67 datasets found
  1. a

    Population Density - White - Map Service

    • hub.arcgis.com
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damian's Organization (2012). Population Density - White - Map Service [Dataset]. https://hub.arcgis.com/maps/8d31fc923a0c44c291b15ce36f814ffd
    Explore at:
    Dataset updated
    Aug 15, 2012
    Dataset authored and provided by
    Damian's Organization
    Area covered
    Description

    This map shows density surfaces derived from the 2010 US Census block points.This data shows % of people who identified themselves as single race and whiteThe block points were interpolated using the density function to a 2km x 2km grid of the continental US (with water and coastal data masks). There are many stories in these Maps:- What is that clean North/South Line through the center? Why do so many people live East of that line?- Notice the paths of the towns in the west – why are they so linear? And it seems there is a pattern to the spaces between the towns, why?- Looking at the ethnic maps, what explains the patterns? Look at the % Native American map – what are the areas of higher values? (note I did not make a % Asian map as at this scale there was not enough % to show any significant clusters.)

  2. Non-White Population in the US (Current ACS)

    • gis-for-racialequity.hub.arcgis.com
    Updated Jul 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Non-White Population in the US (Current ACS) [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/bd59d1d55f064d1b815997f4b6c7735f
    Explore at:
    Dataset updated
    Jul 2, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the percentage of people who identify as something other than non-Hispanic white throughout the US according to the most current American Community Survey. The pattern is shown by states, counties, and Census tracts. Zoom or search for anywhere in the US to see a local pattern. Click on an area to learn more. Filter to your area and save a new version of the map to use for your own mapping purposes.The Arcade expression used was: 100 - B03002_calc_pctNHWhiteE, which is simply 100 minus the percent of population who identifies as non-Hispanic white. The data is from the U.S. Census Bureau's American Community Survey (ACS). The figures in this map update automatically annually when the newest estimates are released by ACS. For more detailed metadata, visit the ArcGIS Living Atlas Layer: ACS Race and Hispanic Origin Variables - Boundaries.The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.Other maps of interest:American Indian or Alaska Native Population in the US (Current ACS)Asian Population in the US (Current ACS)Black or African American Population in the US (Current ACS)Hawaiian or Other Pacific Islander Population in the US (Current ACS)Hispanic or Latino Population in the US (Current ACS) (some people prefer Latinx)Population who are Some Other Race in the US (Current ACS)Population who are Two or More Races in the US (Current ACS) (some people prefer mixed race or multiracial)White Population in the US (Current ACS)Race in the US by Dot DensityWhat is the most common race/ethnicity?

  3. t

    Predominant Race and Ethnicity in North Providence, RI (Census 2020)

    • northprovidence-redistricting.timmons.com
    Updated Feb 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timmons Group (2022). Predominant Race and Ethnicity in North Providence, RI (Census 2020) [Dataset]. https://northprovidence-redistricting.timmons.com/maps/f14c1f830b3e4d1c8d9f612cf9703847
    Explore at:
    Dataset updated
    Feb 28, 2022
    Dataset authored and provided by
    Timmons Group
    Area covered
    Description

    This multi-scale map shows the predominant (most numerous) race/ethnicity living within an area. Map opens at the state level, centered on the lower 48 states. Data is from U.S. Census Bureau's 2020 PL 94-171 data for state, county, tract, block group, and block.The map's colors indicate which of the eight race/ethnicity categories have the highest total count.Race and ethnicity highlights from the U.S. Census Bureau:White population remained the largest race or ethnicity group in the United States, with 204.3 million people identifying as White alone. Overall, 235.4 million people reported White alone or in combination with another group. However, the White alone population decreased by 8.6% since 2010.Two or More Races population (also referred to as the Multiracial population) has changed considerably since 2010. The Multiracial population was measured at 9 million people in 2010 and is now 33.8 million people in 2020, a 276% increase.“In combination” multiracial populations for all race groups accounted for most of the overall changes in each racial category.All of the race alone or in combination groups experienced increases. The Some Other Race alone or in combination group (49.9 million) increased 129%, surpassing the Black or African American population (46.9 million) as the second-largest race alone or in combination group.The next largest racial populations were the Asian alone or in combination group (24 million), the American Indian and Alaska Native alone or in combination group (9.7 million), and the Native Hawaiian and Other Pacific Islander alone or in combination group (1.6 million).Hispanic or Latino population, which includes people of any race, was 62.1 million in 2020. Hispanic or Latino population grew 23%, while the population that was not of Hispanic or Latino origin grew 4.3% since 2010.View more 2020 Census statistics highlights on race and ethnicity.

  4. l

    Population by Race and Ethnicity

    • data.lacounty.gov
    • ph-lacounty.hub.arcgis.com
    • +1more
    Updated Jan 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). Population by Race and Ethnicity [Dataset]. https://data.lacounty.gov/datasets/population-by-race-and-ethnicity/about
    Explore at:
    Dataset updated
    Jan 4, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Race categories for White, Black, Asian, American Indian or Alaska Native, Native Hawaiian or Pacific Islander, other race, and two or more races are non-Hispanic. Due to rounding, race and ethnicity categories may not sum to 100%. Estimates are based on provisional data and subject to change.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  5. a

    2010 White Population in the USA

    • gis-for-racialequity.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2017). 2010 White Population in the USA [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/arcgis-content::2010-white-population-in-the-usa/about
    Explore at:
    Dataset updated
    Jun 14, 2017
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map shows the percentage of the population in the USA that classify themselves as White according to the 2010 Census. The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.Additional Census 2010 resources

  6. D

    PredominantRace

    • detroitdata.org
    • datasets.ai
    • +9more
    Updated Apr 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Driven Detroit (2016). PredominantRace [Dataset]. https://detroitdata.org/dataset/predominantrace
    Explore at:
    arcgis geoservices rest api, html, csv, geojson, zip, kmlAvailable download formats
    Dataset updated
    Apr 27, 2016
    Dataset provided by
    Data Driven Detroit
    Description

    Data Driven Detroit calculated the predominant race (if any) for census tracts in the Detroit, Tri-County region. The data come from the 2010 Census PL file. The census table splits out races by hispanic and non-hispanic ethnicity. For the purposes of this feature, White, Black, Hispanic or no predominant race were used as the possible categories. If there was no race or ethnicnicity over 50% of the population, then there is no predominant race.

  7. a

    Non-White Predominant Population Race (2010)

    • hub.arcgis.com
    • gis-for-racialequity.hub.arcgis.com
    Updated Jun 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2017). Non-White Predominant Population Race (2010) [Dataset]. https://hub.arcgis.com/maps/4cdaaadcdd494726b37e4bfe6c706480
    Explore at:
    Dataset updated
    Jun 14, 2017
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map shows the predominant non-white race in the United States. The races compared are: Hispanic, Non-Hispanic Black/African American, Non-Hispanic American Indian/Alaska Native, Non-Hispanic Asian, and Non-Hispanic Pacific Islander. Multiple or other races are not included in this comparison. The level of transparency on each polygon is determined by how predominant a value is over the other values. The strength of the color is correlated to the strength of the predominance.The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.

  8. 2010 10: Racial Diversity

    • opendata.mtc.ca.gov
    • hub.arcgis.com
    Updated Oct 27, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2010). 2010 10: Racial Diversity [Dataset]. https://opendata.mtc.ca.gov/documents/295969ab108349999e67cac2958a10c9
    Explore at:
    Dataset updated
    Oct 27, 2010
    Dataset provided by
    Metropolitan Transportation Commission
    Authors
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    In the map, each dot represents 100 people in four race categories: white (non-Hispanic), black (non-Hispanic), Hispanic/Latino, and Asian/Pacific Islander. Thus, the map also depicts population densities throughout the region. While the rural/ suburban areas in the region have largely white populations, many urban/densely populated areas in the region are racially diverse, with two or more ethnicities living in relatively non-segregated neighborhoods.

  9. V

    Loudoun County 2020 Census Population Patterns by Race and Hispanic or...

    • data.virginia.gov
    • datasets.ai
    • +1more
    Updated Jan 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County (2023). Loudoun County 2020 Census Population Patterns by Race and Hispanic or Latino Ethnicity [Dataset]. https://data.virginia.gov/dataset/loudoun-county-2020-census-population-patterns-by-race-and-hispanic-or-latino-ethnicity
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Jan 27, 2023
    Dataset provided by
    Loudoun County GIS
    Authors
    Loudoun County
    Area covered
    Loudoun County
    Description

    Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File.


    Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:

    Population by Race

    White – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.

    Black or African American – A person having origins in any of the Black racial groups of Africa.

    American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.

    Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.

    Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.

    Some Other Race - this category is chosen by people who do not identify with any of the categories listed above.

    People can identify with more than one race. These people are included in the Two or More Races

    Hispanic or Latino Population
    The Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.


    Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.

  10. Knoxville TN Urban Renewal Mapping Data

    • figshare.com
    zip
    Updated Feb 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris DeRolph (2024). Knoxville TN Urban Renewal Mapping Data [Dataset]. http://doi.org/10.6084/m9.figshare.25199849.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 16, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Chris DeRolph
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Knoxville
    Description

    This dataset contains files created, digitized, or georeferenced by Chris DeRolph for mapping the pre-urban renewal community within the boundaries of the Riverfront-Willow St. and Mountain View urban renewal projects in Knoxville TN. Detailed occupant information for properties within boundaries of these two urban renewal projects was extracted from the 1953 Knoxville City Directory. The year 1953 was chosen as a representative snapshot of the Black community before urban renewal projects were implemented. The first urban renewal project to be approved was the Riverfront-Willow Street project, which was approved in 1954 according to the University of Richmond Renewing Inequality project titled ‘Family Displacements through Urban Renewal, 1950-1966’ (link below in the 'Other shapefiles' section). For ArcGIS Online users, the shapefile and tiff layers are available in AGOL and can be found by clicking the ellipsis next to the layer name and selecting 'Show item details' for the layers in this webmap https://knoxatlas.maps.arcgis.com/apps/webappviewer/index.html?id=43a66c3cfcde4f5f8e7ab13af9bbcebecityDirectory1953 is a folder that contains:JPG images of 1953 City Directory for street segments within the urban renewal project boundaries; images collected at the McClung Historical CollectionTXT files of extracted text from each image that was used to join occupant information from directory to GIS address datashp is a folder that contains the following shapefiles:Residential:Black_owned_residential_1953.shp: residential entries in the 1953 City Directory identified as Black and property ownersBlack_rented_residential_1953.shp: residential entries in the 1953 City Directory identified as Black and non-owners of the propertyNon_Black_owned_residential_1953.shp: residential entries in the 1953 City Directory identified as property owners that were not listed as BlackNon_Black_rented_residential_1953.shp: residential entries in the 1953 City Directory not listed as Black or property ownersResidential shapefile attributes:cityDrctryString: full text string from 1953 City Directory entryfileName: name of TXT file that contains the information for the street segmentsOccupant: the name of the occupant listed in the City Directory, enclosed in square brackets []Number: the address number listed in the 1953 City DirectoryBlackOccpt: flag for whether the occupant was identified in the City Directory as Black, designated by the (c) or (e) character string in the cityDrctryString fieldOwnerOccpd: flag for whether the occupant was identified in the City Directory as the property owner, designated by the @ character in the cityDrctryString fieldUnit: unit if listed (e.g. Apt 1, 2d fl, b'ment, etc)streetName: street name in ~1953Lat: latitude coordinate in decimal degrees for the property locationLon: longitude coordinate in decimal degrees for the property locationrace_own: combines the BlackOccpt and OwnerOccpd fieldsmapLabel: combines the Number and Occupant fields for map labeling purposeslastName: occupant's last namelabelShort: combines the Number and lastName fields for map labeling purposesNon-residential:Black_nonResidential_1953.shp: non-residential entries in the 1953 City Directory listed as Black-occupiedNonBlack_nonResidential_1953.shp: non-residential entries in the 1953 City Directory not listed as Black-occupiedNon-residential shapefile attributes:cityDrctryString: full text string from 1953 City Directory entryfileName: name of TXT file that contains the information for the street segmentsOccupant: the name of the occupant listed in the City Directory, enclosed in square brackets []Number: the address number listed in the 1953 City DirectoryBlackOccpt: flag for whether the occupant was identified in the City Directory as Black, designated by the (c) or (e) character string in the cityDrctryString fieldOwnerOccpd: flag for whether the occupant was identified in the City Directory as the property owner, designated by the @ character in the cityDrctryString fieldUnit: unit if listed (e.g. Apt 1, 2d fl, b'ment, etc)streetName: street name in ~1953Lat: latitude coordinate in decimal degrees for the property locationLon: longitude coordinate in decimal degrees for the property locationNAICS6: 2022 North American Industry Classification System (NAICS) six-digit business code, designated by Chris DeRolph rapidly and without careful considerationNAICS6title: NAICS6 title/short descriptionNAICS3: 2022 North American Industry Classification System (NAICS) three-digit business code, designated by Chris DeRolph rapidly and without careful considerationNAICS3title: NAICS3 title/short descriptionflag: flags whether the occupant is part of the public sector or an NGO; a flag of '0' indicates the occupant is assumed to be a privately-owned businessrace_own: combines the BlackOccpt and OwnerOccpd fieldsmapLabel: combines the Number and Occupant fields for map labeling purposesOther shapefiles:razedArea_1972.shp: approximate area that appears to have been razed during urban renewal based on visual overlay of usgsImage_grayscale_1956.tif and usgsImage_colorinfrared_1972.tif; digitized by Chris DeRolphroadNetwork_preUrbanRenewal.shp: road network present in urban renewal area before razing occurred; removed attribute indicates whether road was removed or remains today; historically removed roads were digitized by Chris DeRolph; remaining roads sourced from TDOT GIS roads dataTheBottom.shp: the approximate extent of the razed neighborhood known as The Bottom; digitized by Chris DeRolphUrbanRenewalProjects.shp: boundaries of the East Knoxville urban renewal projects, as mapped by the University of Richmond's Digital Scholarship Lab https://dsl.richmond.edu/panorama/renewal/#view=0/0/1&viz=cartogram&city=knoxvilleTN&loc=15/35.9700/-83.9080tiff is a folder that contains the following images:streetMap_1952.tif: relevant section of 1952 map 'Knoxville Tennessee and Surrounding Area'; copyright by J.U.G. Rich and East Tenn Auto Club; drawn by R.G. Austin; full map accessed at McClung Historical Collection, 601 S Gay St, Knoxville, TN 37902; used as reference for street names in roadNetwork_preUrbanRenewal.shp; georeferenced by Chris DeRolphnewsSentinelRdMap_1958.tif: urban renewal area map from 1958 Knox News Sentinel article; used as reference for street names in roadNetwork_preUrbanRenewal.shp; georeferenced by Chris DeRolphusgsImage_grayscale_1956.tif: May 18, 1956 black-and-white USGS aerial photograph, georeferenced by Chris DeRolph; accessed here https://earthexplorer.usgs.gov/scene/metadata/full/5e83d8e4870f4473/ARA550590030582/usgsImage_colorinfrared_1972.tif: April 18, 1972 color infrared USGS aerial photograph, georeferenced by Chris DeRolph; accessed here https://earthexplorer.usgs.gov/scene/metadata/full/5e83d8e4870f4473/AR6197002600096/usgsImage_grayscale_1976.tif: November 8, 1976 black-and-white USGS aerial photograph, georeferenced by Chris DeRolph; accessed here https://earthexplorer.usgs.gov/scene/metadata/full/5e83d8e4870f4473/AR1VDUT00390010/

  11. d

    Demographics

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Demographics [Dataset]. https://catalog.data.gov/dataset/demographics-0be32
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Lake County, Illinois Demographic Data. Explanation of field attributes: Total Population – The entire population of Lake County. White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent. Hispanic – Individuals who are of Hispanic ethnicity. This is a percent. Does not Speak English- Individuals who speak a language other than English in their household. This is a percent. Under 5 years of age – Individuals who are under 5 years of age. This is a percent. Under 18 years of age – Individuals who are under 18 years of age. This is a percent. 18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent. 65 years of age and older – Individuals who are 65 years old or older. This is a percent. Male – Individuals who are male in gender. This is a percent. Female – Individuals who are female in gender. This is a percent. High School Degree – Individuals who have obtained a high school degree. This is a percent. Associate Degree – Individuals who have obtained an associate degree. This is a percent. Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent. Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent. Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount. No High School – Individuals who have not obtained a high school degree. This is a percent. Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.

  12. W

    Hispanic and or Black, Indigenous or People of Color (Hspbipoc) Population...

    • wifire-data.sdsc.edu
    geotiff, wcs, wms
    Updated Mar 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Wildfire & Forest Resilience Task Force (2025). Hispanic and or Black, Indigenous or People of Color (Hspbipoc) Population Concentration - Central CA [Dataset]. https://wifire-data.sdsc.edu/dataset/clm-hispanic-and-or-black-indigenous-or-people-of-color-hspbipoc-population-concentration-central-ca
    Explore at:
    wms, wcs, geotiffAvailable download formats
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    California Wildfire & Forest Resilience Task Force
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Relative concentration of the Central California region's Hispanic and/or Black, Indigenous or person of color (HSPBIPOC) American population. The variable HSPBIPOC is equivalent to all individuals who select a combination of racial and ethnic identity in response to the Census questionnaire EXCEPT those who select "not Hispanic" for the ethnic identity question, and "white race alone" for the racial identity question. This is the most encompassing possible definition of racial and ethnic identities that may be associated with historic underservice by agencies, or be more likely to express environmental justice concerns (as compared to predominantly non-Hispanic white communities). Until 2021, federal agency guidance for considering environmental justice impacts of proposed actions focused on how the actions affected "racial or ethnic minorities." "Racial minority" is an increasingly meaningless concept in the USA, and particularly so in California, where only about 3/8 of the state's population identifies as non-Hispanic and white race alone - a clear majority of Californians identify as Hispanic and/or not white. Because many federal and state map screening tools continue to rely on "minority population" as an indicator for flagging potentially vulnerable / disadvantaged/ underserved populations, our analysis includes the variable HSPBIPOC which is effectively "all minority" population according to the now outdated federal environmental justice direction. A more meaningful analysis for the potential impact of forest management actions on specific populations considers racial or ethnic populations individually: e.g., all people identifying as Hispanic regardless of race; all people identifying as American Indian, regardless of Hispanic ethnicity; etc.

    "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as HSPBIPOC alone to the proportion of all people that live within the 4,961 block groups in the Central California RRK region that identify as HSPBIPOC alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of HSPBIPOC individuals compared to the Central California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then HSPBIPOC individuals are highly concentrated locally.

  13. d

    Technology Access Race - 2017-2021 ACS - Tempe Tracts

    • catalog.data.gov
    • performance.tempe.gov
    • +10more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Technology Access Race - 2017-2021 ACS - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/technology-access-race-2017-2021-acs-tempe-tracts
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer contains information on technology access by Household. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer represents the underlying data for several data visualizations on the Tempe Equity Map.Data visualized as a percent of total population in households in given census tract.Values shown of -999 represent no data for those cells.Layer includes:Key demographicsTotal Population in Households % Broadband Internet Subscription: American Indian and Alaska Native alone% Broadband Internet Subscription: Asian Alone% Broadband Internet Subscription: Black or African American alone% Broadband Internet Subscription: Native Hawaiian and Other Pacific Islander alone% Broadband Internet Subscription: White Alone% Broadband Internet Subscription: Hispanic or Latino origin% Without an internet Subscription: American Indian and Alaska Native alone% Without an internet Subscription: Asian alone% Without an internet Subscription: Native Hawaiian and Other Pacific Islander alone% Without an internet Subscription: Black or African American Alone% Without an internet Subscription: White Alone% Without an internet Subscription: Hispanic or Latino origin% No computer in household: American Indian and Alaska native alone% No computer in household: Asian alone% No computer in household: Black or African American alone% No computer in household: Native Hawaiian or Pacific Islander% No computer in household: White Alone% No computer in household: Hispanic or Latino origin Current Vintage: 2017-2021ACS Table(s): S2802 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of Census update: Dec 8, 2022Data Preparation: Data table downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryNational Figures: data.census.gov

  14. W

    Hispanic and or Black, Indigenous or People of Color (Hspbipoc) Population...

    • wifire-data.sdsc.edu
    geotiff, wcs, wms
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Wildfire & Forest Resilience Task Force (2025). Hispanic and or Black, Indigenous or People of Color (Hspbipoc) Population Concentration - Sierra Nevada [Dataset]. https://wifire-data.sdsc.edu/dataset/clm-hispanic-and-or-black-indigenous-or-people-of-color-hspbipoc-population-concentration-sierra-nev
    Explore at:
    wcs, geotiff, wmsAvailable download formats
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    California Wildfire & Forest Resilience Task Force
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Relative concentration of the Sierra Nevada region's Hispanic and/or Black, Indigenous or person of color (HSPBIPOC) population. The variable HSPBIPOC is equivalent to all individuals who select a combination of racial and ethnic identity in response to the Census questionnaire EXCEPT those who select "not Hispanic" for the ethnic identity question, and "white race alone" for the racial identity question. This is the most encompassing possible definition of racial and ethnic identities that may be associated with historic underservice by agencies, or be more likely to express environmental justice concerns (as compared to predominantly non-Hispanic white communities). Until 2021, federal agency guidance for considering environmental justice impacts of proposed actions focused on how the actions affected "racial or ethnic minorities." "Racial minority" is an increasingly meaningless concept in the USA, and particularly so in California, where only about 3/8 of the state's population identifies as non-Hispanic and white race alone - a clear majority of Californians identify as Hispanic and/or not white. Because many federal and state map screening tools continue to rely on "minority population" as an indicator for flagging potentially vulnerable / disadvantaged/ underserved populations, our analysis includes the variable HSPBIPOC which is effectively "all minority" population according to the now outdated federal environmental justice direction. A more meaningful analysis for the potential impact of forest management actions on specific populations considers racial or ethnic populations individually: e.g., all people identifying as Hispanic regardless of race; all people identifying as American Indian, regardless of Hispanic ethnicity; etc.

    "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as HSPBIPOC alone to the proportion of all people that live within the 775 block groups in the Sierra Nevada RRK region that identify as HSPBIPOC alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of HSPBIPOC individuals compared to the Sierra Nevada RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then HSPBIPOC individuals are highly concentrated locally.

  15. w

    People of Color (Current Version)

    • geo.wa.gov
    • hub.arcgis.com
    Updated Aug 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WADOHAdmin (2022). People of Color (Current Version) [Dataset]. https://geo.wa.gov/datasets/WADOH::people-of-color-current-version
    Explore at:
    Dataset updated
    Aug 23, 2022
    Dataset authored and provided by
    WADOHAdmin
    Area covered
    Description

    This layer represents a sum of all race/ethnicity categories EXCEPT White/Non-Hispanic, this includes: Black, American Indian/Alaskan Native, Asian, Native Hawaiian-Other Pacific Islander, Two or more races and the ethnicity grouping of "Spanish/Hispanic/Latino". A detailed description is available here: https://fortress.wa.gov/doh/wtn/WTNPortal#!q0=4707

  16. s

    Data from: The Devil You Know: A Black Power Manifesto

    • books.supportingcast.fm
    Updated May 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Supporting Cast (2021). The Devil You Know: A Black Power Manifesto [Dataset]. https://books.supportingcast.fm/products/the-devil-you-know
    Explore at:
    Dataset updated
    May 12, 2021
    Dataset authored and provided by
    Supporting Cast
    License

    https://slate.com/termshttps://slate.com/terms

    Description

    List Price: $20.99

    From journalist and New York Times bestselling author Charles Blow comes a powerful manifesto and call to action for Black Americans to amass political power and fight white supremacy.

    Race, as we have come to understand it, is a fiction; but, racism, as we have come to live it, is a fact. The point here is not to impose a new racial hierarchy, but to remove an existing one. After centuries of waiting for white majorities to overturn white supremacy, it seems to me that it has fallen to Black people to do it themselves.

    Acclaimed columnist and author Charles Blow never wanted to write a “race book.” But as violence against Black people—both physical and psychological—seemed only to increase in recent years, culminating in the historic pandemic and protests of the summer of 2020, he felt compelled to write a new story for Black Americans. He envisioned a succinct, counterintuitive, and impassioned corrective to the myths that have for too long governed our thinking about race and geography in America. Drawing on both political observations and personal experience as a Black son of the South, Charles set out to offer a call to action by which Black people can finally achieve equality, on their own terms.

    So what will it take to make lasting change when small steps have so frequently failed? It’s going to take an unprecedented shift in power. The Devil You Know is a groundbreaking manifesto, proposing nothing short of the most audacious power play by Black people in the history of this country. This book is a grand exhortation to generations of a people, offering a road map to true and lasting freedom.

    ISBN: 9780062914699 Published: Jan. 26, 2021 By: Charles M. Blow Read by: JD Jackson

  17. l

    Census 2020 SRR and Demographic Charcateristics

    • geohub.lacity.org
    • data.lacounty.gov
    • +2more
    Updated Dec 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Census 2020 SRR and Demographic Charcateristics [Dataset]. https://geohub.lacity.org/maps/e137518f57cf4dbc96ac7139a224631e
    Explore at:
    Dataset updated
    Dec 22, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail.The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts.The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate.More information about these data is available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review FAQs.Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data.Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR).1. Population Density: 2020 Population per square mile,2. Poverty Rate: Percentage of population under 100% FPL,3. Median Household income: Based on countywide median HH income of $71,538.4. Highschool Education Attainment: Percentage of 18 years and older population without high school graduation.5. English Speaking Ability: Percentage of 18 years and older population with less or none English speaking ability. 6. Household without Internet Access: Percentage of HH without internet access.7. Non-Hispanic White Population: Percentage of Non-Hispanic White population.8. Non-Hispanic African-American Population: Percentage of Non-Hispanic African-American population.9. Non-Hispanic Asian Population: Percentage of Non-Hispanic Asian population.10. Hispanic Population: Percentage of Hispanic population.

  18. Population of the U.S. by race 2000-2023

    • komartsov.com
    • statista.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the U.S. by race 2000-2023 [Dataset]. https://www.komartsov.com/?p=112273
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2000 - Jul 2023
    Area covered
    United States
    Description

    This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.

  19. C

    Redlining Maps from the Home Owners Loan Corporation, 1937

    • data.wprdc.org
    • gimi9.com
    geojson, html, jpeg +1
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Western Pennsylvania Regional Data Center (2025). Redlining Maps from the Home Owners Loan Corporation, 1937 [Dataset]. https://data.wprdc.org/dataset/redlining-maps-from-the-home-owners-loan-corporation
    Explore at:
    zip(10818554), html, jpeg(13882165), zip(12025), zip(38339897), geojson(39108), zip(7807), zip(12934532), jpeg(46615911), zip(75315), jpeg(6317290), geojson(269553), zip(154680053), jpeg(5141992), geojson(46444), zip(24301995), zip(7509), jpeg(10667368), geojson(60598), zip(17077497), zip(10561768), geojson(593066), zip(31784339), zip(45384487), zip(7566), geojson(54280)Available download formats
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Western Pennsylvania Regional Data Center
    License

    http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa

    Description

    Most of the text in this description originally appeared on the Mapping Inequality Website. Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. Robert K. Nelson and Edward L. Ayers,

    "HOLC staff members, using data and evaluations organized by local real estate professionals--lenders, developers, and real estate appraisers--in each city, assigned grades to residential neighborhoods that reflected their "mortgage security" that would then be visualized on color-coded maps. Neighborhoods receiving the highest grade of "A"--colored green on the maps--were deemed minimal risks for banks and other mortgage lenders when they were determining who should received loans and which areas in the city were safe investments. Those receiving the lowest grade of "D," colored red, were considered "hazardous."

    Conservative, responsible lenders, in HOLC judgment, would "refuse to make loans in these areas [or] only on a conservative basis." HOLC created area descriptions to help to organize the data they used to assign the grades. Among that information was the neighborhood's quality of housing, the recent history of sale and rent values, and, crucially, the racial and ethnic identity and class of residents that served as the basis of the neighborhood's grade. These maps and their accompanying documentation helped set the rules for nearly a century of real estate practice. "

    HOLC agents grading cities through this program largely "adopted a consistently white, elite standpoint or perspective. HOLC assumed and insisted that the residency of African Americans and immigrants, as well as working-class whites, compromised the values of homes and the security of mortgages. In this they followed the guidelines set forth by Frederick Babcock, the central figure in early twentieth-century real estate appraisal standards, in his Underwriting Manual: "The infiltration of inharmonious racial groups ... tend to lower the levels of land values and to lessen the desirability of residential areas."

    These grades were a tool for redlining: making it difficult or impossible for people in certain areas to access mortgage financing and thus become homeowners. Redlining directed both public and private capital to native-born white families and away from African American and immigrant families. As homeownership was arguably the most significant means of intergenerational wealth building in the United States in the twentieth century, these redlining practices from eight decades ago had long-term effects in creating wealth inequalities that we still see today. Mapping Inequality, we hope, will allow and encourage you to grapple with this history of government policies contributing to inequality."

    Data was copied from the Mapping Inequality Website for communities in Western Pennsylvania where data was available. These communities include Altoona, Erie, Johnstown, Pittsburgh, and New Castle. Data included original and georectified images, scans of the neighborhood descriptions, and digital map layers. Data here was downloaded on June 9, 2020.

  20. Population of Ireland 2022, by ethnicity

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population of Ireland 2022, by ethnicity [Dataset]. https://www.statista.com/statistics/537455/population-ireland-by-ethnicity/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Ireland, Ireland
    Description

    As of 2022, there were approximately **** million people in the Republic of Ireland who identified as being White Irish, with a further ******* who had any other white background. Asian or Asian Irish was the third-largest ethnic group in this year, at over ******.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Damian's Organization (2012). Population Density - White - Map Service [Dataset]. https://hub.arcgis.com/maps/8d31fc923a0c44c291b15ce36f814ffd

Population Density - White - Map Service

Explore at:
Dataset updated
Aug 15, 2012
Dataset authored and provided by
Damian's Organization
Area covered
Description

This map shows density surfaces derived from the 2010 US Census block points.This data shows % of people who identified themselves as single race and whiteThe block points were interpolated using the density function to a 2km x 2km grid of the continental US (with water and coastal data masks). There are many stories in these Maps:- What is that clean North/South Line through the center? Why do so many people live East of that line?- Notice the paths of the towns in the west – why are they so linear? And it seems there is a pattern to the spaces between the towns, why?- Looking at the ethnic maps, what explains the patterns? Look at the % Native American map – what are the areas of higher values? (note I did not make a % Asian map as at this scale there was not enough % to show any significant clusters.)

Search
Clear search
Close search
Google apps
Main menu