100+ datasets found
  1. f

    Data_Sheet_1_Raw Data Visualization for Common Factorial Designs Using SPSS:...

    • frontiersin.figshare.com
    zip
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Loffing (2023). Data_Sheet_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A Syntax Collection and Tutorial.ZIP [Dataset]. http://doi.org/10.3389/fpsyg.2022.808469.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Florian Loffing
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.

  2. Household Survey on Information and Communications Technology, 2014 - West...

    • pcbs.gov.ps
    Updated Jan 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of statistics (2020). Household Survey on Information and Communications Technology, 2014 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/465
    Explore at:
    Dataset updated
    Jan 28, 2020
    Dataset provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Authors
    Palestinian Central Bureau of statistics
    Time period covered
    2014
    Area covered
    West Bank, Gaza, Gaza Strip
    Description

    Abstract

    Within the frame of PCBS' efforts in providing official Palestinian statistics in the different life aspects of Palestinian society and because the wide spread of Computer, Internet and Mobile Phone among the Palestinian people, and the important role they may play in spreading knowledge and culture and contribution in formulating the public opinion, PCBS conducted the Household Survey on Information and Communications Technology, 2014.

    The main objective of this survey is to provide statistical data on Information and Communication Technology in the Palestine in addition to providing data on the following: -

    · Prevalence of computers and access to the Internet. · Study the penetration and purpose of Technology use.

    Geographic coverage

    Palestine (West Bank and Gaza Strip) , type of locality (Urban, Rural, Refugee Camps) and governorate

    Analysis unit

    Household. Person 10 years and over .

    Universe

    All Palestinian households and individuals whose usual place of residence in Palestine with focus on persons aged 10 years and over in year 2014.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame The sampling frame consists of a list of enumeration areas adopted in the Population, Housing and Establishments Census of 2007. Each enumeration area has an average size of about 124 households. These were used in the first phase as Preliminary Sampling Units in the process of selecting the survey sample.

    Sample Size The total sample size of the survey was 7,268 households, of which 6,000 responded.

    Sample Design The sample is a stratified clustered systematic random sample. The design comprised three phases:

    Phase I: Random sample of 240 enumeration areas. Phase II: Selection of 25 households from each enumeration area selected in phase one using systematic random selection. Phase III: Selection of an individual (10 years or more) in the field from the selected households; KISH TABLES were used to ensure indiscriminate selection.

    Sample Strata Distribution of the sample was stratified by: 1- Governorate (16 governorates, J1). 2- Type of locality (urban, rural and camps).

    Sampling deviation

    -

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.

    Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.

    Section III: Data on persons (aged 10 years and over) about computer use, access to the Internet and possession of a mobile phone.

    Cleaning operations

    Preparation of Data Entry Program: This stage included preparation of the data entry programs using an ACCESS package and defining data entry control rules to avoid errors, plus validation inquiries to examine the data after it had been captured electronically.

    Data Entry: The data entry process started on 8 May 2014 and ended on 23 June 2014. The data entry took place at the main PCBS office and in field offices using 28 data clerks.

    Editing and Cleaning procedures: Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.

    Response rate

    Response Rates= 79%

    Sampling error estimates

    There are many aspects of the concept of data quality; this includes the initial planning of the survey to the dissemination of the results and how well users understand and use the data. There are three components to the quality of statistics: accuracy, comparability, and quality control procedures.

    Checks on data accuracy cover many aspects of the survey and include statistical errors due to the use of a sample, non-statistical errors resulting from field workers or survey tools, and response rates and their effect on estimations. This section includes:

    Statistical Errors Data of this survey may be affected by statistical errors due to the use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators.

    Variance calculations revealed that there is no problem in disseminating results nationally or regionally (the West Bank, Gaza Strip), but some indicators show high variance by governorate, as noted in the tables of the main report.

    Non-Statistical Errors Non-statistical errors are possible at all stages of the project, during data collection or processing. These are referred to as non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, and practical and theoretical training took place during the training course. Training manuals were provided for each section of the questionnaire, along with practical exercises in class and instructions on how to approach respondents to reduce refused cases. Data entry staff were trained on the data entry program, which was tested before starting the data entry process.

    Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.

    The sources of non-statistical errors can be summarized as: 1. Some of the households were not at home and could not be interviewed, and some households refused to be interviewed. 2. In unique cases, errors occurred due to the way the questions were asked by interviewers and respondents misunderstood some of the questions.

  3. J

    Japan Avg No.of Nights: Malaysia: Not Use of Lounges

    • ceicdata.com
    Updated Apr 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Japan Avg No.of Nights: Malaysia: Not Use of Lounges [Dataset]. https://www.ceicdata.com/en/japan/tourism-and-leisure-average-number-of-nights-stay-by-nationality/avg-noof-nights-malaysia-not-use-of-lounges
    Explore at:
    Dataset updated
    Apr 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2015 - Dec 1, 2017
    Area covered
    Japan
    Description

    Japan Avg No.of Nights: Malaysia: Not Use of Lounges data was reported at 7.124 Night in Dec 2017. This records a decrease from the previous number of 8.323 Night for Sep 2017. Japan Avg No.of Nights: Malaysia: Not Use of Lounges data is updated quarterly, averaging 6.723 Night from Jun 2014 (Median) to Dec 2017, with 15 observations. The data reached an all-time high of 8.323 Night in Sep 2017 and a record low of 6.158 Night in Sep 2016. Japan Avg No.of Nights: Malaysia: Not Use of Lounges data remains active status in CEIC and is reported by Ministry of Land, Infrastructure, Transport and Tourism. The data is categorized under Global Database’s Japan – Table JP.Q030: Tourism and Leisure: Average Number of Nights Stay by Nationality.

  4. F

    Average Duration (in Quarters) from Business Application to Formation within...

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Average Duration (in Quarters) from Business Application to Formation within 4 Quarters for Oklahoma (DISCONTINUED) [Dataset]. https://fred.stlouisfed.org/series/DUR4QNSAOK
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2019
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Oklahoma
    Description

    Graph and download economic data for Average Duration (in Quarters) from Business Application to Formation within 4 Quarters for Oklahoma (DISCONTINUED) (DUR4QNSAOK) from Q3 2004 to Q4 2015 about business formations, business applications, OK, average, business, and USA.

  5. F

    Average Duration (in Quarters) from Business Application to Formation Within...

    • fred.stlouisfed.org
    json
    Updated Nov 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Average Duration (in Quarters) from Business Application to Formation Within Eight Quarters: Other Services in the United States [Dataset]. https://fred.stlouisfed.org/series/BFDUR8QNAICS81NSAUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 14, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Average Duration (in Quarters) from Business Application to Formation Within Eight Quarters: Other Services in the United States (BFDUR8QNAICS81NSAUS) from Jul 2004 to Dec 2020 about duration, business applications, average, business, services, and USA.

  6. Households below average income: for financial years ending 1995 to 2021

    • gov.uk
    • s3.amazonaws.com
    Updated May 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Work and Pensions (2022). Households below average income: for financial years ending 1995 to 2021 [Dataset]. https://www.gov.uk/government/statistics/households-below-average-income-for-financial-years-ending-1995-to-2021
    Explore at:
    Dataset updated
    May 24, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Work and Pensions
    Description

    This statistical release has been affected by the coronavirus (COVID-19) pandemic. We advise users to consult our technical report which provides further detail on how the statistics have been impacted and changes made to published material.

    This Households Below Average Income (HBAI) report presents information on living standards in the United Kingdom year on year from financial year ending (FYE) 1995 to FYE 2021.

    It provides estimates on the number and percentage of people living in low-income households based on disposable income. Figures are also provided for children, pensioners and working-age adults.

    Use our infographic to find out how low income is measured in HBAI.

    Most of the figures in this report come from the Family Resources Survey, a representative survey of around 10,000 households in the UK.

    Data tables

    Summary data tables and publication charts are available on this page.

    The directory of tables is a guide to the information in the summary data tables and publication charts file.

    HBAI data on Stat-Xplore

    UK-level HBAI data is available from FYE 1995 to FYE 2020 on https://stat-xplore.dwp.gov.uk/webapi/jsf/login.xhtml" class="govuk-link">Stat-Xplore online tool. You can use Stat-Xplore to create your own HBAI analysis. Data for FYE 2021 is not available on Stat-Xplore.

    HBAI information is available at:

    • an individual level
    • a family level (benefit unit level)
    • a household level

    Read the user guide to HBAI data on Stat-Xplore.

    Feedback

    We are seeking feedback from users on this development release of HBAI data on Stat-Xplore: email team.hbai@dwp.gov.uk with your comments.

  7. U

    United States US: People Using Basic Drinking Water Services: % of...

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: People Using Basic Drinking Water Services: % of Population [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-people-using-basic-drinking-water-services--of-population
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2015
    Area covered
    United States
    Description

    United States US: People Using Basic Drinking Water Services: % of Population data was reported at 99.200 % in 2015. This records an increase from the previous number of 99.195 % for 2014. United States US: People Using Basic Drinking Water Services: % of Population data is updated yearly, averaging 99.174 % from Dec 2005 (Median) to 2015, with 11 observations. The data reached an all-time high of 99.200 % in 2015 and a record low of 99.148 % in 2005. United States US: People Using Basic Drinking Water Services: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. The percentage of people using at least basic water services. This indicator encompasses both people using basic water services as well as those using safely managed water services. Basic drinking water services is defined as drinking water from an improved source, provided collection time is not more than 30 minutes for a round trip. Improved water sources include piped water, boreholes or tubewells, protected dug wells, protected springs, and packaged or delivered water.; ; WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply, Sanitation and Hygiene (washdata.org).; Weighted Average;

  8. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/major/Does%20Not%20Apply%20See%20Text%20In%20Item%20H.14
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    FrogHire.ai
    Description

    Explore the progression of average salaries for graduates in Does Not Apply See Text In Item H.14 from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Does Not Apply See Text In Item H.14 relative to other fields. This data is essential for students assessing the return on investment of their education in Does Not Apply See Text In Item H.14, providing a clear picture of financial prospects post-graduation.

  9. P

    Poland Buildings Completed: Rural: Useful Floor Area: NR: Others: Not...

    • ceicdata.com
    Updated Aug 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). Poland Buildings Completed: Rural: Useful Floor Area: NR: Others: Not Classified [Dataset]. https://www.ceicdata.com/en/poland/buildings-completed-statistics-by-type-rural/buildings-completed-rural-useful-floor-area-nr-others-not-classified
    Explore at:
    Dataset updated
    Aug 5, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2017
    Area covered
    Poland
    Variables measured
    Construction Completed
    Description

    Poland Buildings Completed: Rural: Useful Floor Area: NR: Others: Not Classified data was reported at 56,900.000 sq m in 2017. Poland Buildings Completed: Rural: Useful Floor Area: NR: Others: Not Classified data is updated yearly, averaging 56,900.000 sq m from Dec 2017 (Median) to 2017, with 1 observations. Poland Buildings Completed: Rural: Useful Floor Area: NR: Others: Not Classified data remains active status in CEIC and is reported by Central Statistical Office. The data is categorized under Global Database’s Poland – Table PL.EB003: Buildings Completed Statistics: by Type: Rural.

  10. c

    Labour Force Survey, 2021 (quarterly data with annual averages)

    • datacatalogue.cessda.eu
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SSB (2025). Labour Force Survey, 2021 (quarterly data with annual averages) [Dataset]. http://doi.org/10.18712/NSD-NSD3256-V1
    Explore at:
    Dataset updated
    Feb 19, 2025
    Authors
    SSB
    Time period covered
    Jan 1, 2021 - Dec 31, 2021
    Variables measured
    Individual
    Description

    Statistics Norway established the Labor Force Survey (LFS) in 1972, and it has been conducted quarterly ever since. The LFS measures the population's participation in the labor market and provides comprehensive information on unemployment, employment, people outside the labor force, temporary employees, underemployed and other subgroups that are not captured by register-based statistics. This makes the LFS one of the most important sources of information about conditions in the Norwegian labor market.

    Right from the start, the aim has been to ensure that the survey is comparable with similar surveys internationally. Today, the LFS is designed in accordance with the EU's statistical regulations to ensure consistent and comparable European statistics. The LFS data contains long time series, and although there have been some breaks in the time series due to changes in the questionnaire and data collection, the most central variables have been continuously included since the start. This makes it possible to present time series data for the employed, unemployed and people outside the labor force all the way back to 1972.

    From 2020 to 2021, a significant break in the time series was necessary due to the implementation of a new framework regulation for European social statistics. The production system was revised in full, with changes in sampling, weighting, use of register data, and a new questionnaire, several changes were made to modernize and streamline data collection.

    The dataset consists of all four quarters of the year, along with an annual weight. The annual weight corresponds to the quarterly weight divided by four. The dataset should be used for an annual average rather than a quarterly distribution. If a quarterly average is desired, separate datasets are available.

  11. N

    Good Thunder, MN Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Good Thunder, MN Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/66aae58b-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Good Thunder, Minnesota
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Good Thunder by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Good Thunder. The dataset can be utilized to understand the population distribution of Good Thunder by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Good Thunder. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Good Thunder.

    Key observations

    Largest age group (population): Male # 55-59 years (69) | Female # 50-54 years (29). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Good Thunder population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Good Thunder is shown in the following column.
    • Population (Female): The female population in the Good Thunder is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Good Thunder for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Good Thunder Population by Gender. You can refer the same here

  12. g

    Car owners — Statistics for Malmö’s areas

    • gimi9.com
    Updated May 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Car owners — Statistics for Malmö’s areas [Dataset]. https://gimi9.com/dataset/eu_https-ckan-malmo-dataplatform-se-dataset-bcfbcc67-22a8-440c-9778-35de3530e4fb
    Explore at:
    Dataset updated
    May 6, 2024
    Area covered
    Malmö
    Description

    In this file there are statistics for a number of variables broken down by Malmö’s different areas over time. Sources Unless otherwise stated, the statistics in this database are retrieved from Statistics Sweden’s (SCB) regional database, Skånedatabasen or from Statistics Sweden’s area statistics database (OSDB). The Skåne database and OSDB show data from several different sources that Statistics Sweden has compiled on a geographical level. The statistics only cover persons who are part of the population registered in the population. Therefore, persons without a residence permit, such as asylum seekers, and persons who simply have not registered in the municipality are not included. Statistics Sweden does not provide statistics on which language residents speak, which religion you belong to or what ethnicity or political views you have. Therefore, such data is not available here either. However, the Electoral Authority reports election results per constituency on its website val.se. There are statistics from the last election as well as several previous elections available. Please note, however, that the constituencies do not necessarily follow the division of the city made here. Update The data is updated every spring as Statistics Sweden releases the figures to the municipality. Most variables are available for the year before. However, income and employment data are released with another year’s backlog. Unless otherwise stated, the date of measurement is 31 December of each year. Geographical breakdown Unless otherwise stated, the data is available for Malmö as a whole and broken down into urban areas (5 pieces), districts (10 pieces) and subareas (136 pieces). In addition to these, there is a residual post that contains the people who are not written in a specific place in the municipality, have protected identity and more. These people are also part of the total. In several of the subareas there are no or only a few registered population registers. Therefore, no data are reported for these areas. Examples of such sub-areas are parks such as Pildammsparken and Kroksbäcksparken and industrial areas such as Fosieby Industriområde and Spillepengen. Privacy clearance In order to protect the identity of individuals, the data is confidentially audited. This means that small values are suppressed, i.e. replaced by empty cells. However, the values are included in summaries. In general, the following rules apply: • No statistics are reported for geographical areas with very few housing. No cells with fewer than 5 individuals are reported. For data classified as sensitive (e.g. income and country of birth), larger values can also be suppressed. • In cases where a subcategory (e.g. a training category) is too small to be accounted for, all categories are often suppressed. Please use the numbers, but use “City Office, Malmö City” as the source.

  13. d

    WDFW Item Statistics By Month

    • catalog.data.gov
    • data.wa.gov
    • +1more
    Updated Mar 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.wa.gov (2025). WDFW Item Statistics By Month [Dataset]. https://catalog.data.gov/dataset/wdfw-item-statistics-by-month
    Explore at:
    Dataset updated
    Mar 22, 2025
    Dataset provided by
    data.wa.gov
    Description

    Data provided here is used by WDFW’s partners, government entities, schools, private businesses, and the general public. WDFW actively promotes inter-agency data exchange and resource sharing. Every effort is made to provide accurate, complete, and timely information on this site. However, some content may be incomplete or out of date. The content on this site is subject to change without notice. The Washington Department of Fish and Wildlife (WDFW) shall not be liable for any activity involving this data with regard to lost profits or savings or any other consequential damages; or the fitness for use of the data for a particular purpose; or the installation of the data, its use, or the results obtained.

  14. d

    Data from: Colony size affects breeding density, but not spatial...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated May 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sandra Bouwhuis; Felix Ballani; Marie Bourgeois; Dietrich Stoyan (2020). Colony size affects breeding density, but not spatial distribution type, in a seabird [Dataset]. http://doi.org/10.5061/dryad.sf7m0cg3c
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 29, 2020
    Dataset provided by
    Dryad
    Authors
    Sandra Bouwhuis; Felix Ballani; Marie Bourgeois; Dietrich Stoyan
    Time period covered
    2020
    Description

    The common tern is a Holarctic colonially breeding and migratory seabird (Becker and Ludwigs 2004). The data we present here come from a long-term study population located in the Banter See at Wilhelmshaven on the German North Sea coast (53°36’N, 08°06’E). In 1992, 101 adult birds of this population were caught and marked with transponders (TROVAN ID 100; TROVAN, Köln, Germany), and since 1992 all locally hatched birds have similarly been marked with a transponder shortly prior to fledging.

    The colony site consists of a line of six concrete islands (denoted A to F, land to lakeward; Becker 2015), each of which measures 10.7 x 4.6 m, is homogeneously covered with gravel, and is surrounded by a 0.6 m wall. Despite the distance between adjacent islands only being 0.9 m, they can be considered functional sub-colonies (Dittmann et al. 2007, Becker 2015). Three-times-weekly checks of the six sub-colonies are used to mark each nest, to assess laying date and to record reproductive parameters....

  15. 2022 Economic Census: EC2231ECOMM | Manufacturing: E-Commerce Statistics for...

    • data.census.gov
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2025). 2022 Economic Census: EC2231ECOMM | Manufacturing: E-Commerce Statistics for the U.S.: 2022 (ECN Core Statistics Manufacturing: E-Commerce Statistics for the U.S.: 2022) [Dataset]. https://data.census.gov/all/tables?q=E%20Leibler
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Area covered
    United States
    Description

    Key Table Information.Table Title.Manufacturing: E-Commerce Statistics for the U.S.: 2022.Table ID.ECNECOMM2022.EC2231ECOMM.Survey/Program.Economic Census.Year.2022.Dataset.ECN Core Statistics Manufacturing: E-Commerce Statistics for the U.S.: 2022.Release Date.2025-01-23.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Sales, value of shipments, or revenue ($1,000)E-Shipments value ($1,000) E-Shipments as percent of total sales, value of shipments, or revenue (%) Range indicating imputed percentage of total sales, value of shipments, or revenueDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S. level only. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 3-digit 2022 NAICS code levels for the U.S. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector31/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specific Notes.Data users who create their own es...

  16. C

    China CN: Cotton Fine Dyeing: No of Employee: Average

    • ceicdata.com
    Updated Dec 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). China CN: Cotton Fine Dyeing: No of Employee: Average [Dataset]. https://www.ceicdata.com/en/china/textile-industry-cotton-textile-and-fine-dyeing-cotton-fine-dyeing/cn-cotton-fine-dyeing-no-of-employee-average
    Explore at:
    Dataset updated
    Dec 15, 2019
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Dec 1, 2012
    Area covered
    China
    Variables measured
    Economic Activity
    Description

    China Cotton Fine Dyeing: Number of Employee: Average data was reported at 471.837 Person th in Dec 2012. This records an increase from the previous number of 468.608 Person th for Nov 2012. China Cotton Fine Dyeing: Number of Employee: Average data is updated monthly, averaging 465.598 Person th from Jan 2012 (Median) to Dec 2012, with 12 observations. The data reached an all-time high of 471.837 Person th in Dec 2012 and a record low of 455.203 Person th in Feb 2012. China Cotton Fine Dyeing: Number of Employee: Average data remains active status in CEIC and is reported by China Textile Industry Association. The data is categorized under China Premium Database’s Textile Sector – Table CN.RSC: Textile Industry: Cotton Textile and Fine Dyeing: Cotton Fine Dyeing.

  17. g

    Form of tenure — Statistics for Malmö’s areas | gimi9.com

    • gimi9.com
    Updated May 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Form of tenure — Statistics for Malmö’s areas | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_https-ckan-malmo-dataplatform-se-dataset-00207516-8bda-4d83-a758-216448e951f5/
    Explore at:
    Dataset updated
    May 6, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Malmö
    Description

    In this file there are statistics for a number of variables broken down by Malmö’s different areas over time. Sources* Unless otherwise stated, the statistics in this database are retrieved from Statistics Sweden’s (SCB) regional database, Skånedatabasen or from Statistics Sweden’s area statistics database (OSDB). The Skåne database and OSDB show data from several different sources that Statistics Sweden has compiled on a geographical level. The statistics only cover persons who are part of the population registered in the population. Therefore, persons without a residence permit, such as asylum seekers, and persons who simply have not registered in the municipality are not included. Statistics Sweden does not provide statistics on which language residents speak, which religion you belong to or what ethnicity or political views you have. Therefore, such data is not available here either. However, the Electoral Authority reports election results per constituency on its website val.se. There are statistics from the last election as well as several previous elections available. Please note, however, that the constituencies do not necessarily follow the division of the city made here. Update The data is updated every spring as Statistics Sweden releases the figures to the municipality. Most variables are available for the year before. However, income and employment data are released with another year’s backlog. Unless otherwise stated, the date of measurement is 31 December of each year. Geographical breakdown* Unless otherwise stated, the data is available for Malmö as a whole and broken down into urban areas (5 pieces), districts (10 pieces) and subareas (136 pieces). In addition to these, there is a residual post that contains the people who are not written in a specific place in the municipality, have protected identity and more. These people are also part of the total. In several of the subareas there are no or only a few registered population registers. Therefore, no data are reported for these areas. Examples of such sub-areas are parks such as Pildammsparken and Kroksbäcksparken and industrial areas such as Fosieby Industriområde and Spillepengen. Privacy clearance** In order to protect the identity of individuals, the data is confidentially audited. This means that small values are suppressed, i.e. replaced by empty cells. However, the values are included in summaries. In general, the following rules apply: * No statistics are reported for geographical areas with very few housing. * No cells with fewer than 5 individuals are reported. For data classified as sensitive (e.g. income and country of birth), larger values can also be suppressed. * In cases where a subcategory (e.g. a training category) is too small to be accounted for, all categories are often suppressed. Please use the numbers, but use “City Office, Malmö City” as the source.

  18. Regional trade statistics interactive analysis: second quarter 2020

    • gov.uk
    Updated Sep 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Revenue & Customs (2020). Regional trade statistics interactive analysis: second quarter 2020 [Dataset]. https://www.gov.uk/government/statistical-data-sets/regional-trade-statistics-interactive-analysis-second-quarter-2020
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Revenue & Customs
    Description

    They enable further analysis and comparison of Regional Trade in goods data and contain information that includes:

    • Quarterly information on the number of goods exporters and importers, by UK region and destination country.
    • Data on number of businesses exporting or importing
    • Average value of exports and imports by business per region.
    • Export and Import value by region.

    The spreadsheets provide data on businesses using both the whole number and proportion number methodology, (see section 3.24 (page 14) of the RTS methodology document).

    The spreadsheets will cover:

    • Importers by whole number business count
    • Importers by proportional business count
    • Exporters by whole number business count
    • Exporters by proportional business count

    The Exporters by proportional business count spreadsheet was previously produced by the Department for International Trade.

    https://assets.publishing.service.gov.uk/media/5f607f4b8fa8f51061921f0b/2020_Q2_RTS_Exports_Proportion_Interactive_Spreadsheet.xlsm">Q2 2020: Exports using proportional business count method

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">5.16 MB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:different.format@hmrc.gov.uk" target="_blank" class="govuk-link">different.format@hmrc.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    https://assets.publishing.service.gov.uk/media/5f607fe4e90e076cd40eef3d/2020_Q2_RTS_Exports_Whole_number_Interactive_Spreadsheet.xlsm">Q2 2020: Exports using whole number count method

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">5.07 MB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga
    
  19. S

    2023 Census totals by topic for individuals by statistical area 2 – part 1

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Nov 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). 2023 Census totals by topic for individuals by statistical area 2 – part 1 [Dataset]. https://datafinder.stats.govt.nz/layer/120897-2023-census-totals-by-topic-for-individuals-by-statistical-area-2-part-1/
    Explore at:
    mapinfo tab, mapinfo mif, csv, dwg, pdf, geodatabase, shapefile, kml, geopackage / sqliteAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains counts and measures for individuals from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.

    The variables included in this dataset are for the census usually resident population count (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated).

    The variables for part 1 of the dataset are:

    • Census usually resident population count
    • Census night population count
    • Age (5-year groups)
    • Age (life cycle groups)
    • Median age
    • Birthplace (NZ born/overseas born)
    • Birthplace (broad geographic areas)
    • Ethnicity (total responses) for level 1 and ‘Other Ethnicity’ grouped by ‘New Zealander’ and ‘Other Ethnicity nec’
    • Māori descent indicator
    • Languages spoken (total responses)
    • Official language indicator
    • Gender
    • Cisgender and transgender status – census usually resident population count aged 15 years and over
    • Sex at birth
    • Rainbow/LGBTIQ+ indicator for the census usually resident population count aged 15 years and over
    • Sexual identity for the census usually resident population count aged 15 years and over
    • Legally registered relationship status for the census usually resident population count aged 15 years and over
    • Partnership status in current relationship for the census usually resident population count aged 15 years and over
    • Number of children born for the sex at birth female census usually resident population count aged 15 years and over
    • Average number of children born for the sex at birth female census usually resident population count aged 15 years and over
    • Religious affiliation (total responses)
    • Cigarette smoking behaviour for the census usually resident population count aged 15 years and over
    • Disability indicator for the census usually resident population count aged 5 years and over
    • Difficulty communicating for the census usually resident population count aged 5 years and over
    • Difficulty hearing for the census usually resident population count aged 5 years and over
    • Difficulty remembering or concentrating for the census usually resident population count aged 5 years and over
    • Difficulty seeing for the census usually resident population count aged 5 years and over
    • Difficulty walking for the census usually resident population count aged 5 years and over
    • Difficulty washing for the census usually resident population count aged 5 years and over.

    Download lookup file for part 1 from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Te Whata

    Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    Study participation time series

    In the 2013 Census study participation was only collected for the census usually resident population count aged 15 years and over.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Concept descriptions and quality ratings

    Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.

    Disability indicator

    This data should not be used as an official measure of disability prevalence. Disability prevalence estimates are only available from the 2023 Household Disability Survey. Household Disability Survey 2023: Final content has more information about the survey.

    Activity limitations are measured using the Washington Group Short Set (WGSS). The WGSS asks about six basic activities that a person might have difficulty with: seeing, hearing, walking or climbing stairs, remembering or concentrating, washing all over or dressing, and communicating. A person was classified as disabled in the 2023 Census if there was at least one of these activities that they had a lot of difficulty with or could not do at all.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Measures

    Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.

    Symbol

    -997 Not available

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  20. Sub-regional Feed-in Tariffs statistics

    • gov.uk
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Energy Security and Net Zero (2020). Sub-regional Feed-in Tariffs statistics [Dataset]. https://www.gov.uk/government/statistical-data-sets/sub-regional-feed-in-tariffs-confirmed-on-the-cfr-statistics
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Energy Security and Net Zero
    Description

    Quarterly sub-regional statistics show the number of installations and total installed capacity by technology type in England, Scotland and Wales at the end the latest quarter that have been confirmed on the Central Feed-in Tariff Register.

    Following the closure of the Feed-in-Tariff scheme in March 2019, the release published in January 2020 will be the final release of this publication.

    Contact

    For general enquiries concerning the table and maps email fitstatistics@energysecurity.gov.uk

    https://assets.publishing.service.gov.uk/media/5e318b28ed915d091ad1ca19/December_2019_Sub-regional_Feed-in_Tariffs_confirmed_CFR.xls">Sub-regional Feed-in Tariffs confirmed on the CFR statistics

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">944 KB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:alt.formats@energysecurity.gov.uk" target="_blank" class="govuk-link">alt.formats@energysecurity.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    <a class="govuk-link" target="_self" data-ga4-link='{"event_name":"file_downlo

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Florian Loffing (2023). Data_Sheet_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A Syntax Collection and Tutorial.ZIP [Dataset]. http://doi.org/10.3389/fpsyg.2022.808469.s001

Data_Sheet_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A Syntax Collection and Tutorial.ZIP

Related Article
Explore at:
zipAvailable download formats
Dataset updated
Jun 2, 2023
Dataset provided by
Frontiers
Authors
Florian Loffing
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.

Search
Clear search
Close search
Google apps
Main menu