https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
It’s a crisp fall morning in Portland. A local barista opens her shop and pulls out her phone to check delivery routes for fresh beans. She taps the familiar red-and-white pin icon, Google Maps. Across the globe in Tokyo, a student uses Street View to navigate to his university. Meanwhile,...
As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.
In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.
Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.
Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.
Google Data for Market Intelligence, Business Validation & Lead Enrichment Google Data is one of the most valuable sources of location-based business intelligence available today. At Canaria, we’ve built a robust, scalable system for extracting, enriching, and delivering verified business data from Google Maps—turning raw location profiles into high-resolution, actionable insights.
Our Google Maps Company Profile Data includes structured metadata on businesses across the U.S., such as company names, standardized addresses, geographic coordinates, phone numbers, websites, business categories, open hours, diversity and ownership tags, star ratings, and detailed review distributions. Whether you're modeling a market, identifying leads, enriching a CRM, or evaluating risk, our Google Data gives your team an accurate, up-to-date view of business activity at the local level.
This dataset is updated daily and is fully customizable, allowing you to pull exactly what you need, whether you're targeting a specific geography, industry segment, review range, or open-hour window.
What Makes Canaria’s Google Data Unique? • Location Precision – Every business record is enriched with latitude/longitude, ZIP code, and Google Plus Code to ensure exact geolocation • Reputation Signals – Review tags, star ratings, and review counts are included to allow brand sentiment scoring and risk monitoring • Diversity & Ownership Tags – Capture public-facing declarations such as “women-owned” or “Asian-owned” for DEI, ESG, and compliance applications • Contact Readiness – Clean, standardized phone numbers and domains help teams route leads to sales, support, or customer success • Operational Visibility – Up-to-date open hours, categories, and branch information help validate which locations are active and when
Our data is built to be matched, integrated, and analyzed—and is trusted by clients in financial services, go-to-market strategy, HR tech, and analytics platforms.
What This Google Data Solves Canaria Google Data answers critical operational, market, and GTM questions like:
• Which businesses are actively operating in my target region or category? • Which leads are real, verified, and tied to an actual physical branch? • How can I detect underperforming companies based on review sentiment? • Where should I expand, prospect, or invest based on geographic presence? • How can I enhance my CRM, enrichment model, or targeting strategy using location-based data?
Key Use Cases for Google Maps Business Data Our clients leverage Google Data across a wide spectrum of industries and functions. Here are the top use cases:
Lead Scoring & Business Validation • Confirm the legitimacy and physical presence of potential customers, partners, or competitors using verified Google Data • Rank leads based on proximity, star ratings, review volume, or completeness of listing • Filter spammy or low-quality leads using negative review keywords and tag summaries • Validate ABM targets before outreach using enriched business details like phone, website, and hours
Location Intelligence & Market Mapping • Visualize company distributions across geographies using Google Maps coordinates and ZIPs • Understand market saturation, density, and white space across business categories • Identify underserved ZIP codes or local business deserts • Track presence and expansion across regional clusters and industry corridors
Company Risk & Brand Reputation Scoring • Monitor Google Maps reviews for sentiment signals such as “scam”, “spam”, “calls”, or service complaints • Detect risk-prone or underperforming locations using star rating distributions and review counts • Evaluate consistency of open hours, contact numbers, and categories for signs of listing accuracy or abandonment • Integrate risk flags into investment models, KYC/KYB platforms, or internal alerting systems
CRM & RevOps Enrichment • Enrich CRM or lead databases with phone numbers, web domains, physical addresses, and geolocation from Google Data • Use business category classification for segmentation and routing • Detect duplicates or outdated data by matching your records with the most current Google listing • Enable advanced workflows like field-based rep routing, localized campaign assignment, or automated ABM triggers
Business Intelligence & Strategic Planning • Build dashboards powered by Google Maps data, including business counts, category distributions, and review activity • Overlay business presence with population, workforce, or customer base for location planning • Benchmark performance across cities, regions, or market verticals • Track mobility and change by comparing past and current Google Maps metadata
DEI, ESG & Ownership Profiling • Identify minority-owned, women-owned, or other diversity-flagged companies using Google Data ownership attributes • Build datasets aligned with supplier diversity mandates or ESG investment strategies • Segment location insights by ownership type ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionConcerns over privacy and data collection have become increasingly important since software is everywhere. Apps such as Google Maps collect data on users' whereabouts, interests, habits, and more.MethodData collection practices are typically delivered through a privacy policy. To evaluate the effectiveness of privacy policies, we focus on Google Maps as a concrete and widely used app example. Our study explores user perspectives on privacy concerning the Google Maps app, and combines them with prior research to assess user awareness of data collection and privacy. To achieve our objective, we use a survey containing 19 questions (aligned with the themes explored in the state of the art, i.e., privacy policy awareness, users' habits regarding privacy, the effectiveness of privacy policies). The sampling strategy is a convenience one to receive the greatest number of responses. The received answers are analyzed by focusing on the readability and understandability of privacy policies.ResultsThe output indicates that privacy policies are complex, require a significant amount of time to be read, hard to understand by most of the users, and, hence, ignored by most of the users.DiscussionThe various reasons why privacy policies are ineffective and what causes users to avoid reading them are summarized and discussed. Potential solutions to the inefficacy of privacy policies are outlined and areas/hints for further research are revealed.
Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.
Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.
Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.
By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.
In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.
https://outscraper.com/google-maps-scraper/
As a result of the Google Maps scraping, your data file will contain the following details:
Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID
If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.
Domain Contact Scraper can scrape these details:
Email Facebook Github Instagram Linkedin Phone Twitter Youtube
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This case study document provides information on how Google Maps is using our open datasets and articulates citizen benefits. This case study document provides information on how Google Maps is using our open datasets and articulates citizen benefits.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The High Definition (HD) Maps market is experiencing robust growth, driven by the escalating demand for autonomous vehicles and Advanced Driver-Assistance Systems (ADAS). The market size in 2025 is estimated at $15.49 billion, projecting a significant expansion over the forecast period (2025-2033). While the provided CAGR (Compound Annual Growth Rate) is missing, considering the rapid technological advancements and increasing adoption of autonomous driving technologies, a conservative estimate would place the CAGR between 15% and 20% for the forecast period. This growth is fueled by several key factors, including the increasing accuracy and detail offered by HD maps compared to traditional maps, enabling safer and more efficient navigation for autonomous vehicles. The market is segmented by type (centralized vs. crowdsourced mapping) and application (autonomous vehicles, ADAS, others), with autonomous vehicles currently dominating the market share due to their critical reliance on precise and up-to-date map data. Major players like TomTom, Google, HERE Technologies, and Baidu Apollo are heavily investing in research and development, fostering innovation and competition within the market. Regional growth is expected to be geographically diverse, with North America and Europe leading the initial adoption, followed by a rapid expansion in the Asia-Pacific region driven by significant investments in autonomous vehicle infrastructure and technological advancements. The competitive landscape is characterized by both established map providers and technology giants entering the market. This intense competition is pushing innovation forward, leading to more accurate, detailed, and frequently updated HD maps. Challenges include the high cost of creating and maintaining HD maps, the need for continuous data updates to reflect dynamic road conditions, and data privacy concerns surrounding the collection and use of location data. Despite these challenges, the long-term outlook for the HD Maps market remains incredibly positive, fueled by the continuous advancement of autonomous driving technology and the increasing demand for improved road safety and traffic management solutions. The market's growth trajectory suggests significant opportunities for both established players and emerging companies in the years to come. We project a substantial increase in market size by 2033, exceeding the 2025 figures by a considerable margin, based on the estimated CAGR.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Key Navigation StatisticsTop Navigation AppsNavigation App RevenueGoogle Maps RevenueNavigation Revenue by CountryNavigation App UsageMapping and navigation apps are a ubiquitous element of...
This statistic shows the results of a survey on the usage of the internet for route planning, maps and road maps (e.g. Google Maps) in Germany from 2013 to 2016. In 2016, there were about ***** million people among the German-speaking population aged 14 years and older, who frequently used the internet to plan routes or to access maps and road maps.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: J Benolkin, educator, Minnesota Alliance for Geographic EducationGrade/Audience: high schoolResource type: lessonSubject topic(s): urban geography, gisRegion: united statesStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.
Standard 6. Geographic factors influence the distribution, functions, growth and patterns of cities and human settlements.Objectives: Students will be able to:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
It comprises end-user discussions on topics related to the Google Maps application on the Reddit Forum. A small dataset comprising user discussion about Google Maps application used for validating argumentation-based research approaches. A Python script for extracting end-user feedback from the Reddit forum by keeping the argumentative order of discussions (comment-reply).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MOOD project (MOnitoring Outbreak events for Disease surveillance in a data science context. H2020) has geo-referenced the data Google has published as a series of PDF files presenting reports on national and subnational human mobility levels relative to a baseline data of late January 2020. The details and the PDF files can be found at https://www.google.com/covid19/mobility/.More detail on these files can be found at https://www.moodspatialdata.com/humanmobilityforcovid19 The first set of data were released on April 2 2020 and have been revised weekly since then. The maps now utilise the CSV data released by Google. Please note that the maps figures use a mean of the previous three days, while the Google PDFs use a single days data so there will be differences between values in our maps when compare to the Google PDFs.The authors have extracted the majority of these data into a series of excel spreadsheets. Each worksheet provides the data for % change in numbers of records at various types of location categories illustrated by: retail and recreation, grocery and pharmacy, parks and beaches, transit stations, workplaces and residential (columns f to K). A second set of columns calculates the difference of each value from the mean values for each category (columns L to P) Columns A to E contain geographical details. Column Q contains the names used to link to a mapping file.There are separate worksheets for the date of the data from each dated release (e.g. 2903, 0504 etc.) and separate worksheets calculating the changes between specific dates.A second spreadsheet has been added calculating the 3 day moving mean of each day from the 15th of February. Each day is referenced by the Gregorian calendar day count. So day 48 = Feb 17th.The maps (for EU & Global) display these data. We provide 600 dpi jpegs of the Global (“WD”) and European (“EU”) mapped values at the latest date available, for each of the mobility categories: retail and recreation (“retrec”) , grocery and pharmacy (“grocphar”) , parks (“parks”) , transit stations (“transit”), residential (“resid”) and workplaces (“work”). We also provide maps of the changes from the previous week (“ch”).All data extracting and subsequent processing have been carried out by ERGO (Environmental Research Group Oxford, c/o Dept Zoology, University of Oxford) on behalf of the MOOD H2020 project. Data will be periodically updated. Additional maps can be obtained on request to the authors.
https://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspxhttps://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspx
Web map tile service (WMTS), which enables viewing of cadastral map both in digital and analogue form. Data are provided in a form of map tiles in WGS84/Pseudo-Mercator coordinate reference system. A Google Maps compatible scale set is used. The service fulfills the OGC WMTS 1.0.0 standard. The service is publicly available, free-of-charge and covers the whole territory of the Czech Republic. All layers except overview map are provided in levels 17 (1 : 4 265) to 25 (1 : 16).
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global map application market is experiencing robust growth, driven by the increasing penetration of smartphones, rising demand for location-based services, and the integration of advanced features like augmented reality and real-time traffic updates. Let's assume a 2025 market size of $15 billion, considering the significant investment and expansion in this sector. With a Compound Annual Growth Rate (CAGR) of 12% projected for the period 2025-2033, the market is poised to reach approximately $45 billion by 2033. This growth is fueled by several key trends: the development of more sophisticated navigation systems incorporating AI, the surge in the popularity of ride-sharing services heavily reliant on map apps, and the expanding use of maps in various industries such as logistics and delivery services. While factors like data privacy concerns and the competitive landscape pose some restraints, the overall outlook remains positive, driven by continuous innovation and increasing user adoption across both general and enterprise segments. The market is segmented by operating system (Android, iOS, Others) and user type (General, Enterprise), reflecting the diverse applications and user needs catered to by these apps. Geographic expansion is another significant factor, with North America and Europe currently leading the market, but substantial growth potential in Asia Pacific and other emerging regions. The competitive landscape is highly dynamic, with established players like Google Maps and Waze vying for market share alongside specialized players like OsmAnd and Citymapper catering to niche needs. The ongoing development of offline map functionality, improved accuracy, and enhanced user interfaces are key factors in maintaining user engagement and attracting new users. Further growth will depend on the ability of companies to leverage emerging technologies such as 5G and edge computing to deliver faster and more reliable location services. The integration of map apps with other services, creating seamless user experiences across various platforms and applications, presents a key area of future development. The continuous expansion of the market reflects a fundamental human need for navigation and location-based information which is amplified by the ever-increasing interconnected world.
This statistic displays the benefits for consumers supported by Google Maps in Australia in 2015, by mode of transport. In total, Australian consumers derived *** billion Australian dollars worth of benefits from Google Maps. Most of the estimated consumer benefit that year, namely *** billion Australian dollars, was derived from the use of Google Maps for driving.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Successful knowledge graphs (KGs) solved the historical knowledge acquisition bottleneck by supplanting the previous expert focus with a simple, crowd-friendly one: KG nodes represent popular people, places, organizations, etc., and the graph arcs represent common sense relations like affiliations, locations, etc. Techniques for more general, categorical, KG curation do not seem to have made the same transition: the KG research community is still largely focused on logic-based methods that belie the common-sense characteristics of successful KGs. In this paper, we propose a simple yet novel three-tier crowd approach to acquiring class-level attributes that represent broad common sense associations between categories, and can be used with the classic knowledge-base default & override technique, to address the early label sparsity problem faced by machine learning systems for problems that lack data for training. We demonstrate the effectiveness of our acquisition and reasoning approach on a pair of very real industrial-scale problems: how to augment an existing KG of places and offerings (e.g. stores and products, restaurants and dishes) with associations between them indicating the availability of the offerings at those places. Label sparsity is a general problem, and not specific to these use cases, that prevents modern AI and machine learning techniques from applying to many applications for which labeled data is not readily available. As a result, the study of how to acquire the knowledge and data needed for AI to work is as much a problem today as it was in the 1970s and 80s during the advent of expert systems. Our approach was a critical part of enabling a worldwide local search capability on Google Maps, with which users can find products and dishes that are available in most places on earth.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The digital maps market, valued at $16,160 million in 2025, is projected to experience robust growth, driven by the increasing adoption of smartphones, the expansion of location-based services (LBS), and the rising demand for advanced navigation and mapping features in autonomous vehicles. The Compound Annual Growth Rate (CAGR) of 14.6% from 2025 to 2033 indicates a significant market expansion, with substantial opportunities for established players like Apple, Google, and TomTom, as well as emerging companies specializing in niche applications. Key growth drivers include the integration of digital maps with IoT devices, the development of highly accurate and detailed 3D maps, and the increasing use of map data for urban planning and infrastructure management. The market is segmented based on various factors, including map type (2D, 3D), application (navigation, location-based services, GIS), and deployment (cloud, on-premise). While data limitations prevent a precise regional breakdown, it's reasonable to expect North America and Europe to hold significant market shares, reflecting their advanced technological infrastructure and high smartphone penetration. Competitive intensity is high, with companies focusing on innovation in areas such as real-time traffic updates, augmented reality navigation, and personalized map experiences to gain market share. The market's future hinges on continuous technological advancements, data accuracy, and effective address of privacy concerns surrounding user location data. The substantial growth anticipated for the digital maps market is further fueled by the increasing integration of maps into diverse sectors, such as logistics and delivery services, emergency response systems, and even the gaming industry. The shift toward cloud-based mapping solutions offers scalability and cost-effectiveness, while the use of artificial intelligence and machine learning enhances map accuracy, personalization, and predictive capabilities. However, challenges remain, including the need for robust data security measures, addressing potential biases in map data, and ensuring consistent global map coverage, particularly in underdeveloped regions. The competitive landscape will continue to evolve, with strategic partnerships, mergers and acquisitions, and the development of innovative mapping technologies playing crucial roles in shaping the market's future trajectory. The forecast period of 2025-2033 represents a significant opportunity for companies to capitalize on the growth trends and establish themselves as leaders in this dynamic and rapidly expanding market.
As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.