Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term United States Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset combines historical U.S. economic and financial indicators, spanning the last 50 years, to facilitate time series analysis and uncover patterns in macroeconomic trends. It is designed for exploring relationships between interest rates, inflation, economic growth, stock market performance, and industrial production.
Interest Rate (Interest_Rate):
Inflation (Inflation):
GDP (GDP):
Unemployment Rate (Unemployment):
Stock Market Performance (S&P500):
Industrial Production (Ind_Prod):
Interest_Rate: Monthly Federal Funds Rate (%) Inflation: CPI (All Urban Consumers, Index) GDP: Real GDP (Billions of Chained 2012 Dollars) Unemployment: Unemployment Rate (%) Ind_Prod: Industrial Production Index (2017=100) S&P500: Monthly Average of S&P 500 Adjusted Close Prices This project explores the interconnected dynamics of key macroeconomic indicators and financial market trends over the past 50 years, leveraging data from the Federal Reserve Economic Data (FRED) and Yahoo Finance. The dataset integrates critical variables such as the Federal Funds Rate, Inflation (CPI), Real GDP, Unemployment Rate, Industrial Production, and the S&P 500 Index, providing a holistic view of the U.S. economy and financial markets.
The analysis focuses on uncovering relationships between these variables through time-series visualization, correlation analysis, and trend decomposition. Key findings are included in the Insights section. This project serves as a robust resource for understanding long-term economic trends, policy impacts, and market behavior. It is particularly valuable for students, researchers, policymakers, and financial analysts seeking to connect macroeconomic theory with real-world data.
https://github.com/user-attachments/assets/1b40e0ca-7d2e-4fbc-8cfd-df3f09e4fdb8">
To ensure sufficient power, the dataset covers last 50 years of monthly data i.e., around 600 entries.
https:/...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 1.75 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Japan Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Canada was last recorded at 2.25 percent. This dataset provides - Canada Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Mexico Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
TwitterThe Survey on Interest Rate Controls 2020 was conducted as a World Bank Group study on interest rate controls (IRCs) in lending and deposit markets around the world. The study aims to identify the different types of formal (or de jure) controls, the countries that apply then, how they implement them, and the reasons for doing so. The objective of the study is to advance knowledge on this topic by providing an evidence base for investigating the impact of IRCs on economic outcomes.
The survey investigates present IRCs in each surveyed country, the reasons why they have been applied, the framework and resources associated with their application and the details as to their level and functioning. The focus is on legal forms of control (i.e. codified into law) as opposed to de facto controls. The new database on interest rate controls, a popular form of financial repression is based on a survey of 108 countries, representing 88 percent of global gross domestic product. The interest rate controls presented in this dataset were in effect in 2019.
Global Survey, covering 108 countries, representing 88 percent of global GDP.
Regulation at the national level.
Banking supervisors and Local Banking Associations.
Sample survey data [ssd]
Mail Questionnaire [mail]
Bank supervisors and banking associations were provided with a standard excel file with five parts. The survey was structured in five parts, each placed in a different excel sheet. Part A: Introduction. Countries with no IRCs in place were asked to only answer this sheet and leave the rest blank. Part B: Presented the definitions of controls, institutions, products and additional aspects that will be covered in the survey. Part C: Introduced a set of qualitative questions to describe the IRCs in place. Part D: Displayed a set of tables to quantitatively describe the IRCs in place. Part E: Laid out the final set of questions, covering sanctions and control mechanisms that support the IRCs' enforcement. The questionnaire is provided in the Documentation section in pdf and excel.
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Canada Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
| Column Name | Description |
|---|---|
Country | The country where the housing market data is recorded π |
Year | The year of observation π |
Average House Price ($) | The average price of houses in USD π° |
Median Rental Price ($) | The median monthly rent for properties in USD π |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage π |
Household Income ($) | The average annual household income in USD π‘ |
Population Growth (%) | The percentage increase in population over the year π₯ |
Urbanization Rate (%) | Percentage of the population living in urban areas ποΈ |
Homeownership Rate (%) | The percentage of people who own their homes π |
GDP Growth Rate (%) | The annual GDP growth percentage π |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force πΌ |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
This dataset includes various economic indicators such as stock market performance, inflation rates, GDP, interest rates, employment data, and housing index, all of which are crucial for understanding the state of the economy. By analysing this dataset, one can gain insights into the causes and effects of past recessions in the US, which can inform investment decisions and policy-making.
There are 20 columns and 343 rows spanning 1990-04 to 2022-10
The columns are:
1. Price: Price column refers to the S&P 500 lot price over the years. The S&P 500 is a stock market index that measures the performance of 500 large companies listed on stock exchanges in the United States. This variable represents the value of the S&P 500 index from 1980 to present. Industrial Production: This variable measures the output of industrial establishments in the manufacturing, mining, and utilities sectors. It reflects the overall health of the manufacturing industry, which is a key component of the US economy.
2. INDPRO: Industrial production measures the output of the manufacturing, mining, and utility sectors of the economy. It provides insights into the overall health of the economy, as a decline in industrial production can indicate a slowdown in economic activity. This data can be used by policymakers and investors to assess the state of the economy and make informed decisions.
3. CPI: CPI stands for Consumer Price Index, which measures the change in the prices of a basket of goods and services that consumers purchase. CPI inflation represents the rate at which the prices of goods and services in the economy are increasing.
4. Treasure Bill rate (3 month to 30 Years): Treasury bills (T-bills) are short-term debt securities issued by the US government. This variable represents the interest rates on T-bills with maturities ranging from 3 months to 30 years. It reflects the cost of borrowing money for the government and provides an indication of the overall level of interest rates in the economy.
5. GDP: GDP stands for Gross Domestic Product, which is the value of all goods and services produced in a country. This dataset is taking into account only the Nominal GDP values. Nominal GDP represents the total value of goods and services produced in the US economy without accounting for inflation.
6. Rate: The Federal Funds Rate is the interest rate at which depository institutions lend reserve balances to other depository institutions overnight. It is set by the Federal Reserve and is used as a tool to regulate the money supply in the economy.
7. BBK_Index: The BBKI are maintained and produced by the Indiana Business Research Center at the Kelley School of Business at Indiana University. The BBK Coincident and Leading Indexes and Monthly GDP Growth for the U.S. are constructed from a collapsed dynamic factor analysis of a panel of 490 monthly measures of real economic activity and quarterly real GDP growth. The BBK Leading Index is the leading subcomponent of the cycle measured in standard deviation units from trend real GDP growth.
8. Housing Index: This variable represents the value of the housing market in the US. It is calculated based on the prices of homes sold in the market and provides an indication of the overall health of the housing market.
9. Recession binary column: This variable is a binary indicator that takes a value of 1 when the US economy is in a recession and 0 otherwise. It is based on the official business cycle dates provided by the National Bureau of Economic Research.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.40 percent in the week ending November 21 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterThis table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...).
Facebook
TwitterThe given data is a time series data of the yearly interest rate estimate of a specific asset. The interest is semi annually compounded on the yield. The interest rate forecasts are released every next day for the previous day. All interest rates are calculated on constant maturity basis. The interest rate for any year is calculated by the yield curve whose remaining maturity corresponds to exactly the previously stated number of years. Please find below the description of the data attributes
serial_number: Unique identifier for each tuple time_stamp: The date at which the interest for the specific bond was calculated. 1 yearβ¦.30 year: Projected interest rates for investment on that specific time stamp
Objective Of The Problem: The objective of the problem is predict the values of the attribute β5 yearβ in one to one mapping with the attribute βserial_numberβ. Please note that the all predictions are to be made on the test file only. The training file contains all features including the feature to predict. The test file does not contain the feature to predict. Please write all predictions to a CSV file and upload the same as the solution file. Please have a look at the sample submission file to understand the solution file format.
Evaluation: The metric of evaluation for this prediction problem is root mean squared error. All error values are normalized to 100 using the. Please note that all candidates must submit their solution code. The challenge is going to be holistically evaluated. Both the accuracy and how the problem was solved is going to be considered.
Evaluation Algorithm ξ‘ Root Mean Square Error (RMSE)
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Some of the applications are as follows :
1)Credit Risk Assessment: Banks and financial institutions can leverage the dataset to develop models for assessing the credit risk associated with loan applicants. This involves predicting the likelihood of loan default based on various features.
2)Loan Portfolio Management: Financial organizations can use the dataset to manage and optimize their loan portfolios. This includes diversifying risk, setting interest rates, and making informed decisions about loan approval or denial.
3)Market Trend Analysis: By analyzing the dataset, researchers and analysts can identify trends in borrower behavior, regional variations, and shifts in loan purposes. This information can be valuable for making data-driven market predictions.
4)Customer Segmentation: Understanding the characteristics of different borrower segments can help banks tailor their services and products. This dataset can be used for clustering customers based on attributes like income, employment length, and loan history.
5)Regulatory Compliance: Financial institutions can use the dataset to ensure compliance with regulations. For example, assessing whether loans are being offered fairly across different demographics and regions.
6)Machine Learning Model Development: Data scientists can use this dataset to develop and test machine learning models for predicting loan outcomes. This can include classification tasks such as predicting loan approval or denial.
7)Lending Strategy Optimization: Banks can optimize their lending strategies by analyzing patterns in loan amounts, interest rates, and repayment behavior. This could involve adjusting lending criteria to attract desirable borrowers.
8)Fraud Detection: The dataset may be used to identify patterns indicative of fraudulent loan applications. Unusual patterns in borrower information could be flagged for further investigation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset of the 12 month LIBOR rate back to 1986. The London Interbank Offered Rate is the average interest rate at which leading banks borrow funds from other banks in the London market. LIBOR is the most widely used global "benchmark" or reference rate for short term interest rates.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The property listings dataset contains information about real estate properties available for sale or rent in Brazil. It includes details such as property type (apartment, house, commercial property), location (city, neighborhood), size (square footage, number of rooms), price, amenities, and contact information for the property owner or real estate agent. This dataset can be used for market analysis, property valuation, and identifying trends in the real estate market.
Sales and Rental Prices Dataset: The sales and rental prices dataset provides information about the prices of real estate properties in Brazil. It includes data on property transactions, including sale prices and rental prices per square meter or per month. This dataset can be used to analyze price trends, compare property prices across different regions, and identify areas with high or low real estate market demand.
Property Characteristics Dataset: The property characteristics dataset contains detailed information about the features and attributes of real estate properties. It includes data such as the number of bedrooms, bathrooms, parking spaces, floor plan, construction year, building amenities, and property condition. This dataset can be used for property classification, identifying popular property features, and evaluating property quality.
Geographical Data: Geographical data includes information about the location and spatial features of real estate properties in Brazil. It can include data such as latitude and longitude coordinates, zoning information, proximity to amenities (schools, hospitals, parks), and neighborhood demographics. This dataset can be used for spatial analysis, identifying hotspots or desirable locations, and understanding the neighborhood characteristics.
Property Market Trends Dataset: The property market trends dataset provides information about market conditions and trends in the real estate sector in Brazil. It includes data such as the number of property listings, average time on the market, price fluctuations, mortgage interest rates, and economic indicators that impact the real estate market. This dataset can be used for market forecasting, understanding market dynamics, and making informed investment decisions.
Real Estate Regulatory Data: Real estate regulatory data includes information about legal and regulatory aspects of the real estate sector in Brazil. It can include data on property ownership, property taxes, zoning regulations, building permits, and legal restrictions on property transactions. This dataset can be used for legal compliance, understanding property ownership rights, and assessing the legal framework for real estate transactions.
Historical Data: Historical real estate data includes past records and trends of property prices, market conditions, and sales volumes in Brazil. This dataset can span several years and can be used to analyze long-term market trends, compare current market conditions with historical data, and assess the performance of the real estate market over time.
Facebook
Twitterhttps://seniorsfirst.com.au/website-terms/https://seniorsfirst.com.au/website-terms/
Dataset underlying the Seniors First reverse mortgage comparison widget. Displays indicative rate types, features, and eligibility details for multiple Australian reverse-mortgage providers. Data is aggregated and refreshed periodically for consumer education.
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term United States Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.