In 2023, the gross median household income for Asian households in the United States stood at 112,800 U.S. dollars. Median household income in the United States, of all racial and ethnic groups, came out to 80,610 U.S. dollars in 2023. Asian and Caucasian (white not Hispanic) households had relatively high median incomes, while the median income of Hispanic, Black, American Indian, and Alaskan Native households all came in lower than the national median. A number of related statistics illustrate further the current state of racial inequality in the United States. Unemployment is highest among Black or African American individuals in the U.S. with 8.6 percent unemployed, according to the Bureau of Labor Statistics in 2021. Hispanic individuals (of any race) were most likely to go without health insurance as of 2021, with 22.8 percent uninsured.
In the U.S., median household income rose from 51,570 U.S. dollars in 1967 to 80,610 dollars in 2023. In terms of broad ethnic groups, Black Americans have consistently had the lowest median income in the given years, while Asian Americans have the highest; median income in Asian American households has typically been around double that of Black Americans.
In 2023, about 26.9 percent of Asian private households in the U.S. had an annual income of 200,000 U.S. dollars and more. Comparatively, around 13.9 percent of Black households had an annual income under 15,000 U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Rich Square. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Rich Square population by race & ethnicity, the population is predominantly Black or African American. This particular racial category constitutes the majority, accounting for 63.98% of the total residents in Rich Square. Notably, the median household income for Black or African American households is $34,031. Interestingly, Black or African American is both the largest group and the one with the highest median household income, which stands at $34,031.
https://i.neilsberg.com/ch/rich-square-nc-median-household-income-by-race.jpeg" alt="Rich Square median household income diversity across racial categories">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Square median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Success. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Success median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Lake Success. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Lake Success population by race & ethnicity, the population is predominantly Asian. This particular racial category constitutes the majority, accounting for 55.38% of the total residents in Lake Success. Notably, the median household income for Asian households is $236,250. Interestingly, despite the Asian population being the most populous, it is worth noting that White households actually reports the highest median household income, with a median income of $250,001. This reveals that, while Asians may be the most numerous in Lake Success, White households experience greater economic prosperity in terms of median household income.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lake Success median household income by race. You can refer the same here
This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.
This map shows the percentage of people who identify as something other than non-Hispanic white throughout the US according to the most current American Community Survey. The pattern is shown by states, counties, and Census tracts. Zoom or search for anywhere in the US to see a local pattern. Click on an area to learn more. Filter to your area and save a new version of the map to use for your own mapping purposes.The Arcade expression used was: 100 - B03002_calc_pctNHWhiteE, which is simply 100 minus the percent of population who identifies as non-Hispanic white. The data is from the U.S. Census Bureau's American Community Survey (ACS). The figures in this map update automatically annually when the newest estimates are released by ACS. For more detailed metadata, visit the ArcGIS Living Atlas Layer: ACS Race and Hispanic Origin Variables - Boundaries.The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.Other maps of interest:American Indian or Alaska Native Population in the US (Current ACS)Asian Population in the US (Current ACS)Black or African American Population in the US (Current ACS)Hawaiian or Other Pacific Islander Population in the US (Current ACS)Hispanic or Latino Population in the US (Current ACS) (some people prefer Latinx)Population who are Some Other Race in the US (Current ACS)Population who are Two or More Races in the US (Current ACS) (some people prefer mixed race or multiracial)White Population in the US (Current ACS)Race in the US by Dot DensityWhat is the most common race/ethnicity?
In 2023, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States Single people in the United States making less than ****** U.S. dollars a year and families of four making less than ****** U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.
This data package consists of 26 datasets all containing statistical data relating to the population and particular groups within it belonging to different countries, mostly the United States.
https://www.icpsr.umich.edu/web/ICPSR/studies/38414/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38414/terms
In contrast to the model-minority myth, which conceptualizes Asian American youth as more educationally successful, respectful of teachers, hardworking, and cooperative that other ethnic minority youth (Chang and Sue, 2003), research has demonstrated that Asian American youth are at an increased risk for depression and suicide than their White or Black counterparts (Sen, 2004). Specifically, Asian American females aged 15-24 have the highest rate of completed suicides (14.1%) compared to other racial and ethnic groups (e.g., White 9.3%, Black 3.3%, and Hispanic 7.4%). Asian males of the same age group have the second highest rate of suicide deaths (12.7%) compared to other racial/ethnic group males (e.g., White 17.5%, Black 6.7%, and Hispanic 10%) (CDC 2008). In addition to these specific mental health problems, these youth face additional culturally-specific concerns, including racial discrimination (Lee et al., 2009). Despite such needs, Asian Americans underutilize traditional mental health services (Abe-Kim et al., 2007). Compared to youth (aged 18 or younger) from other racial or ethnic groups, Asian American youth are less likely than White, Black, or Hispanic children to actually receive mental health care (Ku and Matani, 2000). Additionally, research has demonstrated that Asian American youth also tend to underutilize mental health services in school settings (Amaral, Geierstanger, Soleimanpour, and Brindis, 2011; Anyon, Ong, and Whitaker, 2014; Walker, Kerns, Lyon, Bruns, and Cosgrove, 2010), despite the delivery of mental health services in schools seemingly overcoming certain structural barriers to seeking and obtaining mental health services, including transportation, insurance coverage, and cost (Cauce et al., 2002). Using exploratory focus groups, this qualitative study sought to explore perceptions of barriers to seeking school-based mental health services among first- and second-generation Asian youth of immigrant origin (33 participants in 7 focus groups). The specific research questions were: What are the sources of stress that may contribute to mental health concerns among Asian and Asian American youth, and what are their perceptions of barriers to mental health service use?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Success. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Success population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 100% of the total residents in Success. Notably, the median household income for White households is $46,875. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $46,875.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Success median household income by race. You can refer the same here
Despite comprising of a smaller share of the U.S. population than African Americans or Hispanics, the most represented non-white U.S. CEOs were of an Asian background. They made up 55 percent of CEO positions at Fortune 500 and S&P 500 companies in 2024. By comparison, 11 percent of CEOs at the time were African American. The rise of environmental, social, and corporate governance (ESG) Investments in ESG have risen dramatically over last few years. In November 2023 there were approximately 480 billion U.S. dollars in ESG ETF assets worldwide, compared to 16 billion U.S. dollars in 2015. ESG measures were put in place to encourage companies to act responsibly, with the leading reason for ESG investing stated to be brand and reputation according to managers and asset owners. Gender diversity With the general acceptance of ESG in larger companies, there has still been a significant employment gap of women working in senior positions. For example, the share of women working as a partner or principal at EY, one of the largest accounting firms in the world, was just only 28 percent in 2023.
This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This graph shows the educational attainment of the U.S. population from in 2018, according to ethnicity. Around 56.5 percent of Asians and Pacific Islanders in the U.S. have graduated from college or obtained a higher educational degree in 2018.
This dataset represents the popular last names in the United States for Black.
Popular Baby Names by Sex and Ethnic Group Data were collected through civil birth registration. Each record represents the ranking of a baby name in the order of frequency. Data can be used to represent the popularity of a name. Caution should be used when assessing the rank of a baby name if the frequency count is close to 10; the ranking may vary year to year.
This dataset represents the popular last names in the United States for people of two or more races.
In 2023, the annual earnings of Asian workers in the United States were higher than any other ethnicity after being adjusted for inflation. Asian men however earned more than Asian women, at an estimated ****** U.S. dollars and ****** U.S. dollars respectively. Men of every ethnicity made more than their female counterparts in 2023.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Between 2018 and 2019 the American Community Survey retirement income question changed. These changes resulted in an increase in both the number of households reporting retirement income and higher aggregate retirement income at the national level. For more information see Changes to the Retirement Income Question ..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
In 2023, the gross median household income for Asian households in the United States stood at 112,800 U.S. dollars. Median household income in the United States, of all racial and ethnic groups, came out to 80,610 U.S. dollars in 2023. Asian and Caucasian (white not Hispanic) households had relatively high median incomes, while the median income of Hispanic, Black, American Indian, and Alaskan Native households all came in lower than the national median. A number of related statistics illustrate further the current state of racial inequality in the United States. Unemployment is highest among Black or African American individuals in the U.S. with 8.6 percent unemployed, according to the Bureau of Labor Statistics in 2021. Hispanic individuals (of any race) were most likely to go without health insurance as of 2021, with 22.8 percent uninsured.