27 datasets found
  1. Gallup Poll Social Series (GPSS)

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University Libraries (2025). Gallup Poll Social Series (GPSS) [Dataset]. http://doi.org/10.57761/vxfa-he67
    Explore at:
    csv, spss, sas, avro, stata, arrow, parquet, application/jsonlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford University Libraries
    Description

    Abstract

    The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.

    Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.

    The dataset currently includes responses from up to and including 2025.

    Methodology

    Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:

    January: Mood of the Nation

    February: World Affairs

    March: Environment

    April: Economy and Finance

    May: Values and Beliefs

    June: Minority Rights and Relations (discontinued after 2016)

    July: Consumption Habits

    August: Work and Education

    September: Governance

    October: Crime

    November: Health

    December: Lifestyle (conducted 2001-2008)

    The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.

    Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Survey Sampling International (SSI). Gallup chooses landline respondents at random within each household based on which member had the next birthday. Each sample of national adults includes a minimum quota of 70% cellphone respondents and 30% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.

    Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey are significantly larger because Gallup includes oversamples of Blacks and Hispanics to allow for reliable estimates among these key subgroups.

    Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).

    Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.

    Usage

    The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.

    For more information about what survey questions were asked over time, see the Supporting Files.

    Bulk Data Access

    Data access is required to view this section.

  2. d

    Community Survey: 2021 Random Sample Results

    • catalog.data.gov
    • data.bloomington.in.gov
    • +1more
    Updated May 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.bloomington.in.gov (2023). Community Survey: 2021 Random Sample Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-random-sample-results-69942
    Explore at:
    Dataset updated
    May 20, 2023
    Dataset provided by
    data.bloomington.in.gov
    Description

    A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

  3. V

    Resident Survey 2022 Demographics

    • odgavaprod.ogopendata.com
    • data.norfolk.gov
    url
    Updated May 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Norfolk (2024). Resident Survey 2022 Demographics [Dataset]. https://odgavaprod.ogopendata.com/dataset/resident-survey-2022-demographics
    Explore at:
    urlAvailable download formats
    Dataset updated
    May 2, 2024
    Dataset authored and provided by
    City of Norfolk
    Description

    The City of Norfolk is committed to using data to help inform decisions and allocate resources. One important source of data is input from residents about their priorities and satisfaction with the services we provide. Norfolk last conducted a citywide survey of residents in 2014.

    To provide up-to-date information regarding resident priorities and satisfaction, Norfolk contracted with ETC institute to conduct a survey of residents. This survey was conducted in the fall of 2022; surveys were sent via the U.S. Postal Service and respondents were given the choice of responding by mail, online, or by telephone. This survey represents a random and statistically valid sample of residents from across the city. ETC Institute monitored responses and followed up to ensure all sections of the city were represented. An opportunity was also provided for residents not included in the random sample to take the survey and express their views.

    This dataset includes all survey data (including demographics questions and responses), with the exception of free form comments and the Ward and Superward that the respondent lived in at the time of the survey. This dataset will be updated every two years.

    For data about this dataset, please click on the below link: https://data.norfolk.gov/Government/Resident-Survey-2022-Demographics/f3mt-z6yp/about_data

  4. d

    Community Survey: 2021 Open Participation Results

    • catalog.data.gov
    • data.bloomington.in.gov
    • +1more
    Updated May 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.bloomington.in.gov (2023). Community Survey: 2021 Open Participation Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-open-participation-results-59ebc
    Explore at:
    Dataset updated
    May 20, 2023
    Dataset provided by
    data.bloomington.in.gov
    Description

    Responses from the 2021 open participation (non-probability) survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The open participation survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

  5. P

    Nauru Demographic Health Survey 2007

    • pacificdata.org
    • pacific-data.sprep.org
    xls, zip
    Updated Aug 18, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nauru Bureau of Statistics (2013). Nauru Demographic Health Survey 2007 [Dataset]. https://pacificdata.org/data/dataset/spc_nru_2007_dhs_v01_m
    Explore at:
    zip, xlsAvailable download formats
    Dataset updated
    Aug 18, 2013
    Dataset provided by
    Nauru Bureau of Statistics
    Time period covered
    Jan 1, 2007 - Dec 31, 2007
    Area covered
    Nauru
    Description

    The main objective of a demographic household survey (DHS) is to provide estimates of a number of basic demographic and health variables. This is done through interviews with a scientifically selected probability sample that is chosen from a well-defined population.

    The 2007 Nauru Demographic and Health Survey (2007 NDHS) was one of four pilot demographic and health surveys conducted in the Pacific under an Asian Development Bank ADB/ Secretariat of the Pacific Community (SPC) Regional DHS Pilot Project. The primary objective of this survey was to provide up-to-date information for policy-makers, planners, researchers and programme managers, for use in planning, implementing, monitoring and evaluating population and health programmes within the country. The survey was intended to provide key estimates of Nauru's demographics and health situation. The findings of the 2007 NDHS are very important in measuring the achievements of family planning and other health programmes. To ensure better understanding and use of these data, the results of this survey should be widely disseminated at different planning levels. Different dissemination techniques will be used to reach different segments of society.

    The primary purpose of the 2007 NDHS was to furnish policy-makers and planners with detailed information on fertility, family planning, infant and child mortality, maternal and child health, nutrition, and knowledge of HIV and AIDS and other sexually transmitted infections.

    NOTE: The only dissemination used was wide distribution of the report. A planned data use workshop was not undertaken. Hence there is some misconceptions and lack of awareness on the results obtained from the survey. The report is provided on the NBOS website free for download.

    Version 1.0

    • v1.0: Edited data, second version for internal use only

    DHS questionnaire for women cover the following sections:

    • Background characteristics (age, education, religion, etc)
    • Reproductive history
    • Knowledge and use of contraception methods
    • Antenatal care, delivery care and postnatal care
    • Breastfeeding and infant feeding
    • Immunization, child health and nutrition
    • Marriage and recent sexual activity
    • Fertility preferences
    • Knowledge about HIV/AIDS and other sexually transmitted infections
    • Husbands background and women's work

    The men's questionnaire covers the same except for sections 4, 5, 6 which are not applicable to men.

    It was also recognized that some countries have a need for special information that is not contained in the core questionnaire. Separate questionnaire modules were developed on a series of topics. These topics are optional and include:

    • maternal mortality
    • pill-taking behaviour
    • sterilization experience
    • children's education
    • women's status
    • domestic violence
    • health expenditures
    • consanguinity

    • Collection start: 2007

    • Collection end: 2007

  6. n

    Somali Health and Demographic Survey 2020 - Somalia

    • microdata.nbs.gov.so
    Updated Jul 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Somali National Bureau of Statistics (2023). Somali Health and Demographic Survey 2020 - Somalia [Dataset]. https://microdata.nbs.gov.so/index.php/catalog/50
    Explore at:
    Dataset updated
    Jul 21, 2023
    Dataset authored and provided by
    Somali National Bureau of Statistics
    Time period covered
    2018 - 2019
    Area covered
    Somalia
    Description

    Abstract

    The SHDS is a national sample survey designed to provide information on population, birth spacing, reproductive health, nutrition, maternal and child health, child survival, HIV/AIDS and sexually transmitted infections (STIs), in Somalia.. The main objective of the SHDS was to provide evidence on the health and demographic characteristics of the Somali population that will guide the development of programmes and formulation of effective policies. This information would also help monitor and evaluate national, sub-national and sector development plans, including the Sustainable Development Goals (SDGs), both by the government and development partners. The target population for SHDS was the women between 15 and 49 years of age, and the children less than the age of 5 years

    Geographic coverage

    The SHDS 2020 was a nationally representative household survey.

    Analysis unit

    The unit analysis of this survey are households, women aged 15-49 and children aged 0-5

    Universe

    This sample survey covered Women aged 15-49 and Children aged 0-5 years.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The sample for the SHDS was designed to provide estimates of key indicators for the country as a whole, for each of the eighteen pre-war geographical regions, which are the country's first-level administrative divisions, as well as separately for urban, rural and nomadic areas. With the exception of Banadir region, which is considered fully urban, each region was stratified into urban, rural and nomadic areas, yielding a total of 55 sampling strata. All three strata of Lower Shabelle and Middle Juba regions, as well as the rural and nomadic strata of Bay region, were completely excluded from the survey due to security reasons. A final total of 47 sampling strata formed the sampling frame. Through the use of up-to-date, high-resolution satellite imagery, as well as on-the-ground knowledge of staff from the respective ministries of planning, all dwelling structures were digitized in urban and rural areas. Enumeration Areas (EAs) were formed onscreen through a spatial count of dwelling structures in a Geographic Information System (GIS) software. Thereafter, a sample ground verification of the digitized structures was carried out for large urban and rural areas and necessary adjustments made to the frame.

    Each EA created had a minimum of 50 and a maximum of 149 dwelling structures. A total of 10,525 EAs were digitized: 7,488 in urban areas and 3,037 in rural areas. However, because of security and accessibility constraints, not all digitized areas were included in the final sampling frame-9,136 EAs (7,308 in urban and 1,828 in rural) formed the final frame. The nomadic frame comprised an updated list of temporary nomadic settlements (TNS) obtained from the nomadic link workers who are tied to these settlements. A total of 2,521 TNS formed the SHDS nomadic sampling frame. The SHDS followed a three-stage stratified cluster sample design in urban and rural strata with a probability proportional to size, for the sampling of Primary Sampling Units (PSU) and Secondary Sampling Units (SSU) (respectively at the first and second stage), and systematic sampling of households at the third stage. For the nomadic stratum, a two-stage stratified cluster sample design was applied with a probability proportional to size for sampling of PSUs at the first stage and systematic sampling of households at the second stage. To ensure that the survey precision is comparable across regions, PSUs were allocated equally to all regions with slight adjustments in two regions. Within each stratum, a sample of 35 EAs was selected independently, with probability proportional to the number of digitized dwelling structures. In this first stage, a total of 1,433 EAs were allocated (to urban - 770 EAs, rural - 488 EAs, and nomadic - 175 EAs) representing about 16 percent of the total frame of EAs. In the urban and rural selected EAs, all households were listed and information on births and deaths was recorded through the maternal mortality questionnaire. The data collected in this first phase was cleaned and a summary of households listed per EA formed the sampling frames for the second phase. In the second stage, 10 EAs were sampled out of the possible 35 that were listed, using probability proportional to the number of households. All households in each of these 10 EAs were serialized based on their location in the EA and 30 of these households sampled for the survey. The serialization was done to ensure distribution of the households interviewed for the survey in the EA sampled. A total of 220 EAs and 150 EAs were allocated to urban and rural strata respectively, while in the third stage, an average of 30 households were selected from the listed households in every EA to yield a total of 16,360 households from 538 EAs covered (220 EAs in urban, 147 EAs in rural and 171 EAs in nomadic) out of the sampled 545 EAs. In nomadic areas, a sample of 10 EAs (in this case TNS) were selected from each nomadic stratum, with probability proportional to the number of estimated households. A complete listing of households was carried out in the selected TNS followed by the selection of 30 households for the main survey interview. In those TNS with less than 30 households, all households were interviewed for the main survey. All eligible ever-married women aged 12 to 49 and never-married women aged 15 to 49 were interviewed in the selected households, while the household questionnaire was administered to all households selected. The maternal mortality questionnaire was administered to all households in each sampled TNS.

    Mode of data collection

    Face-to-face [f2f]

    Response rate

    A total of 16,360 households were selected for the sample, of which 15,870 were occupied. Of the occupied households, 15,826 were successfully interviewed, yielding a response rate of 99.7 percent. The SHDS 2020 interviewed 16,486 women-11,876 ever-married women and 4,610 never-married women.

    Sampling error estimates

    Sampling errors are important data quality parameters which give measure of the precision of the survey estimates. They aid in determining the statistical reliability of survey estimates. The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Somaliland Health and Demographic Survey ( SHDS 2020) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically. Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the SHDS 2020 is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design. If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the SHDS 2020 sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The variance approximation procedure that account for the complex sample design used R program was estimated sampling errors in SHDS which is Taylor series linearization. The non-linear estimates are approximated by linear ones for estimating variance. The linear approximation is derived by taking the first-order Tylor series approximation. Standard variance estimation methods for linear statistics are then used to estimate the variance of the linearized estimator. The Taylor linearisation method treats any linear statistic such as a percentage or mean as a ratio estimate, r = y/x, where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration

    Data appraisal

    • Household age distribution
    • Age distribution of eligible and interviewed women
    • Pregnancy- related mortality trends Note: See detailed data quality tables in APPENDIX C of the report.
  7. e

    Opinions and Lifestyle Survey, 2018 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated May 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Opinions and Lifestyle Survey, 2018 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/d5419806-1439-5270-8c25-08714321a80a
    Explore at:
    Dataset updated
    May 27, 2024
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Opinions and Lifestyle Survey (OPN) is an omnibus survey that collects data from respondents in Great Britain. Information is gathered on a range of subjects, commissioned both internally by the Office for National Statistics (ONS) and by external clients (other government departments, charities, non-profit organisations and academia).One individual respondent, aged 16 or over, is selected from each sampled private household to answer questions. Data are gathered on the respondent, their family, address, household, income and education, plus responses and opinions on a variety of subjects within commissioned modules. Each regular OPN survey consists of two elements. Core questions, covering demographic information, are asked together with non-core questions that vary depending on the module(s) fielded.The OPN collects timely data for research and policy analysis evaluation on the social impacts of recent topics of national importance, such as the coronavirus (COVID-19) pandemic and the cost of living. The OPN has expanded to include questions on other topics of national importance, such as health and the cost of living.For more information about the survey and its methodology, see the gov.uk OPN Quality and Methodology Information (QMI) webpage.Changes over timeUp to March 2018, the OPN was conducted as a face-to-face survey. From April 2018 to November 2019, the OPN changed to a mixed-mode design (online first with telephone interviewing where necessary). Mixed-mode collection allows respondents to complete the survey more flexibly and provides a more cost-effective service for module customers.In March 2020, the OPN was adapted to become a weekly survey used to collect data on the social impacts of the coronavirus (COVID-19) pandemic on the lives of people of Great Britain. These data are held under Secure Access conditions in SN 8635, ONS Opinions and Lifestyle Survey, 2019-2023: Secure Access. (See below for information on other Secure Access OPN modules.)From August 2021, as coronavirus (COVID-19) restrictions were lifted across Great Britain, the OPN moved to fortnightly data collection, sampling around 5,000 households in each survey wave to ensure the survey remained sustainable. Secure Access OPN modulesBesides SN 8635 (which includes the COVID-19 Module), other Secure Access OPN data includes sensitive modules run at various points from 1997-2019, including Census religion (SN 8078), cervical cancer screening (SN 8080), contact after separation (SN 8089), contraception (SN 8095), disability (SNs 8680 and 8096), general lifestyle (SN 8092), illness and activity (SN 8094), and non-resident parental contact (SN 8093). See the individual studies for further details and information on how to apply to use them. Alongside the usual Classification questions, this study includes the following non-core OPN modules:MAZ Internet Access module, run in January, February and April 2018 (also includes questions on Citizenship (passports), and Higher Education (whether respondent has a degree). This module was conducted on behalf of ONS and covers internet use for work, leisure, purchasing, banking, and other services, via computers, mobile devices and smartphones.MAK Train Satisfaction module, run in February 2018. This module was conducted on behalf of the Department for Transport and covers short- and long-distance train travel and opinions on various aspects of train services. (This module was previously held separately under SN 8576, which is no longer available.) Main Topics: Internet access and use, train travel and satisfaction with rail services, citizenship, higher education, and other demographics. Multi-stage stratified random sample Face-to-face interview

  8. i

    Demographic and Health Survey 1986 - Liberia

    • catalog.ihsn.org
    • microdata.lisgislr.org
    • +2more
    Updated Jul 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Planning and Economic Affairs (2017). Demographic and Health Survey 1986 - Liberia [Dataset]. http://catalog.ihsn.org/catalog/1535
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ministry of Planning and Economic Affairs
    Time period covered
    1986
    Area covered
    Liberia
    Description

    Abstract

    The Liberia Demographic and Health Survey (LDHS) was conducted as part of the worldwide Demographic and Health Surveys (DHS) program, in which surveys are being carried out in countries in Africa, Asia, Latin America, and the Middle East. Liberia was the second country to conduct a DHS and the first country in Africa to do so. THe LDHS was a national-level survey conducted from February to July 1986, covering a sample of 5,239 women aged 15 to 49.

    The major objective of the LDHS was to provide data on fertility, family planning and maternal and child health to planners and policymakers in Liberia for use in designing and evaluating programs. Although a fair amount of demographic data was available from censuses and surveys, almost no information existed concerning family planning, health, or the determinants of fertility, and the data that did exist were drawn from small-scale, sub-national studies. Thus, there was a need for data to make informed policy choices for family planning and health projects.

    A more specific objective was to provide baseline data for the Southeast Region Primary Health Care Project. In order to effectively plan strategies and to eventually evaluate the progress of the project in meeting its goals, there was need for data to indicate the health situation in the two target counties prior to the implementation of the project. Many of the desired topics, such as immunizations, family planning use, and prenatal care, were already incorporated into the model DHS questionnaire; nevertheless, the LDHS was able to better accommodate the needs of this project by adding several questions and by oversampling women living in Sinoe and Grand Gedeh Counties.

    Another important goal of the LDHS was to enhance tile skills of those participating in the project for conducting high-quality surveys in the future. Finally, the contribution of Liberian data to an expanding international dataset was also an objective of the LDHS.

    Geographic coverage

    National

    Analysis unit

    • Households
    • Children age 0-5
    • Women age 15 to 49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The sample for the Liberia Demographic and Health Survey was based on the sampling frame of about 4,500 censal enumeration areas (EAs) that were created for the 1984 Population Census. It was decided to eliminate very remote EAs prior to selecting the sample. The definition of remoteness used was "any EA in which the largest village was estimated to be more than 3-4 hours' walk from a road." According to the 1984 census, the excluded areas represent less than 3 percent of the total number of households in the country. Since the major analytic objective of the LDHS was to adequately estimate basic demographic and health indicators including fertility, mortality, and contraceptive prevalence for the whole country and the two sub-universes (Since and Grand Gedeh Counties), it was decided to oversample these two counties. Consequently, three explicit sub-universes of EAs were created: (1) Since County, (2) Grand Gedeh County, and (3) the rest of the country.

    The design provided a self-weighted sample within each sub-universe, but, because of the oversampling in Sinoe and Grand Gedeh Counties, the sample is not self-weighting at the national level. Eligible respondents for the survey were women aged 15-49 years who were present the night before the interview in any of the households included in the sample selected for the LDHS.

    The total sample size was expected to be about 6,000 women aged 15-49 with a target by sub-universe of 1,000 each in Sinoe and Grand Gedeh Counties and 4,000 in the rest of the country. It was decided that a sample of approximately 5,500 households selected through a two-stage procedure would be appropriate to reach those objectives. Sampling was carried out independently in each sub-universe. In the rest of the country sub-universe, counties were arranged for selection in serpentine order from the northwest (Cape Mount County) to the southeast (Maryland County). In the first stage EAs were selected systematically with probability proportional to size (size = number of households in 1984). Twenty-four EAs were selected in each of Sinoe and Grand Gedeh Counties and 108 EAs in the rest of the country.

    See full sample procedure in the survey final report.

    Mode of data collection

    Face-to-face

    Research instrument

    The Liberia Demographic and Health Survey (LDHS) utilized two questionnaires: One to list members of the selected households (Household Questionnaire) and the other to record information from all women aged 15-49 who were present in the selected households the night before the interview (Individual Questionnaire).

    Both questionnaires were produced in Liberian English and were pretested in September 1985. The Individual Questionnaire was an early version of the DHS model questionnaire. It covered three main topics: (1) fertility, including a birth history and questions concerning desires for future childbearing, (2) family planning knowledge and use, and (3) family health, including prevalence of childhood diseases, immunizations for children under age five, and breasffeeding and weaning practices.

    Cleaning operations

    Data from the questionnaires were entered onto microcomputers at the Bureau of Statistics office in Monrovia. The data were then subjected to extensive checks for consistency and accuracy.

    Errors detected during this operation were resolved either by referring to the original questionnaire, or, in some cases, by logical inference from other information given in the record. Finally, dates were imputed for the small number of cases where complete dates of important events were not given.

    Response rate

    Out of the total of 6,1306 households selected, 14.5 percent were found not to be valid households in the field, either because the dwelling had been vacated or destroyed, or the household could not be located or did not exist. Of the 5,609 households that were found to exist, 90 percent were successfully interviewed. In the households that were interviewed, a total of 5,340 women were identified as being eligible for individual interview (that is, they were aged 15-49 and had spent the night before the interview in the selected household). This represents an average of slightly over one eligible woman per household.

    The response rate for eligible women was 98 percent. The main reason for nonresponse was the absence of the woman. Similar data are presented by sample subuniverse.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors: (1) nonsampling error and (2) sampling error. Nonsampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way questions are asked, misunderstanding of the questions on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the Liberia Demographic and Health Survey to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    The sample of women selected in the LDHS is only one of many samples of the same size that could have been selected from the same population, using the same design. Each one would have yielded results that differed somewhat from the actual sample selected. The variability observed between all possible samples constitutes sampling error, which, although it is not known exactly, can be estimated from the survey results. Sampling error is usually measured in terms of the "standard error" of a particular statistic (mean, percentage, etc.), which is the square root of the variance of the statistic across all possible samples of equal size and design.

    The standard error can be used to calculate confidence intervals within which one can be reasonably assured the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples of identical size and design will fall within a range of plus or minus two times the standard error of that statistic.

    If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the LDHS sample design depended on stratification, stages, and clusters and consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS was used to assist in computing the sampling errors with the proper statistical methodology.

    Data appraisal

    Information on the completeness of date reporting is of interest in assessing data quality. With regard to dates of birth of individual women, 42 percent of respondents reported both a month and year of birth, 21 percent gave a year of birth in addition to current age, and 37 percent gave only their ages. With regard to children's dates of birth in the birth history, 85 percent of births had both month and year reported, 12 percent had year and age reported, 1 percent had only age reported, and 2 percent had no date information.

  9. b

    OSMP Master Plan Survey 2019 Data

    • open-data.bouldercolorado.gov
    • hub.arcgis.com
    Updated Aug 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BoulderCO (2020). OSMP Master Plan Survey 2019 Data [Dataset]. https://open-data.bouldercolorado.gov/items/de03870a382744d7900197a15c565dd5
    Explore at:
    Dataset updated
    Aug 31, 2020
    Dataset authored and provided by
    BoulderCO
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    To interpret these datasets, it is essential that you have a copy of the hand-annotated survey instrument, "Boulder OSMP Codebook Version A.pdf," along with all three of the following csv files described below. In addition, these datasets were released in coordination with a detailed report describing the survey results, which will be helpful in providing more context. The report can be found on the City of Boulder Open Space and Mountain Parks (OSMP) website. Note, open ended comments have been removed from this dataset, consistent with the Open Data Policy.OSMP Master Plan Survey Data (This file): Contains the data (survey responses) for three different surveys: (1) that from the "Scientific Survey," in which a random sample of households were invited to participate, (2) that from an "Open Participation (Opt-In) Survey," an online survey to which all residents were invited, and (3) that from a special effort made to reach Boulder’s Latino population through the promotoras network to invite them to participate (Promotoras). The data field "type" corresponds to the survey type. The files listed below contain supporting information that is necessary to interpret the dataset.OSMP Master Plan Survey - Survey Question Labels This file list the variable names found in the previous csv, and then gives a few words describing what the variable means, with reference to the survey. You will need to refer to "Boulder OSMP Codebook Version A.pdf" for the full name of the survey question being referenced.OSMP Master Plan Survey - Survey Response Option Labels For each variable, the numeric values that are possible, and their associated labels.VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Boulder from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the City of Boulder. Please read the Instructions for Working with Survey Weights document for more information.This survey was implemented by Erin Caldwell of the National Research Center, under contract with City of Boulder's Open Space and Mountain Parks Department.Note: The data file contains survey responses from three different surveys. Use the Data column "Type" to distinguish among the surveys. Type=1 is the statistically valid survey, Type=2 is the open participation survey, and Type=3 is the promotoras survey.

  10. w

    Demographic and Health Survey 2018 - Zambia

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Feb 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (2020). Demographic and Health Survey 2018 - Zambia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3597
    Explore at:
    Dataset updated
    Feb 25, 2020
    Dataset provided by
    Zambia Statistics Agency (ZamStats)
    Ministry of Health
    Time period covered
    2018 - 2019
    Area covered
    Zambia
    Description

    Abstract

    The primary objective of the 2018 ZDHS was to provide up-to-date estimates of basic demographic and health indicators. Specifically, the ZDHS collected information on: - Fertility levels and preferences; contraceptive use; maternal and child health; infant, child, and neonatal mortality levels; maternal mortality; and gender, nutrition, and awareness regarding HIV/AIDS and other health issues relevant to the achievement of the Sustainable Development Goals (SDGs) - Ownership and use of mosquito nets as part of the national malaria eradication programmes - Health-related matters such as breastfeeding, maternal and childcare (antenatal, delivery, and postnatal), children’s immunisations, and childhood diseases - Anaemia prevalence among women age 15-49 and children age 6-59 months - Nutritional status of children under age 5 (via weight and height measurements) - HIV prevalence among men age 15-59 and women age 15-49 and behavioural risk factors related to HIV - Assessment of situation regarding violence against women

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women age 15-49, all men age 15-59, and all children age 0-5 years who are usual members of the selected households or who spent the night before the survey in the selected households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2018 ZDHS is the Census of Population and Housing (CPH) of the Republic of Zambia, conducted in 2010 by ZamStats. Zambia is divided into 10 provinces. Each province is subdivided into districts, each district into constituencies, and each constituency into wards. In addition to these administrative units, during the 2010 CPH each ward was divided into convenient areas called census supervisory areas (CSAs), and in turn each CSA was divided into enumeration areas (EAs). An enumeration area is a geographical area assigned to an enumerator for the purpose of conducting a census count; according to the Zambian census frame, each EA consists of an average of 110 households.

    The current version of the EA frame for the 2010 CPH was updated to accommodate some changes in districts and constituencies that occurred between 2010 and 2017. The list of EAs incorporates census information on households and population counts. Each EA has a cartographic map delineating its boundaries, with identification information and a measure of size, which is the number of residential households enumerated in the 2010 CPH. This list of EAs was used as the sampling frame for the 2018 ZDHS.

    The 2018 ZDHS followed a stratified two-stage sample design. The first stage involved selecting sample points (clusters) consisting of EAs. EAs were selected with a probability proportional to their size within each sampling stratum. A total of 545 clusters were selected.

    The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters. During the listing, an average of 133 households were found in each cluster, from which a fixed number of 25 households were selected through an equal probability systematic selection process, to obtain a total sample size of 13,625 households. Results from this sample are representative at the national, urban and rural, and provincial levels.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used in the 2018 ZDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s Model Questionnaires, were adapted to reflect the population and health issues relevant to Zambia. Input on questionnaire content was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international cooperating partners. After all questionnaires were finalised in English, they were translated into seven local languages: Bemba, Kaonde, Lozi, Lunda, Luvale, Nyanja, and Tonga. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.

    Cleaning operations

    All electronic data files were transferred via a secure internet file streaming system to the ZamStats central office in Lusaka, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by two IT specialists and one secondary editor who took part in the main fieldwork training; they were supervised remotely by staff from The DHS Program. Data editing was accomplished using CSPro software. During the fieldwork, field-check tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July 2018 and completed in March 2019.

    Response rate

    Of the 13,595 households in the sample, 12,943 were occupied. Of these occupied households, 12,831 were successfully interviewed, yielding a response rate of 99%.

    In the interviewed households, 14,189 women age 15-49 were identified as eligible for individual interviews; 13,683 women were interviewed, yielding a response rate of 96% (the same rate achieved in the 2013-14 survey). A total of 13,251 men were eligible for individual interviews; 12,132 of these men were interviewed, producing a response rate of 92% (a 1 percentage point increase from the previous survey).

    Of the households successfully interviewed, 12,505 were interviewed in 2018 and 326 in 2019. As the large majority of households were interviewed in 2018 and the year for reference indicators is 2018.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Zambia Demographic and Health Survey (ZDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 ZDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 ZDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Completeness of information on siblings - Sibship size and sex ratio of siblings - Height and weight data completeness and quality for children - Number of enumeration areas completed by month, according to province, Zambia DHS 2018

    Note: Data quality tables are presented in APPENDIX C of the report.

  11. e

    Social Survey Georgia 2000 (Caucasus Survey) - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Apr 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Social Survey Georgia 2000 (Caucasus Survey) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/0d9fde37-10f3-512e-a99e-f1d573fea2d3
    Explore at:
    Dataset updated
    Apr 25, 2023
    Area covered
    Caucasus, Georgia
    Description

    Socio-economic and demographic questions. Demography: sex; age; marital status; household size; main breadwinner; education; employment status, occupation and industry of the respondent and the main breadwinner; instruction and payment of other people; judgement on household´s standard of living; monthly net household income. Additionally coded was: questionnaire-ID; settlement; region. Sozioökonomische und demographische Fragen. Demographie: Geschlecht; Alter; Familienstand; Haushaltsgröße; Hauptverdiener; höchster Bildungsabschluss des Befragten und des Hauptverdieners; derzeitiger Erwerbsstatus des Befragten und des Hauptverdieners; Beruf und Branche des Befragten und des Hauptverdieners; Weisungsbefugnis; Entlohnung Dritter; Beurteilung des Lebensstandards des Haushalts; Haushaltsnettoeinkommen (kategorisiert). Zusätzlich verkodet wurde: Fragebogen-ID; Urbanisierungsgrad des Wohnortes; Region. Probability Sample: Multistage Sample Wahrscheinlichkeitsauswahl: Mehrstufige Zufallsauswahl Face-to-face interview: PAPI (Paper and Pencil Interview) Persönliches Interview: PAPI (Papierfragebogen)

  12. e

    ONS Omnibus Survey, Internet Access Module, April, July and October, 2003...

    • b2find.eudat.eu
    Updated Oct 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ONS Omnibus Survey, Internet Access Module, April, July and October, 2003 and February 2004 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/49cd6f90-b238-5ca8-ae05-066566eb77ac
    Explore at:
    Dataset updated
    Oct 30, 2023
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Opinions and Lifestyle Survey (formerly known as the ONS Opinions Survey or Omnibus) is an omnibus survey that began in 1990, collecting data on a range of subjects commissioned by both the ONS internally and external clients (limited to other government departments, charities, non-profit organisations and academia).Data are collected from one individual aged 16 or over, selected from each sampled private household. Personal data include data on the individual, their family, address, household, income and education, plus responses and opinions on a variety of subjects within commissioned modules. The questionnaire collects timely data for research and policy analysis evaluation on the social impacts of recent topics of national importance, such as the coronavirus (COVID-19) pandemic and the cost of living, on individuals and households in Great Britain. From April 2018 to November 2019, the design of the OPN changed from face-to-face to a mixed-mode design (online first with telephone interviewing where necessary). Mixed-mode collection allows respondents to complete the survey more flexibly and provides a more cost-effective service for customers. In March 2020, the OPN was adapted to become a weekly survey used to collect data on the social impacts of the coronavirus (COVID-19) pandemic on the lives of people of Great Britain. These data are held in the Secure Access study, SN 8635, ONS Opinions and Lifestyle Survey, Covid-19 Module, 2020-2022: Secure Access. From August 2021, as coronavirus (COVID-19) restrictions were lifting across Great Britain, the OPN moved to fortnightly data collection, sampling around 5,000 households in each survey wave to ensure the survey remains sustainable. The OPN has since expanded to include questions on other topics of national importance, such as health and the cost of living. For more information about the survey and its methodology, see the ONS OPN Quality and Methodology Information webpage.Secure Access Opinions and Lifestyle Survey dataOther Secure Access OPN data cover modules run at various points from 1997-2019, on Census religion (SN 8078), cervical cancer screening (SN 8080), contact after separation (SN 8089), contraception (SN 8095), disability (SNs 8680 and 8096), general lifestyle (SN 8092), illness and activity (SN 8094), and non-resident parental contact (SN 8093). See Opinions and Lifestyle Survey: Secure Access for details. Main Topics:Each month's questionnaire consists of two elements: core questions, covering demographic information, are asked each month together with non-core questions that vary from month to month. The non-core questions for this month were: Internet Access (Module 330): this module of questions was asked on behalf of a number of government departments, but primarily the Office for National Statistics and the e-Envoy's Office (which is part of the Cabinet Office). These questions form an important part of the data collection strategy within government to monitor internet use, which is currently a high profile government policy. This module has been expanded to include questions from Eurostat, the European statistical agency. These additional questions were asked across the EU for a country by country comparison. The questions were asked across Europe at roughly the same time. Multi-stage stratified random sample Face-to-face interview

  13. w

    Demographic and Health Survey 2022 - Bangladesh

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitra and Associates (2024). Demographic and Health Survey 2022 - Bangladesh [Dataset]. https://microdata.worldbank.org/index.php/catalog/6290
    Explore at:
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    Mitra and Associates
    Time period covered
    2022
    Area covered
    Bangladesh
    Description

    Abstract

    The 2022 Bangladesh Demographic and Health Survey (2022 BDHS) is the ninth national survey to report on the demographic and health conditions of women and their families in Bangladesh. The survey was conducted under the authority of the National Institute of Population Research and Training (NIPORT), Medical Education and Family Welfare Division, Ministry of Health and Family Welfare (MOHFW), Government of Bangladesh.

    The primary objective of the 2022 BDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the BDHS collected information on: • Fertility and childhood mortality levels • Fertility preferences • Awareness, approval, and use of family planning methods • Maternal and child health, including breastfeeding practices • Nutrition levels • Newborn care

    The information collected through the 2022 BDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the population of Bangladesh. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Bangladesh.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2022 BDHS is the Integrated Multi-Purpose Sampling Master Sample, selected from a complete list of enumeration areas (EAs) covering the whole country. It was prepared by the Bangladesh Bureau of Statistics (BBS) for the 2011 population census of the People’s Republic of Bangladesh. The sampling frame contains information on EA location, type of residence (city corporation, other than city corporation, or rural), and the estimated number of residential households. A sketch map that delineates geographic boundaries is available for each EA.

    Bangladesh contains eight administrative divisions: Barishal, Chattogram, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur, and Sylhet. Each division is divided into zilas and each zila into upazilas. Each urban area in an upazila is divided into wards, which are further subdivided into mohallas. A rural area in an upazila is divided into union parishads (UPs) and, within UPs, into mouzas. These administrative divisions allow the country to be separated into rural and urban areas.

    The survey is based on a two-stage stratified sample of households. In the first stage, 675 EAs (237 in urban areas and 438 in rural areas) were selected with probability proportional to EA size. The BBS drew the sample in the first stage following specifications provided by ICF. A complete household listing operation was then carried out by Mitra and Associates in all selected EAs to provide a sampling frame for the second-stage selection of households.

    In the second stage of sampling, a systematic sample of an average of 45 households per EA was selected to provide statistically reliable estimates of key demographic and health variables for urban and rural areas separately and for each of the eight divisions in Bangladesh.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four types of questionnaires were used for the 2022 BDHS: the Household Questionnaire, the Woman’s Questionnaire (completed by ever-married women age 15–49), the Biomarker Questionnaire, and two verbal autopsy questionnaires. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect population and health issues relevant to Bangladesh. In addition, a selfadministered Fieldworker Questionnaire collected information about the survey’s fieldworkers. The questionnaires were adapted for use in Bangladesh after a series of meetings with a Technical Working Group (TWG). The questionnaires were developed in English and then translated to and printed in Bangla.

    Cleaning operations

    The survey data were collected using tablet PCs running Windows 10.1 and Census and Survey Processing System (CSPro) software, jointly developed by the United States Census Bureau, ICF, and Serpro S.A. The Bangla language questionnaire was used for collecting data via computer-assisted personal interviewing (CAPI). The CAPI program accepted only valid responses, automatically performed checks on ranges of values, skipped to the appropriate question based on the responses given, and checked the consistency of the data collected. Answers to the survey questions were entered into the PC tablets by each interviewer. Supervisors downloaded interview data to their computer, checked the data for completeness, and monitored fieldwork progress

    Each day, after completion of interviews, field supervisors submitted data to the servers. Data were sent to the central office via the internet or other modes of telecommunication allowing electronic transfer of files. The data processing manager monitored the quality of the data received and downloaded completed files into the system. ICF provided the CSPro software for data processing and offered technical assistance in preparation of the data editing programs. Secondary editing was conducted simultaneously with data collection. All technical support for data processing and use of PC tablets was provided by ICF.

  14. e

    ONS Opinions Survey, Census Religion Module, 2009: Secure Access - Dataset -...

    • b2find.eudat.eu
    Updated May 15, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2009). ONS Opinions Survey, Census Religion Module, 2009: Secure Access - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/ae3fab64-0a1c-5511-b58b-75def4396ca4
    Explore at:
    Dataset updated
    May 15, 2009
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Opinions and Lifestyle Survey (OPN) is an omnibus survey that collects data on a range of subjects commissioned by both the ONS internally and external clients (limited to other government departments, charities, non-profit organisations and academia). Data are collected from one individual aged 16 or over, selected from each sampled private household. Personal data include data on the individual, their family, address, household, income and education, plus responses and opinions on a variety of subjects within commissioned modules. The questionnaire collects timely data for research and policy analysis evaluation on the social impacts of recent topics of national importance, such as the coronavirus (COVID-19) pandemic and the cost of living, on individuals and households in Great Britain. From April 2018 to November 2019, the design of the OPN changed from face-to-face to a mixed-mode design (online first with telephone interviewing where necessary). Mixed-mode collection allows respondents to complete the survey more flexibly and provides a more cost-effective service for customers. In March 2020, the OPN was adapted to become a weekly survey used to collect data on the social impacts of the coronavirus (COVID-19) pandemic on the lives of people of Great Britain. These data are held in the Secure Access study, SN 8635, ONS Opinions and Lifestyle Survey, Covid-19 Module, 2020-2022: Secure Access. Other Secure Access OPN data cover modules run at various points from 1997-2019, on Census religion (SN 8078), cervical cancer screening (SN 8080), contact after separation (SN 8089), contraception (SN 8095), disability (SNs 8680 and 8096), general lifestyle (SN 8092), illness and activity (SN 8094), and non-resident parental contact (SN 8093).From August 2021, as coronavirus (COVID-19) restrictions were lifting across Great Britain, the OPN moved to fortnightly data collection, sampling around 5,000 households in each survey wave to ensure the survey remains sustainable. The OPN has since expanded to include questions on other topics of national importance, such as health and the cost of living. For more information about the survey and its methodology, see the ONS OPN Quality and Methodology Information webpage. Main Topics:Each month's questionnaire consists of two elements: core questions, covering demographic information, are asked each month together with non-core questions that vary from month to month. The non-core questions for these months were: Census Religion (Module MCG): this module was asked on behalf of the Office for National Statistics. The questions aimed to help inform decisions on the final wording of questions in the 2011 Census and covered religion and citizenship. Census Religion (Module MCGb): this module, also asked on behalf of the Office for National Statistics, is a shortened version of Module MCG which ran in April and May 2009. Multi-stage stratified random sample Face-to-face interview

  15. w

    Demographic and Health Survey 2022 - Ghana

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2024). Demographic and Health Survey 2022 - Ghana [Dataset]. https://microdata.worldbank.org/index.php/catalog/6122
    Explore at:
    Dataset updated
    Jan 19, 2024
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    2022 - 2023
    Area covered
    Ghana
    Description

    Abstract

    The 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.

    The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5

    The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).

    The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Face-to-face computer-assisted interviews [capi]

    Research instrument

    Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.

    The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.

    Cleaning operations

    DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.

    From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.

    Response rate

    A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Age displacement at age 14/15
    • Age displacement at age 49/50
    • Pregnancy outcomes by years preceding the survey
    • Completeness of reporting
    • Standardisation exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random subsample of measured children
    • Interference in height and weight measurements of children
    • Interference in height and weight measurements of women and men
    • Heaping in anthropometric measurements for children (digit preference)
    • Observation of mosquito nets
    • Observation of handwashing facility
    • School attendance by single year of age
    • Vaccination cards photographed
    • Number of
  16. w

    Demographic and Health Survey 2022 - Nepal

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health and Population (MoHP) (2023). Demographic and Health Survey 2022 - Nepal [Dataset]. https://microdata.worldbank.org/index.php/catalog/5910
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset authored and provided by
    Ministry of Health and Population (MoHP)
    Time period covered
    2022
    Area covered
    Nepal
    Description

    Abstract

    The 2022 Nepal Demographic and Health Survey (NDHS) is the sixth survey of its kind implemented in the country as part of the worldwide Demographic and Health Surveys (DHS) Program. It was implemented by New ERA under the aegis of the Ministry of Health and Population (MoHP) of the Government of Nepal with the objective of providing reliable, accurate, and up-to-date data for the country.

    The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2022 NDHS collected information on fertility, marriage, family planning, breastfeeding practices, nutrition, food insecurity, maternal and child health, childhood mortality, awareness and behavior regarding HIV/AIDS and other sexually transmitted infections (STIs), women’s empowerment, domestic violence, fistula, mental health, accident and injury, disability, and other healthrelated issues such as smoking, knowledge of tuberculosis, and prevalence of hypertension.

    The information collected through the 2022 NDHS is intended to assist policymakers and program managers in evaluating and designing programs and strategies for improving the health of Nepal’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nepal.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men ageed 15-49, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2022 NDHS is an updated version of the frame from the 2011 Nepal Population and Housing Census (NPHC) provided by the National Statistical Office. The 2022 NDHS considered wards from the 2011 census as sub-wards, the smallest administrative unit for the survey. The census frame includes a complete list of Nepal’s 36,020 sub-wards. Each sub-ward has a residence type (urban or rural), and the measure of size is the number of households.

    In September 2015, Nepal’s Constituent Assembly declared changes in the administrative units and reclassified urban and rural areas in the country. Nepal is divided into seven provinces: Koshi Province, Madhesh Province, Bagmati Province, Gandaki Province, Lumbini Province, Karnali Province, and Sudurpashchim Province. Provinces are divided into districts, districts into municipalities, and municipalities into wards. Nepal has 77 districts comprising a total of 753 (local-level) municipalities. Of the municipalities, 293 are urban and 460 are rural.

    Originally, the 2011 NPHC included 58 urban municipalities. This number increased to 217 as of 2015. On March 10, 2017, structural changes were made in the classification system for urban (Nagarpalika) and rural (Gaonpalika) locations. Nepal currently has 293 Nagarpalika, with 65% of the population living in these urban areas. The 2022 NDHS used this updated urban-rural classification system. The survey sample is a stratified sample selected in two stages. Stratification was achieved by dividing each of the seven provinces into urban and rural areas that together formed the sampling stratum for that province. A total of 14 sampling strata were created in this way. Implicit stratification with proportional allocation was achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at the different levels, and by using a probability-proportional-to-size selection at the first stage of sampling. In the first stage of sampling, 476 primary sampling units (PSUs) were selected with probability proportional to PSU size and with independent selection in each sampling stratum within the sample allocation. Among the 476 PSUs, 248 were from urban areas and 228 from rural areas. A household listing operation was carried out in all of the selected PSUs before the main survey. The resulting list of households served as the sampling frame for the selection of sample households in the second stage. Thirty households were selected from each cluster, for a total sample size of 14,280 households. Of these households, 7,440 were in urban areas and 6,840 were in rural areas. Some of the selected sub-wards were found to be overly large during the household listing operation. Selected sub-wards with an estimated number of households greater than 300 were segmented. Only one segment was selected for the survey with probability proportional to segment size.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires were used in the 2022 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Nepal. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.

    Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Nepali, Maithili, and Bhojpuri. The Household, Woman’s, and Man’s Questionnaires were programmed into tablet computers to facilitate computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the three languages for each questionnaire. The Biomarker Questionnaire was completed on paper during data collection and then entered in the CAPI system.

    Cleaning operations

    Data capture for the 2022 NDHS was carried out with Microsoft Surface Go 2 tablets running Windows 10.1. Software was prepared for the survey using CSPro. The processing of the 2022 NDHS data began shortly after the fieldwork started. When data collection was completed in each cluster, the electronic data files were transferred via the Internet File Streaming System (IFSS) to the New ERA central office in Kathmandu. The data files were registered and checked for inconsistencies, incompleteness, and outliers. Errors and inconsistencies were immediately communicated to the field teams for review so that problems would be mitigated going forward. Secondary editing, carried out in the central office at New ERA, involved resolving inconsistencies and coding the open-ended questions. The New ERA senior data processor coordinated the exercise at the central office. The NDHS core team members assisted with the secondary editing. The paper Biomarker Questionnaires were compared with the electronic data file to check for any inconsistencies in data entry. The pictures of vaccination cards that were captured during data collection were verified with the data entered. Data processing and editing were carried out using the CSPro software package. The concurrent data collection and processing offered a distinct advantage because it maximized the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed by July 2022, and the final cleaning of the data set was completed by the end of August.

    Response rate

    A total of 14,243 households were selected for the sample, of which 13,833 were found to be occupied. Of the occupied households, 13,786 were successfully interviewed, yielding a response rate of more than 99%. In the interviewed households, 15,238 women age 15-49 were identified as eligible for individual interviews. Interviews were completed with 14,845 women, yielding a response rate of 97%. In the subsample of households selected for the men’s survey, 5,185 men age 15-49 were identified as eligible for individual interviews and 4,913 were successfully interviewed, yielding a response rate of 95%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors result from mistakes made in implementing data collection and in data processing, such as failing to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and entering the data incorrectly. Although numerous efforts were made during the implementation of the 2022 Nepal Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected sample size. Each of these samples would yield results that differ somewhat from the results of the selected sample. Sampling errors are a measure of the variability among all possible samples. Although the exact degree of variability is unknown, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, and so on), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the

  17. Demographic and Health Survey 2022 - Kenya

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kenya National Bureau of Statistics (KNBS) (2023). Demographic and Health Survey 2022 - Kenya [Dataset]. https://microdata.worldbank.org/index.php/catalog/5911
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    Kenya National Bureau of Statistics
    Authors
    Kenya National Bureau of Statistics (KNBS)
    Time period covered
    2022
    Area covered
    Kenya
    Description

    Abstract

    The 2022 Kenya Demographic and Health Survey (2022 KDHS) was implemented by the Kenya National Bureau of Statistics (KNBS) in collaboration with the Ministry of Health (MoH) and other stakeholders. The survey is the 7th KDHS implemented in the country.

    The primary objective of the 2022 KDHS is to provide up-to-date estimates of basic sociodemographic, nutrition and health indicators. Specifically, the 2022 KDHS collected information on: • Fertility levels and contraceptive prevalence • Childhood mortality • Maternal and child health • Early Childhood Development Index (ECDI) • Anthropometric measures for children, women, and men • Children’s nutrition • Woman’s dietary diversity • Knowledge and behaviour related to the transmission of HIV and other sexually transmitted diseases • Noncommunicable diseases and other health issues • Extent and pattern of gender-based violence • Female genital mutilation.

    The information collected in the 2022 KDHS will assist policymakers and programme managers in monitoring, evaluating, and designing programmes and strategies for improving the health of Kenya’s population. The 2022 KDHS also provides indicators relevant to monitoring the Sustainable Development Goals (SDGs) for Kenya, as well as indicators relevant for monitoring national and subnational development agendas such as the Kenya Vision 2030, Medium Term Plans (MTPs), and County Integrated Development Plans (CIDPs).

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-54

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men ageed 15-54, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the 2022 KDHS was drawn from the Kenya Household Master Sample Frame (K-HMSF). This is the frame that KNBS currently uses to conduct household-based sample surveys in Kenya. The frame is based on the 2019 Kenya Population and Housing Census (KPHC) data, in which a total of 129,067 enumeration areas (EAs) were developed. Of these EAs, 10,000 were selected with probability proportional to size to create the K-HMSF. The 10,000 EAs were randomised into four equal subsamples. A survey can utilise a subsample or a combination of subsamples based on the sample size requirements. The 2022 KDHS sample was drawn from subsample one of the K-HMSF. The EAs were developed into clusters through a process of household listing and geo-referencing. The Constitution of Kenya 2010 established a devolved system of government in which Kenya is divided into 47 counties. To design the frame, each of the 47 counties in Kenya was stratified into rural and urban strata, which resulted in 92 strata since Nairobi City and Mombasa counties are purely urban.

    The 2022 KDHS was designed to provide estimates at the national level, for rural and urban areas separately, and, for some indicators, at the county level. The sample size was computed at 42,300 households, with 25 households selected per cluster, which resulted in 1,692 clusters spread across the country, 1,026 clusters in rural areas, and 666 in urban areas. The sample was allocated to the different sampling strata using power allocation to enable comparability of county estimates.

    The 2022 KDHS employed a two-stage stratified sample design where in the first stage, 1,692 clusters were selected from the K-HMSF using the Equal Probability Selection Method (EPSEM). The clusters were selected independently in each sampling stratum. Household listing was carried out in all the selected clusters, and the resulting list of households served as a sampling frame for the second stage of selection, where 25 households were selected from each cluster. However, after the household listing procedure, it was found that some clusters had fewer than 25 households; therefore, all households from these clusters were selected into the sample. This resulted in 42,022 households being sampled for the 2022 KDHS. Interviews were conducted only in the pre-selected households and clusters; no replacement of the preselected units was allowed during the survey data collection stages.

    For further details on sample design, see APPENDIX A of the survey report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires were used in the 2022 KDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Kenya. In addition, a self-administered Fieldworker Questionnaire was used to collect information about the survey’s fieldworkers.

    Cleaning operations

    CAPI was used during data collection. The devices used for CAPI were Android-based computer tablets programmed with a mobile version of CSPro. The CSPro software was developed jointly by the U.S. Census Bureau, Serpro S.A., and The DHS Program. Programming of questionnaires into the Android application was done by ICF, while configuration of tablets was completed by KNBS in collaboration with ICF. All fieldwork personnel were assigned usernames, and devices were password protected to ensure the integrity of the data.

    Work was assigned by supervisors and shared via Bluetooth® to interviewers’ tablets. After completion, assigned work was shared with supervisors, who conducted initial data consistency checks and edits and then submitted data to the central servers hosted at KNBS via SyncCloud. Data were downloaded from the central servers and checked against the inventory of expected returns to account for all data collected in the field. SyncCloud was also used to generate field check tables to monitor progress and identify any errors, which were communicated back to the field teams for correction.

    Secondary editing was done by members of the KNBS and ICF central office team, who resolved any errors that were not corrected by field teams during data collection. A CSPro batch editing tool was used for cleaning and tabulation during data analysis.

    Response rate

    A total of 42,022 households were selected for the survey, of which 38,731 (92%) were found to be occupied. Among the occupied households, 37,911 were successfully interviewed, yielding a response rate of 98%. The response rates for urban and rural households were 96% and 99%, respectively. In the interviewed households, 33,879 women age 15-49 were identified as eligible for individual interviews. Of these, 32,156 women were interviewed, yielding a response rate of 95%. The response rates among women selected for the full and short questionnaires were similar (95%). In the households selected for the men’s survey, 16,552 men age 15-54 were identified as eligible for individual interviews and 14,453 were successfully interviewed, yielding a response rate of 87%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Kenya Demographic and Health Survey (2022 KDHS) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 KDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 KDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2022 KDHS is a SAS program. This program used the Taylor linearisation method for variance estimation for survey estimates that are means, proportions or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data

  18. Demographic and Health Survey 2018 - Nigeria

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Nov 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Population Commission (NPC) (2019). Demographic and Health Survey 2018 - Nigeria [Dataset]. https://microdata.worldbank.org/index.php/catalog/3540
    Explore at:
    Dataset updated
    Nov 12, 2019
    Dataset provided by
    National Population Commissionhttps://nationalpopulation.gov.ng/
    Authors
    National Population Commission (NPC)
    Time period covered
    2018
    Area covered
    Nigeria
    Description

    Abstract

    The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.

    The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-5 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.

    The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.

    Cleaning operations

    The processing of the 2018 NDHS data began almost immediately after the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NPC data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of April 2019.

    Response rate

    A total of 41,668 households were selected for the sample, of which 40,666 were occupied. Of the occupied households, 40,427 were successfully interviewed, yielding a response rate of 99%. In the households interviewed, 42,121 women age 15-49 were identified for individual interviews; interviews were completed with 41,821 women, yielding a response rate of 99%. In the subsample of households selected for the male survey, 13,422 men age 15-59 were identified and 13,311 were successfully interviewed, yielding a response rate of 99%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Nigeria Demographic and Health Survey (NDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Standardisation exercise results from anthropometry training - Height and weight data completeness and quality for children - Height measurements from random subsample of measured children - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends - Data collection period - Malaria prevalence according to rapid diagnostic test (RDT)

    Note: See detailed data quality tables in APPENDIX C of the report.

  19. e

    ONS Opinions and Lifestyle Survey, 2019-2023: Secure Access - Dataset -...

    • b2find.eudat.eu
    Updated Oct 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ONS Opinions and Lifestyle Survey, 2019-2023: Secure Access - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/040111bf-ba10-53d5-b06b-1ed060a32e4d
    Explore at:
    Dataset updated
    Oct 22, 2023
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Opinions and Lifestyle Survey (OPN) is an omnibus survey that collects data on a range of subjects commissioned by both the ONS internally and external clients (limited to other government departments, charities, non-profit organisations and academia). Data are collected from one individual aged 16 or over, selected from each sampled private household. Personal data include data on the individual, their family, address, household, income and education, plus responses and opinions on a variety of subjects within commissioned modules. The questionnaire collects timely data for research and policy analysis evaluation on the social impacts of recent topics of national importance, such as the coronavirus (COVID-19) pandemic and the cost of living, on individuals and households in Great Britain. From April 2018 to November 2019, the design of the OPN changed from face-to-face to a mixed-mode design (online first with telephone interviewing where necessary). Mixed-mode collection allows respondents to complete the survey more flexibly and provides a more cost-effective service for customers. In March 2020, the OPN was adapted to become a weekly survey used to collect data on the social impacts of the coronavirus (COVID-19) pandemic on the lives of people of Great Britain. These data are held in the Secure Access study, SN 8635, ONS Opinions and Lifestyle Survey, 2019-2023: Secure Access. Other Secure Access OPN data cover modules run at various points from 1997-2019, on Census religion (SN 8078), cervical cancer screening (SN 8080), contact after separation (SN 8089), contraception (SN 8095), disability (SNs 8680 and 8096), general lifestyle (SN 8092), illness and activity (SN 8094), and non-resident parental contact (SN 8093).From August 2021, as coronavirus (COVID-19) restrictions were lifting across Great Britain, the OPN moved to fortnightly data collection, sampling around 5,000 households in each survey wave to ensure the survey remains sustainable. The OPN has since expanded to include questions on other topics of national importance, such as health and the cost of living. For more information about the survey and its methodology, see the ONS OPN Quality and Methodology Information webpage. ONS Opinions and Lifestyle Survey, 2019-2023: Secure AccessThe aim of the COVID-19 Module within this study was to help understand the impact of the coronavirus (COVID-19) pandemic on people, households and communities in Great Britain. It was a weekly survey initiated in March 2020, and since August 2021, as COVID-19 restrictions were lifted, the survey has moved to fortnightly data collection, sampling around 5,000 households in each survey wave. The study allows the breakdown of impacts by at-risk age, gender and underlying health condition. The samples are randomly selected from those that had previously completed other ONS surveys (e.g., Labour Market Survey, Annual Population Survey). From each household, one adult is randomly selected but with unequal probability: younger people are given a higher selection probability than older people because of under-estimation in the samples available for the survey.The study also includes data for the Internet Access Module from 2019 onwards. Data from this module for previous years are available as End User Licence studies within GN 33441. Also included are data from the Winter Lifestyle Survey for January and February 2023.Latest edition informationFor the eleventh edition (March 2024), data and documentation for the main OPN survey for waves DN (June 2023) to EB (December 2023) have been added. Data and documentation for the Winter Lifestyle Survey for January-February 2023 have also been added. Main Topics:Each month's questionnaire consists of two elements: core questions, covering demographic information, are asked each month together with non-core questions that vary from month to month.

  20. e

    OPCS Omnibus Survey, September 1995 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). OPCS Omnibus Survey, September 1995 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/fcc453ef-3b74-5278-abb9-8d93d2a08f6d
    Explore at:
    Dataset updated
    Nov 2, 2023
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Opinions and Lifestyle Survey (formerly known as the ONS Opinions Survey or Omnibus) is an omnibus survey that began in 1990, collecting data on a range of subjects commissioned by both the ONS internally and external clients (limited to other government departments, charities, non-profit organisations and academia).Data are collected from one individual aged 16 or over, selected from each sampled private household. Personal data include data on the individual, their family, address, household, income and education, plus responses and opinions on a variety of subjects within commissioned modules. The questionnaire collects timely data for research and policy analysis evaluation on the social impacts of recent topics of national importance, such as the coronavirus (COVID-19) pandemic and the cost of living, on individuals and households in Great Britain. From April 2018 to November 2019, the design of the OPN changed from face-to-face to a mixed-mode design (online first with telephone interviewing where necessary). Mixed-mode collection allows respondents to complete the survey more flexibly and provides a more cost-effective service for customers. In March 2020, the OPN was adapted to become a weekly survey used to collect data on the social impacts of the coronavirus (COVID-19) pandemic on the lives of people of Great Britain. These data are held in the Secure Access study, SN 8635, ONS Opinions and Lifestyle Survey, Covid-19 Module, 2020-2022: Secure Access. From August 2021, as coronavirus (COVID-19) restrictions were lifting across Great Britain, the OPN moved to fortnightly data collection, sampling around 5,000 households in each survey wave to ensure the survey remains sustainable. The OPN has since expanded to include questions on other topics of national importance, such as health and the cost of living. For more information about the survey and its methodology, see the ONS OPN Quality and Methodology Information webpage.Secure Access Opinions and Lifestyle Survey dataOther Secure Access OPN data cover modules run at various points from 1997-2019, on Census religion (SN 8078), cervical cancer screening (SN 8080), contact after separation (SN 8089), contraception (SN 8095), disability (SNs 8680 and 8096), general lifestyle (SN 8092), illness and activity (SN 8094), and non-resident parental contact (SN 8093). See Opinions and Lifestyle Survey: Secure Access for details. Main Topics:Each month's questionnaire consists of two elements: core questions, covering demographic information, are asked each month together with non-core questions that vary from month to month. The non-core questions for this month were: Fire Safety (Module 33): Awareness of Fire Safety Week, knowledge of facts about fire safety and precautions taken. Alcohol and Tobacco from EU (Module 64): alcohol and/or tobacco products brought back from European Union Countries during previous two months; quantity bought. GP Accidents (Module 78): accidents in previous three months that resulted in seeing a doctor or going to hospital; where accident happened; whether saw a GP or went straight to hospital. For accidents involving either the respondent or other household member, that resulted in a GP being seen, details of items of equipment involved in the accident were recorded. National Lottery (Module 126): purchase of National Lottery tickets and scratch cards; frequency of purchase and how much spent. Voluntary Work (Module 127): voluntary work undertaken in last 12 months; source of funding of group worked for; satisfaction/dissatisfaction with work done; participation in groups or schemes by consultation or attendance of meetings. Multi-stage stratified random sample Face-to-face interview

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stanford University Libraries (2025). Gallup Poll Social Series (GPSS) [Dataset]. http://doi.org/10.57761/vxfa-he67
Organization logo

Gallup Poll Social Series (GPSS)

Explore at:
33 scholarly articles cite this dataset (View in Google Scholar)
csv, spss, sas, avro, stata, arrow, parquet, application/jsonlAvailable download formats
Dataset updated
Jul 10, 2025
Dataset provided by
Redivis Inc.
Authors
Stanford University Libraries
Description

Abstract

The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.

Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.

The dataset currently includes responses from up to and including 2025.

Methodology

Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:

January: Mood of the Nation

February: World Affairs

March: Environment

April: Economy and Finance

May: Values and Beliefs

June: Minority Rights and Relations (discontinued after 2016)

July: Consumption Habits

August: Work and Education

September: Governance

October: Crime

November: Health

December: Lifestyle (conducted 2001-2008)

The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.

Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Survey Sampling International (SSI). Gallup chooses landline respondents at random within each household based on which member had the next birthday. Each sample of national adults includes a minimum quota of 70% cellphone respondents and 30% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.

Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey are significantly larger because Gallup includes oversamples of Blacks and Hispanics to allow for reliable estimates among these key subgroups.

Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).

Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.

Usage

The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.

For more information about what survey questions were asked over time, see the Supporting Files.

Bulk Data Access

Data access is required to view this section.

Search
Clear search
Close search
Google apps
Main menu