2 datasets found
  1. e

    COPERNICUS Digital Elevation Model (DEM) for Europe at 30 meter resolution...

    • data.europa.eu
    • data.opendatascience.eu
    • +1more
    Updated May 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). COPERNICUS Digital Elevation Model (DEM) for Europe at 30 meter resolution derived from Copernicus Global 30 meter dataset [Dataset]. https://data.europa.eu/data/datasets/f576cda8-d598-478c-b8fe-ad2634c927e8?locale=en
    Explore at:
    Dataset updated
    May 20, 2022
    Area covered
    Europe
    Description

    Here we provide a mosaic of the Copernicus DEM 30m for Europe and the corresponding hillshade derived from the GLO-30 public instance of the Copernicus DEM. The CRS is the same as the original Copernicus DEM CRS: EPSG:4326. Note that GLO-30 Public provides limited coverage at 30 meters because a small subset of tiles covering specific countries are not yet released to the public by the Copernicus Programme. Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs.

    The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.

    The Copernicus DEM for Europe at 30 m in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).

    Processing steps: The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in https://gdal.org/drivers/raster/vrt.html format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized: gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt

    The pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.

  2. s

    Copernicus DEM

    • collections.sentinel-hub.com
    • collections.eurodatacube.com
    • +1more
    Updated May 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sentinel Hub (2021). Copernicus DEM [Dataset]. https://collections.sentinel-hub.com/copernicus-dem/
    Explore at:
    Dataset updated
    May 1, 2021
    Dataset provided by
    <a href="https://www.sentinel-hub.com/">Sentinel Hub</a>
    Description

    The Copernicus DEM is a Digital Surface Model (DSM) which represents the bare-Earth surface and all above ground natural and built features. It is based on WorldDEMâ„¢ DSM that is derived from TanDEM-X and is infilled on a local basis with the following DEMs: ASTER, SRTM90, SRTM30, SRTM30plus, GMTED2010, TerraSAR-X Radargrammetric DEM, ALOS World 3D-30m. Copernicus Programme provides Copernicus DEM in 3 different instances: COP-DEM EEA-10, COP-DEM GLO-30 and COP-DEM GLO-90 where "COP-DEM GLO-90" tiles and most of the "COP-DEM GLO-30 " tiles are available worldwide with free license. Sentinel Hub provides two instances named COPERNICUS_90 which uses "COP-DEM GLO-90" and COPERNICUS_30 which uses "COP-DEM GLO-30 Public" and "COP-DEM GLO-90" in areas where "COP-DEM GLO-30 Public" tiles are not yet released to the public by Copernicus Programme. Copernicus DEM provides elevation data and can also be used for the orthorectification of satellite imagery (e.g Sentinel 1).

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2022). COPERNICUS Digital Elevation Model (DEM) for Europe at 30 meter resolution derived from Copernicus Global 30 meter dataset [Dataset]. https://data.europa.eu/data/datasets/f576cda8-d598-478c-b8fe-ad2634c927e8?locale=en

COPERNICUS Digital Elevation Model (DEM) for Europe at 30 meter resolution derived from Copernicus Global 30 meter dataset

Explore at:
Dataset updated
May 20, 2022
Area covered
Europe
Description

Here we provide a mosaic of the Copernicus DEM 30m for Europe and the corresponding hillshade derived from the GLO-30 public instance of the Copernicus DEM. The CRS is the same as the original Copernicus DEM CRS: EPSG:4326. Note that GLO-30 Public provides limited coverage at 30 meters because a small subset of tiles covering specific countries are not yet released to the public by the Copernicus Programme. Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs.

The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.

The Copernicus DEM for Europe at 30 m in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).

Processing steps: The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in https://gdal.org/drivers/raster/vrt.html format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized: gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt

The pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.

Search
Clear search
Close search
Google apps
Main menu