-shore location of the shoreline. In areas where more than one lidar survey is available, the slopes from each survey are provided. While most of the slopes are for sandy beaches, there are some slope data from rocky headlands and other steeper beaches. The slope data files (slopeData_EastCoast.csv and slopeData_EastCoast.shp) contain beach slope, the location at which the beach slope data was calculated (the shoreline position), and the estimated uncertainty of the shoreline position. The reference line data files (referenceLine_EastCoast.csv and referenceLine_EastCoast.shp) contain information about the reference baseline, the cross-shore transects, and the MHW values used to estimate the shoreline location. Both file types .csv (ascii files containing comma separated values) and .shp (binary files supported by Esri known as shapefiles) contain the same information. Both file types are provided as a convenience to the user.
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017. These data provide a standardized shoreline database for the state. This release includes both long-term (up to 168 years) and short term (~20 years) rates. Files associated with the long-term and short-term rates are appended with "LT" and "ST", respectively. A proxy-datum bias reference line that accounts for the positional difference in a proxy shoreline (e.g. High Water Line (HWL) shoreline) and a datum shoreline (e.g. MHW shoreline) is also included in this release.
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of March 2025. The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCity boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal Buffers (this dataset)Counties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal BuffersCity and County AbbreviationsUnincorporated Areas (Coming Soon)Census Designated PlacesCartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except OFFSHORE and AREA_SQMI to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCDTFA_CITY: CDTFA incorporated city nameCDTFA_COUNTY: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.CDTFA_COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system. The boundary data originate with CDTFA's teams managing tax rate information, so this field is preserved and flows into this dataset.CENSUS_GEOID: numeric geographic identifiers from the US Census BureauCENSUS_PLACE_TYPE: City, County, or Town, stripped off the census name for identification purpose.GNIS_PLACE_NAME: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.CDT_CITY_ABBR: Abbreviations of incorporated area names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 4 characters. Not present in the county-specific layers.CDT_COUNTY_ABBR: Abbreviations of county names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 3 characters.CDT_NAME_SHORT: The name of the jurisdiction (city or county) with the word "City" or "County" stripped off the end. Some changes may come to how we process this value to make it more consistent.AREA_SQMI: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.OFFSHORE: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".PRIMARY_DOMAIN: Currently empty/null for all records. Placeholder field for official URL of the city or countyCENSUS_POPULATION: Currently null for all records. In the future, it will include the most recent US Census population estimate for the jurisdiction.GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.Boundary AccuracyCounty boundaries were originally derived from a 1:24,000 accuracy dataset, with improvements made in some places to boundary alignments based on research into historical records and boundary changes as CDTFA learns of them. City boundary data are derived from pre-GIS tax maps, digitized at BOE and CDTFA, with adjustments made directly in GIS for new annexations, detachments, and corrections. Boundary accuracy within the dataset varies. While CDTFA strives to correctly include or exclude parcels from jurisdictions for accurate tax assessment, this dataset does not guarantee that a parcel is placed in the correct jurisdiction. When a parcel is in the correct jurisdiction, this dataset cannot guarantee accurate placement of boundary lines within or between parcels or rights of way. This dataset also provides no information on parcel boundaries. For exact jurisdictional or parcel boundary locations, please consult the county assessor's office and a licensed surveyor.CDTFA's data is used as the best available source because BOE and CDTFA receive information about changes in jurisdictions which otherwise need to be collected independently by an agency or company to compile into usable map boundaries. CDTFA maintains the best available statewide boundary information.CDTFA's source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will
These data show the geographic representation of Federal and State Waters for the purpose of display in the MarineCadastre.gov OceanReports application. The boundary between state and federal waters was determined by consulting The Submerged Lands Act (43 U.S.C. §§ 1301 et seq.), 48 U.S.C. §§ 1705 and The Abandoned Shipwreck Act (43 U.S.C. §§ 2101). Some boundary delineations based on the SLA were approximated in this data set, including areas in Hawaii, Alaska, and Washington State. Although state boarders do not extend over water, it was necessary to approximate these borders to produce this data set. The boundaries depicted in this data set are for visual purposes only. The placement of these boundaries was extrapolated from the Federal Outer Continental Shelf (OCS) Administrative Boundaries as described here http://edocket.access.gpo.gov/2006/pdf/05-24659.pdf. The delineation between waters under US sovereign territory jurisdiction and that of federal governance is also approximate. Although based upon legislation, these data do not represent legal boundaries, especially in the case of Navassa Island, The Northern Mariana Islands, Baker Island, Howland Island, Johnston Atoll, Kingman Reef, Palmyra Atoll, Wake Islands and Jarvis Island.The seaward limit of this data set is the boundary of the 200nm US Exclusive Economic Zone. The EEZ is measured from the US baseline, recognized as the low-water line along the coast as marked on NOAA's nautical charts in accordance with articles of the Laws of the Sea. These limits are ambulatory and subject to revision based on changes in coastline geometry. This dataset was produced based on an update to the Maritime Limits published in September, 2013. To view the most up-to-date Maritime Limits, please see http://www.nauticalcharts.noaa.gov/csdl/mbound.htm. Navassa Island does not have an EEZ around it, so the seaward extent of the federal waters surrounding it were based on the 12 mile offshore boundary of the USFWS National Wildlife Refuge established on the island. All data is displayed in WGS_1984_World_Mercator. Area calculations for all states except Alaska were completed in the same projection. Area calculations for Alaska were completed in Alaska Albers Equal Area Conic.
This dataset contains shoreline positions derived from available Landsat satellite imagery for two states (Oregon, and Washington) along the U.S. Pacific coast for the time period 1984 to 2023. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in CSV format. Significant uncertainty is associated with the locations of shorelines in extremely dynamic regions, including at the locations of river mouths, tidal inlets, capes, and ends of spits. These data are readily viewable in a text or spreadsheet editor. For technical users and researchers, data can be ingested into Global Mapper or QGIS or similar for more detailed analysis. Similar shoreline positions for North Carolina and South Carolina are available from Barnard and others, 2023 at https://doi.org/10.5066/P9W91314. Similar shoreline positions for Texas, Mississippi, Louisiana, and Florida are available from Buscombe and others, 2024 at https://doi.org/10.5066/P1WFZXDM.
There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a compilation of data from one or more sources for one or more dates provided by one or more agencies. Details regarding source are provided in the 'Data Quality Information' section of this metadata report. Shoreline vectors derived from historic sources (first three time periods) represent the high water line at the time of the survey, whereas modern shorelines (final time period) represent the mean high water line.
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change.
This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017. These data provide a standardized shoreline database for the state. This release includes both long-term (up to 168 years) and short term (~20 years) rates. Files associated with the long-term and short-term rates are appended with 'LT' and 'ST', respectively. A proxy-datum bias reference line that accounts for the positional difference in a proxy shoreline (e.g. High Water Line (HWL) shoreline) and a datum shoreline (e.g. MHW shoreline) is also included in this release.
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the likelihood of coastal change along the U.S coastline within the coming decade. The pilot study, conducted in the Northeastern U.S. (Maine to Virginia), is comprised of datasets derived from a variety of federal, state, and local sources. First, a decision tree-based dataset is built that describes the fabric or integrity of the coastal landscape and includes landcover, elevation, slope, long-term (>150 years) shoreline change trends, dune height, and marsh stability data. A second database was generated from coastal hazards, which are divided into event hazards (e.g., flooding, wave power, and probability of storm overwash) and persistent hazards (e.g., relative sea-level rise rate, short-term (about 30 years) shoreline erosion rate, and storm recurrence interval). The fabric dataset is then merged with the coastal hazards databases and a training dataset made up of hundreds of polygons is generated from the merged dataset to support a supervised learning classification. Results from this pilot study are location-specific at 10-meter resolution and are made up of four raster datasets that include (1) quantitative and qualitative information used to determine the resistance of the landscape to change, (2 & 3) the potential coastal hazards that act on it, (4) the machine learning output, or Coastal Change Likelihood (CCL), based on the cumulative effects of both fabric and hazards, and (5) an estimate of the hazard type (event or persistent) that is the likely to influence coastal change. Final outcomes are intended to be used as a first order planning tool to determine which areas of the coast may be more likely to change in response to future potential coastal hazards, and to examine elements and drivers that make change in a location more likely.
There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a compilation of data from one or more sources for one or more dates provided by one or more agencies. Details regarding source are provided in the 'Data Quality Information' section of this metadata report. Shoreline vectors derived from historic sources (first three time periods) represent the high water line at the time of the survey, whereas modern shorelines (final time period) represent the mean high water line.
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of March 2025. The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This layer removes the coastal buffer polygons. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal Buffers (this dataset)Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal BuffersCity and County AbbreviationsUnincorporated Areas (Coming Soon)Census Designated PlacesCartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing excludes the coastal buffers for cities and counties that have them in the source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except OFFSHORE and AREA_SQMI to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCDTFA_COUNTY: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.CDTFA_COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system. The boundary data originate with CDTFA's teams managing tax rate information, so this field is preserved and flows into this dataset.CENSUS_GEOID: numeric geographic identifiers from the US Census BureauCENSUS_PLACE_TYPE: City, County, or Town, stripped off the census name for identification purpose.GNIS_PLACE_NAME: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.CDT_COUNTY_ABBR: Abbreviations of county names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 3 characters.CDT_NAME_SHORT: The name of the jurisdiction (city or county) with the word "City" or "County" stripped off the end. Some changes may come to how we process this value to make it more consistent.AREA_SQMI: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.OFFSHORE: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".PRIMARY_DOMAIN: Currently empty/null for all records. Placeholder field for official URL of the city or countyCENSUS_POPULATION: Currently null for all records. In the future, it will include the most recent US Census population estimate for the jurisdiction.GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.Boundary AccuracyCounty boundaries were originally derived from a 1:24,000 accuracy dataset, with improvements made in some places to boundary alignments based on research into historical records and boundary changes as CDTFA learns of them. City boundary data are derived from pre-GIS tax maps, digitized at BOE and CDTFA, with adjustments made directly in GIS for new annexations, detachments, and corrections. Boundary accuracy within the dataset varies. While CDTFA strives to correctly include or exclude parcels from jurisdictions for accurate tax assessment, this dataset does not guarantee that a parcel is placed in the correct jurisdiction. When a parcel is in the correct jurisdiction, this dataset cannot guarantee accurate placement of boundary lines within or between parcels or rights of way. This dataset also provides no information on parcel boundaries. For exact jurisdictional or parcel boundary locations, please consult the county assessor's office and a licensed surveyor.CDTFA's data is used as the best available source because BOE and CDTFA receive information about changes in jurisdictions which otherwise need to be collected independently by an agency or company to compile into usable map boundaries. CDTFA maintains the best available statewide boundary information.CDTFA's source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and
These data were automated to provide an accurate high-resolution historical shoreline of Alabama State Composite suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808
Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow, and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present shoreline changes. There is also need for a comprehensive analysis of shoreline movement that is regionally consistent. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii. A primary goal of this work is to develop standardized methods for mapping and analyzing shoreline movement so that internally consistent updates can periodically be made to record coastal erosion and accretion.
R2GIS Combined county boundary data from TANA, Navteq and Census: TANA county boundaries.(static.R2GIS.TANA_BOUNDARY_COUNTY) for all of Region 2 except the Virgin Islands which were not found in the data set. TANA provided more detailed county coastlines. Navteq.County(static.R2GIS.NAVTEQ_BOUNDARY_2014_COUNTY) for the smaller surrounding islands of the Virgin Islands which had more detail than the CENSUS representations. Counties (CENSUS) VI. The CENSUS county boundaries were used only for the three main islands of the Virgin Islands which had finer detail than that provided by Navteq. The Dynamap(R)/2000 County Boundary file is a non-generalized polygon layer that represents all U.S. government-defined entities named County. A County is a type of governmental unit that is the primary legal subdivision of every U.S. state. In Louisiana, the County-equivalent entity is 'parish.' In Alaska, the statistically equivalent entities are the organized 'boroughs,' 'city and boroughs,' 'municipalities' and 'census areas.' The Dynamap(R)/2000 County Boundary file is a non-generalized polygon layer that represents all U.S. government-defined entities named County. A County is a type of governmental unit that is the primary legal subdivision of every U.S. state. In Louisiana, the County-equivalent entity is 'parish.' In Alaska, the statistically equivalent entities are the organized 'boroughs,' 'city and boroughs,' 'municipalities' and 'census areas.'
This dataset contains shoreline positions derived from available Landsat satellite imagery for five states (Delaware, Maryland, Viginia, Georgia, and Florida) along the U.S. Atlantic coast for the time period 1984 to 2021. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in KMZ format. Significant uncertainty is associated with the locations of shorelines in extremely dynamic regions, including at the locations of river mouths, tidal inlets, capes, and ends of spits. These data are readily viewable in Google Earth. For best display of results, it is recommended to turn off any 3D viewing. For technical users and researchers, data can be ingested into Global Mapper or QGIS for more detailed analysis. Similar shoreline positions for North Carolina and South Carolina are available from Barnard and others, 2023 at https://doi.org/10.5066/P9W91314.