Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Hurt, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for Hurt decreased by $7,691 (13.27%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 7 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hurt median household income. You can refer the same here
This data package includes the underlying data files to replicate the data and charts presented in The Inflation Surge in Europe by Patrick Honohan, PIIE Policy Brief 24-2.
If you use the data, please cite as: Honohan, Patrick. 2024. The Inflation Surge in Europe. PIIE Policy Brief 24-2. Washington, DC: Peterson Institute for International Economics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cost of food in the United States increased 2.90 percent in July of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in Iran increased to 38.90 percent in April from 37.10 percent in March of 2025. This dataset provides the latest reported value for - Iran Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Hurt. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Hurt. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Hurt, the median household income stands at $72,500 for householders within the 25 to 44 years age group, followed by $66,000 for the 45 to 64 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $34,167.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hurt median household income by age. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Inflation, consumer prices for the United States (FPCPITOTLZGUSA) from 1960 to 2024 about consumer, CPI, inflation, price index, indexes, price, and USA.
Replication data for publication. Visit https://dataone.org/datasets/sha256%3A68b130dccea64b8f51a75c2f74dc2dda12809edfba2ff302762b9f3d4b5c1bc3 for complete metadata about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate In the Euro Area remained unchanged at 2 percent in July. This dataset provides the latest reported value for - Euro Area Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
This data package includes the underlying data files to replicate the data, tables, and charts presented in Why Trump’s tariff proposals would harm working Americans, PIIE Policy Brief 24-1.
If you use the data, please cite as: Clausing, Kimberly, and Mary E. Lovely. 2024. Why Trump’s tariff proposals would harm working Americans. PIIE Policy Brief 24-1. Washington, DC: Peterson Institute for International Economics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is master data set used for paper " Monetary policy and Food Inflation: A Case study from India"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in Japan decreased to 3.30 percent in June from 3.50 percent in May of 2025. This dataset provides the latest reported value for - Japan Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We report average expected inflation rates over the next one through 30 years. Our estimates of expected inflation rates are calculated using a Federal Reserve Bank of Cleveland model that combines financial data and survey-based measures. Released monthly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains news headlines relevant to key forex pairs: AUDUSD, EURCHF, EURUSD, GBPUSD, and USDJPY. The data was extracted from reputable platforms Forex Live and FXstreet over a period of 86 days, from January to May 2023. The dataset comprises 2,291 unique news headlines. Each headline includes an associated forex pair, timestamp, source, author, URL, and the corresponding article text. Data was collected using web scraping techniques executed via a custom service on a virtual machine. This service periodically retrieves the latest news for a specified forex pair (ticker) from each platform, parsing all available information. The collected data is then processed to extract details such as the article's timestamp, author, and URL. The URL is further used to retrieve the full text of each article. This data acquisition process repeats approximately every 15 minutes.
To ensure the reliability of the dataset, we manually annotated each headline for sentiment. Instead of solely focusing on the textual content, we ascertained sentiment based on the potential short-term impact of the headline on its corresponding forex pair. This method recognizes the currency market's acute sensitivity to economic news, which significantly influences many trading strategies. As such, this dataset could serve as an invaluable resource for fine-tuning sentiment analysis models in the financial realm.
We used three categories for annotation: 'positive', 'negative', and 'neutral', which correspond to bullish, bearish, and hold sentiments, respectively, for the forex pair linked to each headline. The following Table provides examples of annotated headlines along with brief explanations of the assigned sentiment.
Examples of Annotated Headlines
Forex Pair
Headline
Sentiment
Explanation
GBPUSD
Diminishing bets for a move to 12400
Neutral
Lack of strong sentiment in either direction
GBPUSD
No reasons to dislike Cable in the very near term as long as the Dollar momentum remains soft
Positive
Positive sentiment towards GBPUSD (Cable) in the near term
GBPUSD
When are the UK jobs and how could they affect GBPUSD
Neutral
Poses a question and does not express a clear sentiment
JPYUSD
Appropriate to continue monetary easing to achieve 2% inflation target with wage growth
Positive
Monetary easing from Bank of Japan (BoJ) could lead to a weaker JPY in the short term due to increased money supply
USDJPY
Dollar rebounds despite US data. Yen gains amid lower yields
Neutral
Since both the USD and JPY are gaining, the effects on the USDJPY forex pair might offset each other
USDJPY
USDJPY to reach 124 by Q4 as the likelihood of a BoJ policy shift should accelerate Yen gains
Negative
USDJPY is expected to reach a lower value, with the USD losing value against the JPY
AUDUSD
RBA Governor Lowe’s Testimony High inflation is damaging and corrosive
Positive
Reserve Bank of Australia (RBA) expresses concerns about inflation. Typically, central banks combat high inflation with higher interest rates, which could strengthen AUD.
Moreover, the dataset includes two columns with the predicted sentiment class and score as predicted by the FinBERT model. Specifically, the FinBERT model outputs a set of probabilities for each sentiment class (positive, negative, and neutral), representing the model's confidence in associating the input headline with each sentiment category. These probabilities are used to determine the predicted class and a sentiment score for each headline. The sentiment score is computed by subtracting the negative class probability from the positive one.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in Turkey decreased to 33.52 percent in July from 35.05 percent in June of 2025. This dataset provides the latest reported value for - Turkey Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Hurt. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Hurt population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 73.15% of the total residents in Hurt. Notably, the median household income for White households is $53,750. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $53,750.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hurt median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset supports the research exploring the impact of monetary policy instruments on the Colombian economy, focusing on the classical dichotomy and monetary neutrality. The analysis delves into how monetary policy, including instruments such as interest rates and money supply, influences both nominal and real variables in the economy. It also highlights the relationship between monetary policy and economic stability, particularly how central banks manage inflation and economic growth. Key sections explore the separation between nominal and real variables as explained by the classical dichotomy, and the principle of monetary neutrality, which argues that changes in money supply affect nominal variables without impacting real economic factors.
The dataset is structured around a combination of theoretical insights and simulations that analyze the effectiveness of monetary neutrality in the Colombian context, given both domestic and international economic challenges such as the war in Ukraine and agricultural sector disruptions. Through simulations, the dataset demonstrates the effects of monetary expansion on variables like inflation, production, and employment, providing a framework for understanding current economic trends and proposing solutions to socio-economic challenges in Colombia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Hajj Dataset 2021-2024: Ministry of Religious Affairs Malang City contains comprehensive data on the Hajj pilgrimage process for 2021 through 2024, gathered explicitly from the Malang City branch of Indonesia's Ministry of Religious Affairs (Kemenag). This dataset captures key information about the Hajj pilgrimage, including payment records, associated costs, and demographic details of the pilgrims, providing valuable insights into the financial aspects and trends over the four years. Key Data Features: Yearly Hajj Costs: Information on the financial breakdown of Hajj costs for each year, covering all components, including transportation, accommodation, and other mandatory fees. Pilgrim Demographics: Data on the number and characteristics of pilgrims from Malang City, including age, gender, and other socioeconomic indicators. Payment Status and History: Records of payments made by the pilgrims detailing the timing, amount, and any outstanding balances. Regulatory Changes: Information on changes in the regulations and policies of the Ministry of Religious Affairs (Kemenag) that may have impacted the cost structure or payment schedule during this period. Inflation and Currency Impact: Data reflecting the impact of national inflation rates or currency fluctuations, particularly the value of the Indonesian Rupiah (IDR) relative to the Saudi Riyal (SAR), on the overall pilgrimage cost. Hajj Quota and Registrations: The number of Hajj applicants from Malang City and the annual quota allocated to the region, including details on the selection process and waiting periods. Potential Use Cases: Cost Prediction: Analyze cost trends and predict future financial needs for the Hajj pilgrimage. Policy Analysis: Assess the impact of government policies on the affordability and accessibility of Hajj for pilgrims. Economic Analysis: Understand how national economic factors (inflation and and exchange rates) affect pilgrimage costs. Social Research: Study demographic patterns and regional participation in Hajj from Malang City. This dataset provides an essential resource for anyone interested in the economic, social, and policy dimensions of the Hajj pilgrimage in Indonesia, particularly in the context of Malang City's unique data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in China decreased to 0 percent in July from 0.10 percent in June of 2025. This dataset provides - China Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Hurt, VA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
https://i.neilsberg.com/ch/hurt-va-mean-household-income-by-quintiles.jpeg" alt="Mean household income by quintiles in Hurt, VA (in 2022 inflation-adjusted dollars))">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hurt median household income. You can refer the same here
This data package includes the underlying data to replicate the charts, tables, and calculations presented in The US Revenue Implications of President Trump’s 2025 Tariffs, PIIE Briefing 25-2.
If you use the data, please cite as:
McKibbin, Warwick, and Geoffrey Shuetrim. 2025. The US Revenue Implications of President Trump’s 2025 Tariffs. PIIE Briefing 25-2. Washington: Peterson Institute for International Economics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Hurt, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for Hurt decreased by $7,691 (13.27%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 7 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hurt median household income. You can refer the same here