https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBLT01026) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
In the third quarter of 2024, the top ten percent of earners in the United States held over ** percent of total wealth. This is fairly consistent with the second quarter of 2024. Comparatively, the wealth of the bottom ** percent of earners has been slowly increasing since the start of the *****, though remains low. Wealth distribution in the United States by generation can be found here.
The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and total income after tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
This statistic shows the median household income in the United States from 1990 to 2023 in 2023 U.S. dollars. The median household income was 80,610 U.S. dollars in 2023, an increase from the previous year. Household incomeThe median household income depicts the income of households, including the income of the householder and all other individuals aged 15 years or over living in the household. Income includes wages and salaries, unemployment insurance, disability payments, child support payments received, regular rental receipts, as well as any personal business, investment, or other kinds of income received routinely. The median household income in the United States varies from state to state. In 2020, the median household income was 86,725 U.S. dollars in Massachusetts, while the median household income in Mississippi was approximately 44,966 U.S. dollars at that time. Household income is also used to determine the poverty line in the United States. In 2021, about 11.6 percent of the U.S. population was living in poverty. The child poverty rate, which represents people under the age of 18 living in poverty, has been growing steadily over the first decade since the turn of the century, from 16.2 percent of the children living below the poverty line in year 2000 to 22 percent in 2010. In 2021, it had lowered to 15.3 percent. The state with the widest gap between the rich and the poor was New York, with a Gini coefficient score of 0.51 in 2019. The Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing.
This is a historical measure for Strategic Direction 2023. For more data on Austin demographics please visit austintexas.gov/demographics. This measure answers the question of what number and percentage of residents are living below the federal poverty level, which means they meet certain thresholds set by a set of parameters and computation performed by the Census Bureau. Following the Office of Management and Budget's (OMB) Statistical Policy Directive 14, the Census Bureau uses a set of money income thresholds that vary by family size and composition to determine who is in poverty. If a family's total income is less than the family's threshold, then that family and every individual in it is considered in poverty. The official poverty thresholds do not vary geographically, but they are updated for inflation using the Consumer Price Index (CPI-U). The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). Data collected from the U.S. Census Bureau, American Communities Survey (1yr), Poverty Status in the Past 12 Months (Table S1701). American Communities Survey (ACS) is a survey with sampled statistics on the citywide level and is subject to a margin of error. ACS sample size and data quality measures can be found on the U.S. Census website in the Methodology section. View more details and insights related to this data set on the story page:https://data.austintexas.gov/stories/s/kgf9-tcgd
The bottom 50 percent in Argentina earned on average 15,057 U.S. dollars at purchasing power parity (PPP) before income taxes as of 2022, while individuals in the top one percent earned pre-tax more than 686,433 dollars. Looking at the percentage distribution of wealth in Argentina, the poorest half held 5.7 percent of the total in 2021. Moreover, the top one percent in the South American country accounted for 25.7 percent of the overall national wealth.
The layer "FCC ACP EligibleHH" shows the tracts containing households that meet the Affordable Connectivity household income requirements based on their household size per the data table on the ACP website https://www.affordableconnectivity.gov/do-i-qualify/. This layer is symbolized to show the Median Household Income for all households within a tract. The data was downloaded Feb. 2023 using 5-year ACS data for 2017-2021.Data Processing Note from author:The eligible tracts were determined by 1) Selecting census tracts with centroids that fell within Dallas Proper 2) Applying a filter with a series of "OR" clauses that selected for households that were less than or equal to the ACP threshold median income for the respective household size (Ex. 1-person households whose median income was less than or equal to $27,180).The American Community Survey (ACS) Household dataset (https://dallasgis.maps.arcgis.com/home/item.html?id=388cebd5976e49faa77af91a5d73dfee&view=list&sortOrder=desc&sortField=defaultFSOrder#overview) is limited to household sizes with the largest household size being "7 or more." Where the ACP had a median income threshold for household sizes 8 and 9, the threshold for household size 7 was used. Data Update Note:In order to retain historical data, this layer will require an update as the Census Bureau releases new data. The source layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Data Source Note from the Census: This layer shows household size by tenure (owner or renter). This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): B25009, B25010, B19019Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 8, 2022National Figures: data.census.govData Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
This dataset provides access to Qualified Census Tracts (QCTs) in Connecticut to assist in administration of American Rescue Plan (ARP) funds. The Secretary of HUD must designate QCTs, which are areas where either 50 percent or more of the households have an income less than 60 percent of the AMGI for such year or have a poverty rate of at least 25 percent. HUD designates QCTs based on new income and poverty data released in the American Community Survey (ACS). Specifically, HUD relies on the most recent three sets of ACS data to ensure that anomalous estimates, due to sampling, do not affect the QCT status of tracts. QCTs are identified for the purpose of Low-Income Housing Credits under IRC Section 42, with the purpose of increasing the availability of low-income rental housing by providing an income tax credit to certain owners of newly constructed or substantially rehabilitated low-income rental housing projects. Also included are the number of households from the 2010 census (the “p0150001” variable), the average poverty rate using the 2014-2018 ACS data (the “pov_rate_18” variable), and the ratio of Tract Average Household Size Adjusted Income Limit to Tract Median Household Income using the 2014-2018 ACS data (the “inc_factor_18” variable). For the last variable mentioned in the previous paragraph, the income limit is the limit for being considered a very low income household (size-adjusted and based on Area Mean Gross Income). This value is divided by the median household income for the given tract, to get a sense of how the limit and median incomes compare. For example, if ratio>1, it implies that the tract is very low income because the limit income is greater than the median income. This ratio is a compact way to include the separate variables for the household income limit and median household income for each tract.
This measure answers the question of what number and percentage of residents are living below the federal poverty level, which means they meet certain threshold set by a set of parameters and computation performed by the Census Bureau. Following the Office of Management and Budget's (OMB) Statistical Policy Directive 14, the Census Bureau uses a set of money income thresholds that vary by family size and composition to determine who is in poverty. If a family's total income is less than the family's threshold, then that family and every individual in it is considered in poverty. The official poverty thresholds do not vary geographically, but they are updated for inflation using the Consumer Price Index (CPI-U). The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). Data collected from the U.S. Census Bureau, American Communities Survey (1yr), Poverty Status in the Past 12 Months (Table S1701). American Communities Survey (ACS) is a survey with sampled statistics on the citywide level and is subject to a margin of error. ACS sample size and data quality measures can be found on the U.S. Census website in the Methodology section.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Strategic Measure_EOA.B.1 Number and percentage of residents living below the poverty level’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/e723c523-221e-4e4b-bb9c-54c1056ae83b on 26 January 2022.
--- Dataset description provided by original source is as follows ---
This measure answers the question of what number and percentage of residents are living below the federal poverty level, which means they meet certain thresholds set by a set of parameters and computation performed by the Census Bureau. Following the Office of Management and Budget's (OMB) Statistical Policy Directive 14, the Census Bureau uses a set of money income thresholds that vary by family size and composition to determine who is in poverty. If a family's total income is less than the family's threshold, then that family and every individual in it is considered in poverty. The official poverty thresholds do not vary geographically, but they are updated for inflation using the Consumer Price Index (CPI-U). The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps).
Data collected from the U.S. Census Bureau, American Communities Survey (1yr), Poverty Status in the Past 12 Months (Table S1701). American Communities Survey (ACS) is a survey with sampled statistics on the citywide level and is subject to a margin of error. ACS sample size and data quality measures can be found on the U.S. Census website in the Methodology section.
View more details and insights related to this data set on the story page:https://data.austintexas.gov/stories/s/kgf9-tcgd
--- Original source retains full ownership of the source dataset ---
This indicator measures the percent of citizens living within one-quarter mile walking distance of a park or accessible open space, if inside the urban core, or half-mile walking distance of a park or accessible open space if outside the urban core.
This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates.
Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file.
Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death.
Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly.
The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington.
Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf).
Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year.
Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).
As part of the Regional Housing Initiative (RHI), the team conducted a submarket analysis. This analysis identifies 2020 census tracts with similar housing characteristics (density, price, market conditions) and groups them accordingly. This submarket analysis uses a Latent Profile Analysis (LPA) via the mclust package in R to group the region's 1,407 eligible census tracts (tracts with no households or population were removed) into one of eight submarkets. The team reviewed the existing conditions of these submarkets to identify their housing challenges and appropriate policies and strategies for each submarket. Census tables used to gather data from the 2016-2020 American Community Survey 5-Year Estimates. Data Dictionary Field Name Source submarket Housing submarket DVRPC hhinc_med Median household income U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 rent_med Median gross rent U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 ten_rent Percent of households that are renter-occupied U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 ten_own Percent of households that are owner-occupied U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 vcy Residential vacancy rate U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 hhi_150p Percent of households with incomes of $150,000 or higher U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 yb_59e Percent of housing units built in 1959 or earlier U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 yb_6099 Percent of housing units built between 1960 and 1999 U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 yb_00p Percent of housing units built since 2000 U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 unit_1 Percent of housing units that are 1 unit in structure U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 unit_2to4 Percent of housing units that are 2 to 4 units in structure U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 unit_5p Percent of housing units that are 5 or more units in structure U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 pct_subsidized Percent of housing units that are federally subsidized (Public housing, Section 8, LIHTC) U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020, National Housing Preservation Database (NHPD) med21 Median single family home sale price, 2021 The Warren Group, 2021 pct_diff Median percent change in median single family home sale price, 2016-2021 The Warren Group, 2016 & 2021 hhs_1 Percent of households that are 1-person households U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 hhs_2to4 Percent of households that are 2- to 4-person households U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 hhs_5p Percent of households that are 5 or more person households U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 hu_acre Housing units per acre U.S. Census Bureau, ACS 5-Year Estimates, 2016-2020 Please contact Brian Carney, bcarney@dvrpc.org, for more information.
This dataset tracks the updates made on the dataset "Monthly Cumulative Number and Percent of Persons Who Received 1+ 2024-25 COVID-19 Vaccination Doses, by Age Group, and Jurisdiction, United States" as a repository for previous versions of the data and metadata.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical Dataset of Middle Township Elementary #1 is provided by PublicSchoolReview and contain statistics on metrics:Total Students Trends Over Years (1990-2023),Total Classroom Teachers Trends Over Years (1990-2023),Distribution of Students By Grade Trends,Student-Teacher Ratio Comparison Over Years (1990-2023),Asian Student Percentage Comparison Over Years (1991-2023),Hispanic Student Percentage Comparison Over Years (1992-2023),Black Student Percentage Comparison Over Years (1992-2023),White Student Percentage Comparison Over Years (1992-2023),Two or More Races Student Percentage Comparison Over Years (2019-2023),Diversity Score Comparison Over Years (1992-2023),Free Lunch Eligibility Comparison Over Years (1990-2023),Reduced-Price Lunch Eligibility Comparison Over Years (2001-2023)
The Public Use Microdata Sample (PUMS) 1-Percent Sample contains household and person records for a sample of housing units that received the "long form" of the 1990 Census questionnaire. Data items include the full range of population and housing information collected in the 1990 Census, including 500 occupation categories, age by single years up to 90, and wages in dollars up to $140,000. Each person identified in the sample has an associated household record, containing information on household characteristics such as type of household and family income. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR09951.v4. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Number of pupils in grade 9 who are eligible for the aesthetic programme divided by the number of pupils who received or would have received grades in at least one subject according to the goal- and knowledge-related grading system in grade 9. The assignment refers to pupils in municipal schools in the municipality regardless of the place of residence. The assignment refers to academic year. If the total number of pupils is 40 or more and the number of non-qualified is 1-4 pupils, then the proportion of pupils is shown to be 95 percent. In 2016, students with unknown backgrounds were excluded. Data is available according to gender breakdown.
Overall educational attainment measures the highest level of education attained by a given individual: for example, an individual counted in the percentage of the measured population with a master’s or professional degree can be assumed to also have a bachelor’s degree and a high school diploma, but they are not counted in the population percentages for those two categories. Overall educational attainment is the broadest education indicator available, providing information about the measured county population as a whole.
Only members of the population aged 25 and older are included in these educational attainment estimates, sourced from the U.S. Census Bureau American Community Survey (ACS).
Champaign County has high educational attainment: over 48 percent of the county's population aged 25 or older has a bachelor's degree or graduate or professional degree as their highest level of education. In comparison, the percentage of the population aged 25 or older in the United States and Illinois with a bachelor's degree in 2023 was 21.8% (+/-0.1) and 22.8% (+/-0.2), respectively. The population aged 25 or older in the U.S. and Illinois with a graduate or professional degree in 2022, respectively, was 14.3% (+/-0.1) and 15.5% (+/-0.2).
Educational attainment data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Educational Attainment for the Population 25 Years and Over.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (29 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (6 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018). U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).
In 2016, there were approximately **** thousand millionaires in Pakistan. The number of individuals owning one million U.S. dollars or more in Pakistan is expected to rise to **** thousand by 2026. HNWI forecast in Pakistan Individuals with investible assets of at least one million U.S. dollars in current exchange rate terms are considered high net worth. The number of high-net-worth individuals in Pakistan is expected to rise overall between 2022 and 2028, settling at just under ***** thousand individuals. Countries with the highest millionaire rate In 2021, Switzerland had the highest rate of millionaires in the world, with **** percent of the adult population owning assets worth more than one million U.S. dollars. Luxembourg came in second, with **** percent of the population being millionaires, and Iceland came in third. Furthermore, over ** million people in the United States were among the world's top one percent of ultra-high net-worth individuals in 2021. China came second, with over **** million top one percent wealth holders worldwide.
This dataset contains yearly certified enrollment for all public school districts (with physical boundaries) in Wisconsin for the 2023-2024 school year. This data is also available in the WISEdash Public Portal. This dataset is derived from publicly available files on the WISEdash Download Page. Enrollment Count is the number of students enrolled on specific dates as determined by school enrollment/exit dates that cover those dates. Percent Enrollment by Student Group is a percent of the enrollment count for all student groups combined. Reporting Disability is indicated in the pupil’s individualized education program (IEP) or individualized service plan (ISP). A person's race or ethnicity is the racial and/or ethnic group to which the person belongs or with which he or she most identifies. Ethnicity is self-reported as either Hispanic/Not Hispanic. Race is self-reported as any of the following 5 categories: Asian, American Indian or Alaskan Native, Black or African American, Native Hawaiian or other Pacific Islander, or White. The data displayed reflects the race/ethnicity that is reported by school districts to DPI.An economically disadvantaged student is one who is identified by Direct Certification (only if participating in the National School Lunch Program) OR a member of a household that meets the income eligibility guidelines for free or reduced-price meals (less than or equal to 185 percent of Federal Poverty Guidelines) under the National School Lunch Program (NSLP) OR identified by an alternate mechanism, such as the alternate household income form.English Learner status is any student whose first language, or whose parents' or guardians' first language, is not English and whose level of English proficiency requires specially designed instruction, either in English or in the first language or both, in order for the student to fully benefit from classroom instruction and to be successful in attaining the state's high academic standards expected of all students at their grade level.A child is eligible for the Migrant Education Program (MEP) (and thereby eligible to receive MEP services) if the child: meets the definition of “migratory child” in section 1309(3) of the ESEA,[1] and is an “eligible child” as the term is used in section 1115(c)(1)(A) of the ESEA and 34 C.F.R. § 200.103; and has the basis for the State’s determination that the child is a “migratory child” properly recorded on the national Certificate of Eligibility (COE). Eligibility determination is made by a Wisconsin state migrant recruiter during a face-to-face family interview.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBLT01026) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.