Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.79 percent in the week ending June 27 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for 15-Year Fixed Rate Mortgage Average in the United States (MORTGAGE15US) from 1991-08-30 to 2025-07-03 about 15-year, fixed, mortgage, interest rate, interest, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive historical chart showing the 30 year fixed rate mortgage average in the United States since 1971.
Evaluate Canada’s best mortgage rates in one place. RATESDOTCA’s Rate Matrix lets you compare pricing for all key mortgage types and terms. Rates are based on an average mortgage of $300,000
Mortgage rates increased at a record pace in 2022, with the 10-year fixed mortgage rate doubling between March 2022 and December 2022. With inflation increasing, the Bank of England introduced several bank rate hikes, resulting in higher mortgage rates. In May 2025, the average 10-year fixed rate interest rate reached **** percent. As borrowing costs get higher, demand for housing is expected to decrease, leading to declining market sentiment and slower house price growth. How have the mortgage hikes affected the market? After surging in 2021, the number of residential properties sold declined in 2023, reaching just above *** million. Despite the number of transactions falling, this figure was higher than the period before the COVID-19 pandemic. The falling transaction volume also impacted mortgage borrowing. Between the first quarter of 2023 and the first quarter of 2024, the value of new mortgage loans fell year-on-year for five straight quarters in a row. How are higher mortgages affecting homebuyers? Homeowners with a mortgage loan usually lock in a fixed rate deal for two to ten years, meaning that after this period runs out, they need to renegotiate the terms of the loan. Many of the mortgages outstanding were taken out during the period of record-low mortgage rates and have since faced notable increases in their monthly repayment. About **** million homeowners are projected to see their deal expire by the end of 2026. About *** million of these loans are projected to experience a monthly payment increase of up to *** British pounds by 2026.
Rates have been trending downward in Canada for the last five years. The ebbs and flows are caused by changes in Canada’s bond yields (driven by Canadians economic developments and international rate movements, particularly U.S. rate fluctuations) and the overnight rate (which is set by the Bank of Canada). As of August 2022, there has been a 225 bps increase in the prime rate, since beginning of year 2022, from 2.45% to 4.70% as of Aug 24th 2022. The following are the historical conventional mortgage rates offered by the 6 major chartered banks in Canada in the past 20 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in China was last recorded at 3 percent. This dataset provides the latest reported value for - China Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortgage Rate in the United Kingdom decreased to 7.09 percent in May from 7.19 percent in April of 2025. This dataset provides - United Kingdom BBA Mortgage Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Financial institutions incur significant losses due to the default of vehicle loans. This has led to the tightening up of vehicle loan underwriting and increased vehicle loan rejection rates. The need for a better credit risk scoring model is also raised by these institutions. This warrants a study to estimate the determinants of vehicle loan default. A financial institution has hired you to accurately predict the probability of loanee/borrower defaulting on a vehicle loan in the first EMI (Equated Monthly Instalments) on the due date. Following Information regarding the loan and loanee are provided in the datasets: Loanee Information (Demographic data like age, Identity proof etc.) Loan Information (Disbursal details, loan to value ratio etc.) Bureau data & history (Bureau score, number of active accounts, the status of other loans, credit history etc.) Doing so will ensure that clients capable of repayment are not rejected and important determinants can be identified which can be further used for minimising the default rates.
Policy interest rates in the U.S. and Europe are forecasted to decrease gradually between 2024 and 2027, following exceptional increases triggered by soaring inflation between 2021 and 2023. The U.S. federal funds rate stood at **** percent at the end of 2023, the European Central Bank deposit rate at **** percent, and the Swiss National Bank policy rate at **** percent. With inflationary pressures stabilizing, policy interest rates are forecast to decrease in each observed region. The U.S. federal funds rate is expected to decrease to *** percent, the ECB refi rate to **** percent, the Bank of England bank rate to **** percent, and the Swiss National Bank policy rate to **** percent by 2025. An interesting aspect to note is the impact of these interest rate changes on various economic factors such as growth, employment, and inflation. The impact of central bank policy rates The U.S. federal funds effective rate, crucial in determining the interest rate paid by depository institutions, experienced drastic changes in response to the COVID-19 pandemic. The subsequent slight changes in the effective rate reflected the efforts to stimulate the economy and manage economic factors such as inflation. Such fluctuations in the federal funds rate have had a significant impact on the overall economy. The European Central Bank's decision to cut its fixed interest rate in June 2024 for the first time since 2016 marked a significant shift in attitude towards economic conditions. The reasons behind the fluctuations in the ECB's interest rate reflect its mandate to ensure price stability and manage inflation, shedding light on the complex interplay between interest rates and economic factors. Inflation and real interest rates The relationship between inflation and interest rates is critical in understanding the actions of central banks. Central banks' efforts to manage inflation through interest rate adjustments reveal the intricate balance between economic growth and inflation. Additionally, the concept of real interest rates, adjusted for inflation, provides valuable insights into the impact of inflation on the economy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about United States Bank Lending Rate
DESCRIPTION
Create a model that predicts whether or not a loan will be default using the historical data.
Problem Statement:
For companies like Lending Club correctly predicting whether or not a loan will be a default is very important. In this project, using the historical data from 2007 to 2015, you have to build a deep learning model to predict the chance of default for future loans. As you will see later this dataset is highly imbalanced and includes a lot of features that make this problem more challenging.
Domain: Finance
Analysis to be done: Perform data preprocessing and build a deep learning prediction model.
Content:
Dataset columns and definition:
credit.policy: 1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise.
purpose: The purpose of the loan (takes values "credit_card", "debt_consolidation", "educational", "major_purchase", "small_business", and "all_other").
int.rate: The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates.
installment: The monthly installments owed by the borrower if the loan is funded.
log.annual.inc: The natural log of the self-reported annual income of the borrower.
dti: The debt-to-income ratio of the borrower (amount of debt divided by annual income).
fico: The FICO credit score of the borrower.
days.with.cr.line: The number of days the borrower has had a credit line.
revol.bal: The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle).
revol.util: The borrower's revolving line utilization rate (the amount of the credit line used relative to total credit available).
inq.last.6mths: The borrower's number of inquiries by creditors in the last 6 months.
delinq.2yrs: The number of times the borrower had been 30+ days past due on a payment in the past 2 years.
pub.rec: The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments).
Steps to perform:
Perform exploratory data analysis and feature engineering and then apply feature engineering. Follow up with a deep learning model to predict whether or not the loan will be default using the historical data.
Tasks:
Transform categorical values into numerical values (discrete)
Exploratory data analysis of different factors of the dataset.
Additional Feature Engineering
You will check the correlation between features and will drop those features which have a strong correlation
This will help reduce the number of features and will leave you with the most relevant features
After applying EDA and feature engineering, you are now ready to build the predictive models
In this part, you will create a deep learning model using Keras with Tensorflow backend
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Hong Kong SAR (China) Bank Lending Rate
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 2 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Mortgage rates in the Netherlands increased sharply in 2022 and 2023, after declining gradually between 2008 and 2021. In December 2022, the average interest rate for new mortgage loans stood at **** percent, and by the end of 2023, it had risen to **** percent. The 10-year interest rate was the lowest, at **** percent; the floating and less than one-year interest rates amounted to **** and **** percent, respectively. In early 2024, mortgage rates decreased notably. Are mortgage rates in the Netherlands different from those in other European countries? When comparing this ranking to data that covers multiple European countries, the Netherlands’ mortgage rate was similar to the rates found in Spain, the United Kingdom, and Sweden. It was, however, a lot lower than the rates in Eastern Europe. Hungary and Romania, for example, had some of the highest mortgage rates. For more information on the European mortgage market and how much the countries differ from each other, please visit this dedicated research page. How big is the mortgage market in the Netherlands? The Netherlands has overall seen an increase in the number of mortgage loans sold and is regarded as one of the countries with the highest mortgage debt in Europe. The reason behind this is that Dutch homeowners were able to for many years to deduct interest paid from pre-tax income (a system known in the Netherlands as hypotheekrenteaftrek). Total mortgage debt of Dutch households has been increasing year-on-year since 2013.
DESCRIPTION
A banking institution requires actionable insights into mortgage-backed securities, geographic business investment, and real estate analysis. The mortgage bank would like to identify potential monthly mortgage expenses for each region based on monthly family income and rental of the real estate. A statistical model needs to be created to predict the potential demand in dollars amount of loan for each of the region in the USA. Also, there is a need to create a dashboard which would refresh periodically post data retrieval from the agencies. The dashboard must demonstrate relationships and trends for the key metrics as follows: number of loans, average rental income, monthly mortgage and owner’s cost, family income vs mortgage cost comparison across different regions. The metrics described here do not limit the dashboard to these few. Dataset Description
Variables
Description Second mortgage Households with a second mortgage statistics Home equity Households with a home equity loan statistics Debt Households with any type of debt statistics Mortgage Costs Statistics regarding mortgage payments, home equity loans, utilities, and property taxes Home Owner Costs Sum of utilities, and property taxes statistics Gross Rent Contract rent plus the estimated average monthly cost of utility features High school Graduation High school graduation statistics Population Demographics Population demographics statistics Age Demographics Age demographic statistics Household Income Total income of people residing in the household Family Income Total income of people related to the householder Project Task: Week 1
Data Import and Preparation:
Import data.
Figure out the primary key and look for the requirement of indexing.
Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.
Exploratory Data Analysis (EDA):
Perform debt analysis. You may take the following steps:
Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent
Use the following bad debt equation:
Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage Create pie charts to show overall debt and bad debt
Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities
Create a collated income distribution chart for family income, house hold income, and remaining income
Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):
Use pop and ALand variables to create a new field called population density
Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age
Visualize the findings using appropriate chart type
Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don’t exceed 5 for the ease of analysis.
Analyze the married, separated, and divorced population for these population brackets
Visualize using appropriate chart type
Please detail your observations for rent as a percentage of income at an overall level, and for different states.
Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.
Project Task: Week 2
Data Pre-processing:
The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables.
Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as “specific variance” because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data.
Following are the list of latent variables:
Highschool graduation rates
Median population age
Second mortgage statistics
Percent own
Bad debt expense
Data Modeling :
Build a linear Regression model to predict the total monthly expenditure for home mortgages loan.
Please refer deplotment_RE.xlsx. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location.
Note: Exclude loans from prediction model which have NaN (Not a Numb...
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Latin America Home Mortgage Finance Market is segmented by type (Fixed-rate Mortgage, Adjustable-rate Mortgage), by Tenure (Up to 5 Years, 6 - 10 Years, 11 - 24 Years, and 25 - 30 Years), and by Geography (Brazil, Chile, Peru, Colombia, and the Rest of Latin America). The report offers market size and forecasts for Latin America Home Mortgage Finance Market in value (USD Billion) for all the above segments.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for FOMC Summary of Economic Projections for the Fed Funds Rate, Median (FEDTARMD) from 2025 to 2027 about projection, federal, median, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bank Lending Rate in Germany decreased to 4.09 percent in May from 4.23 percent in April of 2025. This dataset provides the latest reported value for - Germany Bank Lending Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Germany Long Term Interest Rate
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.79 percent in the week ending June 27 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.