Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Mexico was last recorded at 8 percent. This dataset provides - Mexico Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Lending Interest Rate data was reported at 3.512 % pa in 2016. This records an increase from the previous number of 3.260 % pa for 2015. United States US: Lending Interest Rate data is updated yearly, averaging 6.922 % pa from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 18.870 % pa in 1981 and a record low of 3.250 % pa in 2014. United States US: Lending Interest Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Interest Rates. Lending rate is the bank rate that usually meets the short- and medium-term financing needs of the private sector. This rate is normally differentiated according to creditworthiness of borrowers and objectives of financing. The terms and conditions attached to these rates differ by country, however, limiting their comparability.; ; International Monetary Fund, International Financial Statistics and data files.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Iran IR: Lending Interest Rate data was reported at 18.000 % pa in 2016. This records an increase from the previous number of 14.210 % pa for 2015. Iran IR: Lending Interest Rate data is updated yearly, averaging 12.000 % pa from Dec 2004 (Median) to 2016, with 13 observations. The data reached an all-time high of 18.000 % pa in 2016 and a record low of 11.000 % pa in 2013. Iran IR: Lending Interest Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Iran – Table IR.World Bank.WDI: Interest Rates. Lending rate is the bank rate that usually meets the short- and medium-term financing needs of the private sector. This rate is normally differentiated according to creditworthiness of borrowers and objectives of financing. The terms and conditions attached to these rates differ by country, however, limiting their comparability.; ; International Monetary Fund, International Financial Statistics and data files.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Brazil was last recorded at 15 percent. This dataset provides - Brazil Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Description
This dataset contains the actual and predicted federal funds target rate for the United States from 1990 to 2023. The federal funds target rate is the interest rate at which depository institutions lend their excess reserves to each other overnight. It is set by the Federal Open Market Committee (FOMC) and is a key tool used by the Federal Reserve to influence the economy.
The dataset includes the following five columns:
Release Date: The date on which the data was released by the Federal Reserve. Time: The time of day at which the data was released. Actual: The actual federal funds target rate. Predicted: The predicted federal funds target rate. Forecast: The forecast federal funds target rate.
Data Usage
This dataset can be used for a variety of purposes, including: - Analyzing trends in the federal funds target rate over time. - Forecasting the future path of the federal funds target rate. - Assessing the effectiveness of monetary policy. - Data Quality
The data for this dataset is of high quality. The Federal Reserve is a reputable source of data and the data is updated regularly.
Data Limitations
The data for this dataset is limited to the United States. Additionally, the data does not include information on the factors that influenced the Federal Open Market Committee's decision to set the federal funds target rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Russia was last recorded at 20 percent. This dataset provides the latest reported value for - Russia Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Tax interest is compounded daily and interest rates are reset every 3 months.
Note: Provincial land tax interest rates are not reset every three months. Provincial land tax interest rates are summarized on the "https://www.fin.gov.on.ca/en/consultations/landtaxreform/payment-forms.html">provincial land tax webpage. Interest rates do not apply to the Estate Administration Tax Act, 1998.
Current interest rates (July 1, 2025 to September 30, 2025):
You can download the dataset to view the historical tax interest rates.
Non-Resident Speculation Tax (NRST)
(1) Interest on tax you overpaid begins to accrue 40 business days after a complete NRST rebate or refund application is received by the Ministry of Finance to the date the rebate or refund is paid.
(2) On refunds you are eligible for as a result of a successful appeal or objection of a NRST refund/rebate disallowance, the interest rate is the same rate as though you had overpaid and will begin to accrue 40 business days after a complete NRST rebate or refund application is received by the Ministry of Finance to the date the rebate or refund is paid. Refunds as a result of a successful appeal or objection of NRST that was paid pursuant to a Notice of Assessment, interest will accrue at the higher appeals/objection rate, beginning to accrue from the date of payment to the date the rebate or refund is paid.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper estimates a model in which persistent fluctuations in expected consumption growth, expected inflation, and their time-varying volatility determine asset price variation. The model features Epstein-Zin recursive preferences, which determine the market price of macro risk factors. Analysis of the US nominal term structure data from 1953 to 2006 shows that agents dislike high uncertainty and demand compensation for volatility risks. Also, the time variation of the term premium is driven by the compensation for inflation volatility risk, which is distinct from consumption volatility risk. The central role of inflation volatility risk in explaining the time-varying term premium is consistent with other empirical evidence including survey data. In contrast, the existing long-run risks literature emphasizes consumption volatility risk and ignores inflation-specific time-varying volatility. The estimation results of this paper suggest that inflation-specific volatility risk is essential for fitting the time series of the US nominal term structure data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Venezuela was last recorded at 59.27 percent. This dataset provides the latest reported value for - Venezuela Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Based on a large historical panel dataset, this paper provides evidence that the government spending multiplier can be significantly higher when interest rates are at or near the zero lower bound (ZLB). We estimate multipliers that are as high as 1.5 during ZLB episodes but small and statistically indistinguishable from zero during normal times. Our results are robust to different definitions of ZLB episodes, alternative ways of identifying government spending shocks, controlling for the exchange rate regime, and other potentially important state variables. In particular, we show that the difference in multipliers is not driven by multipliers being higher during periods of economic slack.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains news headlines relevant to key forex pairs: AUDUSD, EURCHF, EURUSD, GBPUSD, and USDJPY. The data was extracted from reputable platforms Forex Live and FXstreet over a period of 86 days, from January to May 2023. The dataset comprises 2,291 unique news headlines. Each headline includes an associated forex pair, timestamp, source, author, URL, and the corresponding article text. Data was collected using web scraping techniques executed via a custom service on a virtual machine. This service periodically retrieves the latest news for a specified forex pair (ticker) from each platform, parsing all available information. The collected data is then processed to extract details such as the article's timestamp, author, and URL. The URL is further used to retrieve the full text of each article. This data acquisition process repeats approximately every 15 minutes.
To ensure the reliability of the dataset, we manually annotated each headline for sentiment. Instead of solely focusing on the textual content, we ascertained sentiment based on the potential short-term impact of the headline on its corresponding forex pair. This method recognizes the currency market's acute sensitivity to economic news, which significantly influences many trading strategies. As such, this dataset could serve as an invaluable resource for fine-tuning sentiment analysis models in the financial realm.
We used three categories for annotation: 'positive', 'negative', and 'neutral', which correspond to bullish, bearish, and hold sentiments, respectively, for the forex pair linked to each headline. The following Table provides examples of annotated headlines along with brief explanations of the assigned sentiment.
Examples of Annotated Headlines
Forex Pair
Headline
Sentiment
Explanation
GBPUSD
Diminishing bets for a move to 12400
Neutral
Lack of strong sentiment in either direction
GBPUSD
No reasons to dislike Cable in the very near term as long as the Dollar momentum remains soft
Positive
Positive sentiment towards GBPUSD (Cable) in the near term
GBPUSD
When are the UK jobs and how could they affect GBPUSD
Neutral
Poses a question and does not express a clear sentiment
JPYUSD
Appropriate to continue monetary easing to achieve 2% inflation target with wage growth
Positive
Monetary easing from Bank of Japan (BoJ) could lead to a weaker JPY in the short term due to increased money supply
USDJPY
Dollar rebounds despite US data. Yen gains amid lower yields
Neutral
Since both the USD and JPY are gaining, the effects on the USDJPY forex pair might offset each other
USDJPY
USDJPY to reach 124 by Q4 as the likelihood of a BoJ policy shift should accelerate Yen gains
Negative
USDJPY is expected to reach a lower value, with the USD losing value against the JPY
AUDUSD
RBA Governor Lowe’s Testimony High inflation is damaging and corrosive
Positive
Reserve Bank of Australia (RBA) expresses concerns about inflation. Typically, central banks combat high inflation with higher interest rates, which could strengthen AUD.
Moreover, the dataset includes two columns with the predicted sentiment class and score as predicted by the FinBERT model. Specifically, the FinBERT model outputs a set of probabilities for each sentiment class (positive, negative, and neutral), representing the model's confidence in associating the input headline with each sentiment category. These probabilities are used to determine the predicted class and a sentiment score for each headline. The sentiment score is computed by subtracting the negative class probability from the positive one.
By Noah Brod [source]
The Small Business Administration (SBA) Loan Guarantee Data provides a comprehensive look at loans that were approved by the SBA from January 1, 1990 to December 31, 1999. This dataset offers insight into roughly 1.5 million approved loans, including details such as the loan amount, interest rate, project county, and more.
This data was collected as part of an FOIA request and is updated quarterly for up-to-date information. It should be noted that the SBA is not a direct lender but rather a guarantor of the loan which is made by either a bank or non-bank lender.
The dataset includes detailed fields such as AsOfDate, Program Type, Gross Approval Amounts and Initial Interest Rates; Fanchise Codes and County Information; Delivery Method and Status Reports; Congressional Districts involved in financing these loans; Jobs Supported as part of each loan; Billing Information related to ChargeOff Dates and Amounts; SBADistrict Office associated with individual loan approvals ;and more!
This unique pool of data can offer invaluable insights into the mechanisms behind small business lending throughout the nineties in America – showing how much has changed since then but also how some trends remain consistent over time. The Small Business Administration Loan Guarantee Data can help shine light on important topics such as demographic disparities among borrowers or regional differences between approving offices - increasing our understanding of American business practices overall!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Using NaicsCode, initialize a visual representation of the most popular types of businesses that receive SBA loan ensures to get a better sense of which industries are the biggest uses for this financing program.
- Calculating Loan Status data over a period of time to analyse trends in terms of loan defaults and how much money is disbursed vs charged off.
- Examining GrossApproval and SBAGuarterNeedApproval data to determine which zipcodes or states have received more funding from the SBA and apply this information in aid targeting certain areas as part of govermental stimulus packages during tough economic times
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: 7a_504_FOIA%20Data%20Dictionary.csv
File: FOIA%20-%207(a)(FY1991-FY1999).csv | Column name | Description | |:--------------------------|:-------------------------------------------------------------| | AsOfDate | Date the data was last updated. (Date) | | Program | Type of loan program. (String) | | BorrName | Name of the borrower. (String) | | BorrStreet | Street address of the borrower. (String) | | BorrCity | City of the borrower. (String) | | BorrState | State of the borrower. (String) | | BorrZip | Zip code of the borrower. (String) | | BankName | Name of the bank. (String) | | BankStreet | Street address of the bank. (String) | | BankCity | City of the bank. (String) | | BankState | State of the bank. (String) | | BankZip | Zip code of the bank. (String) | | GrossApproval | Total amount of the loan approved. (Number) | | SBAGuaranteedApproval | Amount of the loan guaranteed by the SBA. (Number) | | ApprovalDate | Date the loan was approved. (Date) | | ApprovalFiscalYear | Fiscal year the loan was approved. (Number) | | FirstDisbursementDate | Date the loan was disbursed. (Date) | | DeliveryMethod | Method of delivery for the loan. (String) | | subpgmdesc | Description of the loan program. (String) ...
Lending Club offers peer-to-peer (P2P) loans through a technological platform for various personal finance purposes and is today one of the companies that dominate the US P2P lending market. The original dataset is publicly available on Kaggle and corresponds to all the loans issued by Lending Club between 2007 and 2018. The present version of the dataset is for constructing a granting model, that is, a model designed to make decisions on whether to grant a loan based on information available at the time of the loan application. Consequently, our dataset only has a selection of variables from the original one, which are the variables known at the moment the loan request is made. Furthermore, the target variable of a granting model represents the final status of the loan, that are "default" or "fully paid". Thus, we filtered out from the original dataset all the loans in transitory states. Our dataset comprises 1,347,681 records or obligations (approximately 60% of the original) and it was also cleaned for completeness and consistency (less than 1% of our dataset was filtered out).
TARGET VARIABLE
The dataset includes a target variable based on the final resolution of the credit: the default category corresponds to the event charged off and the non-default category to the event fully paid. It does not consider other values in the loan status variable since this variable represents the state of the loan at the end of the considered time window. Thus, there are no loans in transitory states. The original dataset includes the target variable “loan status”, which contains several categories ('Fully Paid', 'Current', 'Charged Off', 'In Grace Period', 'Late (31-120 days)', 'Late (16-30 days)', 'Default'). However, in our dataset, we just consider loans that are either “Fully Paid” or “Default” and transform this variable into a binary variable called “Default”, with a 0 for fully paid loans and a 1 for defaulted loans.
EXPLANATORY VARIABLES
The explanatory variables that we use correspond only to the information available at the time of the application. Variables such as the interest rate, grade, or subgrade are generated by the company as a result of a credit risk assessment process, so they were filtered out from the dataset as they must not be considered in risk models to predict the default in granting of credit.
FULL LIST OF VARIABLES
Loan identification variables:
id: Loan id (unique identifier).
issue_d: Month and year in which the loan was approved.
Quantitative variables:
revenue: Borrower's self-declared annual income during registration.
dti_n: Indebtedness ratio for obligations excluding mortgage. Monthly information. This ratio has been calculated considering the indebtedness of the whole group of applicants. It is estimated as the ratio calculated using the co-borrowers’ total payments on the total debt obligations divided by the co-borrowers’ combined monthly income.
loan_amnt: Amount of credit requested by the borrower.
fico_n: Defined between 300 and 850, reported by Fair Isaac Corporation as a risk measure based on historical credit information reported at the time of application. This value has been calculated as the average of the variables “fico_range_low” and “fico_range_high” in the original dataset.
experience_c: Binary variable that indicates whether the borrower is new to the entity. This variable is constructed from the credit date of the previous obligation in LC and the credit date of the current obligation; if the difference between dates is positive, it is not considered as a new experience with LC.
Categorical variables:
emp_length: Categorical variable with the employment length of the borrower (includes the no information category)
purpose: Credit purpose category for the loan request.
home_ownership_n: Homeownership status provided by the borrower in the registration process. Categories defined by LC: “mortgage”, “rent”, “own”, “other”, “any”, “none”. We merged the categories “other”, “any” and “none” as “other”.
addr_state: Borrower's residence state from the USA.
zip_code: Zip code of the borrower's residence.
Textual variables
title: Title of the credit request description provided by the borrower.
desc: Description of the credit request provided by the borrower.
We cleaned the textual variables. First, we removed all those descriptions that contained the default description provided by Lending Club on its web form (“Tell your story. What is your loan for?”). Moreover, we removed the prefix “Borrower added on DD/MM/YYYY >” from the descriptions to avoid any temporal background on them. Finally, as these descriptions came from a web form, we substituted all the HTML elements by their character (e.g. “&” was substituted by “&”, “<” was substituted by “<”, etc.).
RELATED WORKS
This dataset has been used in the following academic articles:
Sanz-Guerrero, M. Arroyo, J. (2024). Credit Risk Meets Large Language Models: Building a Risk Indicator from Loan Descriptions in P2P Lending. arXiv preprint arXiv:2401.16458. https://doi.org/10.48550/arXiv.2401.16458
Ariza-Garzón, M.J., Arroyo, J., Caparrini, A., Segovia-Vargas, M.J. (2020). Explainability of a machine learning granting scoring model in peer-to-peer lending. IEEE Access 8, 64873 - 64890. https://doi.org/10.1109/ACCESS.2020.2984412
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This paper describes the relationship between central bank interest rates and exchange rates under a capital control regime. Higher interest rates may strengthen the currency by inducing owners of local currency assets not to sell local currency off shore. There is also an effect that goes in the opposite direction: higher interest rates may also increase the flow of interest income to foreigners through the current account, making the exchange rate fall. The historical financial crisis now under way in Iceland provides excellent testing grounds for the analysis. Overall, the experience does not suggest that cutting interest rates moderately from a very high level is likely to make a currency depreciate in a capital control regime, but it highlights the importance of effective enforcement of the controls.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We use Bayesian time-varying parameter structural vector autoregressions with stochastic volatility to investigate changes in reduced-form and structural correlations between inventories and either sales growth or the real interest rate in the USA during both the inter-war and post-World War II periods. We identify four structural shocks by combining a single long-run restriction to identify a permanent output shock with three sign restrictions to identify demand? and supply-side transitory shocks. We show that during both the inter-war and post-war periods the structural correlation between inventories and real interest rate conditional on identified interest rate shocks is systematically positive; the reduced-form correlation between the two series is positive during the post-war period, but in line with the predictions of theory it is robustly negative during the inter-war era; during that era the correlations between inventories and either of the two other series exhibit a remarkably strong co-movement with output at business cycle frequencies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bangladesh BD: Lending Interest Rate data was reported at 9.852 % pa in 2024. This records an increase from the previous number of 7.570 % pa for 2023. Bangladesh BD: Lending Interest Rate data is updated yearly, averaging 12.219 % pa from Dec 1976 (Median) to 2024, with 49 observations. The data reached an all-time high of 14.846 % pa in 1990 and a record low of 7.121 % pa in 2022. Bangladesh BD: Lending Interest Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Bangladesh – Table BD.World Bank.WDI: Interest Rates. Lending rate is the bank rate that usually meets the short- and medium-term financing needs of the private sector. This rate is normally differentiated according to creditworthiness of borrowers and objectives of financing. The terms and conditions attached to these rates differ by country, however, limiting their comparability.;International Monetary Fund, International Financial Statistics and data files.;;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in China was last recorded at 3 percent. This dataset provides the latest reported value for - China Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dynamic behavior of the term structure of interest rates is difficult to replicate with models, and even models with a proven track record of empirical performance have underperformed since the early 2000s. On the other hand, survey expectations can accurately predict yields, but they are typically not available for all maturities and/or forecast horizons. We show how survey expectations can be exploited to improve the accuracy of yield curve forecasts given by a base model. We do so by employing a flexible exponential tilting method that anchors the model forecasts to the survey expectations, and we develop a test to guide the choice of the anchoring points. The method implicitly incorporates into yield curve forecasts any information that survey participants have access to-such as information about the current state of the economy or forward-looking information contained in monetary policy announcements-without the need to explicitly model it. We document that anchoring delivers large and significant gains in forecast accuracy relative to the class of models that are widely adopted by financial and policy institutions for forecasting the term structure of interest rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Norway was last recorded at 4.25 percent. This dataset provides the latest reported value for - Norway Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.