100+ datasets found
  1. T

    United States 30-Year Mortgage Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 1971 - Jul 10, 2025
    Area covered
    United States
    Description

    30 Year Mortgage Rate in the United States increased to 6.72 percent in July 10 from 6.67 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

  2. T

    United States MBA 30-Yr Mortgage Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States MBA 30-Yr Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/mortgage-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1990 - Jul 4, 2025
    Area covered
    United States
    Description

    Fixed 30-year mortgage rates in the United States averaged 6.77 percent in the week ending July 4 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  3. T

    United States Fed Funds Interest Rate

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Fed Funds Interest Rate [Dataset]. https://tradingeconomics.com/united-states/interest-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 4, 1971 - Jun 18, 2025
    Area covered
    United States
    Description

    The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  4. What are 30 year mortgage rates? (Forecast)

    • kappasignal.com
    Updated May 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What are 30 year mortgage rates? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-are-30-year-mortgage-rates.html
    Explore at:
    Dataset updated
    May 13, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What are 30 year mortgage rates?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. T

    United States MBA Mortgage Applications

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States MBA Mortgage Applications [Dataset]. https://tradingeconomics.com/united-states/mortgage-applications
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 12, 1990 - Jul 4, 2025
    Area covered
    United States
    Description

    Mortgage Application in the United States increased by 9.40 percent in the week ending July 4 of 2025 over the previous week. This dataset provides - United States MBA Mortgage Applications - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. Canada Mortgage and Housing Corporation, conventional mortgage lending rate,...

    • www150.statcan.gc.ca
    • thelearningbarn.org
    • +4more
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Canada Mortgage and Housing Corporation, conventional mortgage lending rate, 5-year term [Dataset]. http://doi.org/10.25318/3410014501-eng
    Explore at:
    Dataset updated
    Jun 16, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...).

  7. Mortgage Rates: Hot Economic Conjecture Puts the Squeeze on Homebuyers...

    • kappasignal.com
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Mortgage Rates: Hot Economic Conjecture Puts the Squeeze on Homebuyers (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/mortgage-rates-hot-economic-conjecture.html
    Explore at:
    Dataset updated
    Jun 3, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Mortgage Rates: Hot Economic Conjecture Puts the Squeeze on Homebuyers

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. Loans Dataset

    • kaggle.com
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zaki Hanfer (2024). Loans Dataset [Dataset]. https://www.kaggle.com/datasets/zakihanfer/loans-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 5, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Zaki Hanfer
    Description

    Data Dictionary

    The Data contains 1 file :

    • loan.csv: In this file there are 18 columns:
      1. loanId: This is a unique loan identifier. Use this for joins with the payment.csv file
      2. anon_ssn: This is a hash based on a client’s SSN (Anonymous ssn). You can use this as if it is a SSN to compare if a loan belongs to a previous customer.
      3. payFrequency: This column represents repayment frequency of the loan:
        • B is biweekly payments
        • I is irregular
        • M is monthly
        • S is semi monthly
        • W is weekly
      4. apr: Annual Percentage Rate of the loan (%)
      5. applicationDate: Date of application (start date)
      6. originated: Indicates if the loan has been initiated (underwriting process started).
      7. originatedDate: Date of origination, day the loan was originated
      8. nPaidOff: Number of MoneyLion loans previously paid off by the client.
      9. approved: Indicates if the loan has been approved (final step of underwriting).
      10. isFunded: Whether or not a loan is ultimately funded. a loan can be voided by a customer shortly after it is approved, so not all approved loans are ultimately funded.
      11. loanStatus: Current loan status (this column is used for prediction). Most are selfexplanatory. Below are the statuses which need clarification:
        • Withdrawn Application: The applicant has withdrawn their loan application before it was approved or funded.
        • Paid Off Loan: The loan has been fully paid off by the borrower according to the repayment terms.
        • Rejected: The loan application was rejected, typically due to failure to meet underwriting criteria.
        • New Loan: A newly approved loan that has not yet been funded.
        • Internal Collection: The loan is being managed and collected internally by MoneyLion due to missed payments or delinquency.
        • CSR Voided New Loan: A new loan application was voided by a customer service representative (CSR) before funding.
        • External Collection: The loan has been transferred to an external collection agency for management and collection.
        • Returned Item: A payment on the loan has been returned due to insufficient funds in the borrower's account.
        • Customer Voided New Loan: The borrower voided a new loan application before funding.
        • Credit Return Void: The loan was voided due to a credit return, typically related to a refunded transaction.
        • Pending Paid Off: The loan is in the process of being paid off, but the process is pending completion.
        • Charged Off Paid Off: The loan has been charged off as a loss by MoneyLion but has also been paid off by the borrower.
        • Settled Bankruptcy: The loan has been settled as part of a bankruptcy proceeding.
        • Settlement Paid Off: The loan has been paid off through a settlement agreement.
        • Charged Off: The loan has been charged off as a loss by MoneyLion due to nonpayment.
        • Pending Rescind: The loan is pending rescission, meaning it may be canceled or reversed.
        • Customver Voided New Loan: Typo: Likely should be "Customer Voided New Loan". Similar to "Customer Voided New Loan", indicating the borrower voided a new loan application before funding.
        • Pending Application: The loan application is pending review and approval.
        • Voided New Loan: The loan application was voided before funding.• Pending Application Fee: The loan application is pending due to the application fee not being paid.
        • Settlement Pending Paid Off: The loan is pending being paid off through a settlement agreement.
      12. loanAmount: Principal amount of the loan ('Dollars') (for non-funded loans this will be the principal in the loan application)
      13. originallyScheduledPaymentAmount: This is the Initialy scheduled repayment amount ('Dollars') (if a customer pays off all his scheduled payments, this is the amount we should receive)
      14. state: State of the client
      15. Lead type: The lead type determines the underwriting rules for a lead.
        • bvMandatory: leads that are bought from the ping tree – required to perform bank verification before loan approval
        • lead: very similar to bvMandatory, except bank verification is optional for loan approval
        • california: similar to lead, but optimized for California lending rules
        • organic: customers that came through the MoneyLion website
        • rc_returning: customers who have at least 1 paid off loan in another loan portfolio. (The first paid off loan is not in this data set).
        • prescreen: preselected customers who have been offered a loan through direct mail campaigns
        • express: promotional “express” loans
        • repeat: promotional loans offered through ...
  9. United States Mortgage Fixed Rate: Mth Avg: 15 Year

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Mortgage Fixed Rate: Mth Avg: 15 Year [Dataset]. https://www.ceicdata.com/en/united-states/mortgage-interest-rate/mortgage-fixed-rate-mth-avg-15-year
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2017 - Apr 1, 2018
    Area covered
    United States
    Variables measured
    Money Market Rate
    Description

    United States Mortgage Fixed Rate: Mth Avg: 15 Year data was reported at 4.250 % pa in Oct 2018. This records an increase from the previous number of 4.080 % pa for Sep 2018. United States Mortgage Fixed Rate: Mth Avg: 15 Year data is updated monthly, averaging 5.680 % pa from Sep 1991 (Median) to Oct 2018, with 326 observations. The data reached an all-time high of 8.800 % pa in Jan 1995 and a record low of 2.660 % pa in Apr 2013. United States Mortgage Fixed Rate: Mth Avg: 15 Year data remains active status in CEIC and is reported by Federal Home Loan Mortgage Corporation, Freddie Mac. The data is categorized under Global Database’s United States – Table US.M012: Mortgage Interest Rate.

  10. W

    Annual Market Information Indices

    • cloud.csiss.gmu.edu
    • find.data.gov.scot
    • +5more
    csv
    Updated Feb 26, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://usmart.io/#/org/dhplg (2018). Annual Market Information Indices [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/annual-market-information-indices
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 26, 2018
    Dataset provided by
    https://usmart.io/#/org/dhplg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold. Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
    From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
    From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and 2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
    http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
    Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter.
    Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
    The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.

  11. G

    Greece Lending Rate: Outstanding Amount (OA): Households: Mortgage Loans:...

    • ceicdata.com
    Updated Dec 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Greece Lending Rate: Outstanding Amount (OA): Households: Mortgage Loans: Over 1 and Up to 5 Years [Dataset]. https://www.ceicdata.com/en/greece/lending-rates/lending-rate-outstanding-amount-oa-households-mortgage-loans-over-1-and-up-to-5-years
    Explore at:
    Dataset updated
    Dec 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2017 - Mar 1, 2018
    Area covered
    Greece
    Variables measured
    Lending Rate
    Description

    Greece Lending Rate: Outstanding Amount (OA): Households: Mortgage Loans: Over 1 and Up to 5 Years data was reported at 4.556 % pa in Sep 2018. This records an increase from the previous number of 4.554 % pa for Aug 2018. Greece Lending Rate: Outstanding Amount (OA): Households: Mortgage Loans: Over 1 and Up to 5 Years data is updated monthly, averaging 4.574 % pa from Sep 2002 (Median) to Sep 2018, with 193 observations. The data reached an all-time high of 6.580 % pa in May 2003 and a record low of 3.353 % pa in Jul 2016. Greece Lending Rate: Outstanding Amount (OA): Households: Mortgage Loans: Over 1 and Up to 5 Years data remains active status in CEIC and is reported by Bank of Greece. The data is categorized under Global Database’s Greece – Table GR.M005: Lending Rates.

  12. L&T Vehicle Loan Default Prediction

    • kaggle.com
    zip
    Updated Apr 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav (2019). L&T Vehicle Loan Default Prediction [Dataset]. https://www.kaggle.com/gauravdesurkar/lt-vehicle-loan-default-prediction
    Explore at:
    zip(12451853 bytes)Available download formats
    Dataset updated
    Apr 23, 2019
    Authors
    Gaurav
    Description

    Context

    Financial institutions incur significant losses due to the default of vehicle loans. This has led to the tightening up of vehicle loan underwriting and increased vehicle loan rejection rates. The need for a better credit risk scoring model is also raised by these institutions. This warrants a study to estimate the determinants of vehicle loan default. A financial institution has hired you to accurately predict the probability of loanee/borrower defaulting on a vehicle loan in the first EMI (Equated Monthly Instalments) on the due date. Following Information regarding the loan and loanee are provided in the datasets: Loanee Information (Demographic data like age, Identity proof etc.) Loan Information (Disbursal details, loan to value ratio etc.) Bureau data & history (Bureau score, number of active accounts, the status of other loans, credit history etc.) Doing so will ensure that clients capable of repayment are not rejected and important determinants can be identified which can be further used for minimising the default rates.

  13. Mortgage Rates Soar, Making Homeownership Out of Reach for Many (Forecast)

    • kappasignal.com
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Mortgage Rates Soar, Making Homeownership Out of Reach for Many (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/mortgage-rates-soar-making.html
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Mortgage Rates Soar, Making Homeownership Out of Reach for Many

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Iran IR: Lending Interest Rate

    • ceicdata.com
    Updated Mar 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Iran IR: Lending Interest Rate [Dataset]. https://www.ceicdata.com/en/iran/interest-rates/ir-lending-interest-rate
    Explore at:
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Iran
    Variables measured
    Money Market Rate
    Description

    Iran IR: Lending Interest Rate data was reported at 18.000 % pa in 2016. This records an increase from the previous number of 14.210 % pa for 2015. Iran IR: Lending Interest Rate data is updated yearly, averaging 12.000 % pa from Dec 2004 (Median) to 2016, with 13 observations. The data reached an all-time high of 18.000 % pa in 2016 and a record low of 11.000 % pa in 2013. Iran IR: Lending Interest Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Iran – Table IR.World Bank.WDI: Interest Rates. Lending rate is the bank rate that usually meets the short- and medium-term financing needs of the private sector. This rate is normally differentiated according to creditworthiness of borrowers and objectives of financing. The terms and conditions attached to these rates differ by country, however, limiting their comparability.; ; International Monetary Fund, International Financial Statistics and data files.; ;

  15. T

    Sweden Interest Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Sweden Interest Rate [Dataset]. https://tradingeconomics.com/sweden/interest-rate
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 26, 1994 - Jun 18, 2025
    Area covered
    Sweden
    Description

    The benchmark interest rate in Sweden was last recorded at 2 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  16. Small Business Administration Loan Guarantee (SBA)

    • kaggle.com
    Updated Jan 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Small Business Administration Loan Guarantee (SBA) [Dataset]. https://www.kaggle.com/datasets/thedevastator/sba-loan-guarantee-data-1990-1999/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Small Business Administration Loan Guarantee (SBA)

    1.5 Million Loan Guarantees Across 7(a) and 504 Programs

    By Noah Brod [source]

    About this dataset

    The Small Business Administration (SBA) Loan Guarantee Data provides a comprehensive look at loans that were approved by the SBA from January 1, 1990 to December 31, 1999. This dataset offers insight into roughly 1.5 million approved loans, including details such as the loan amount, interest rate, project county, and more.

    This data was collected as part of an FOIA request and is updated quarterly for up-to-date information. It should be noted that the SBA is not a direct lender but rather a guarantor of the loan which is made by either a bank or non-bank lender.

    The dataset includes detailed fields such as AsOfDate, Program Type, Gross Approval Amounts and Initial Interest Rates; Fanchise Codes and County Information; Delivery Method and Status Reports; Congressional Districts involved in financing these loans; Jobs Supported as part of each loan; Billing Information related to ChargeOff Dates and Amounts; SBADistrict Office associated with individual loan approvals ;and more!

    This unique pool of data can offer invaluable insights into the mechanisms behind small business lending throughout the nineties in America – showing how much has changed since then but also how some trends remain consistent over time. The Small Business Administration Loan Guarantee Data can help shine light on important topics such as demographic disparities among borrowers or regional differences between approving offices - increasing our understanding of American business practices overall!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    Research Ideas

    • Using NaicsCode, initialize a visual representation of the most popular types of businesses that receive SBA loan ensures to get a better sense of which industries are the biggest uses for this financing program.
    • Calculating Loan Status data over a period of time to analyse trends in terms of loan defaults and how much money is disbursed vs charged off.
    • Examining GrossApproval and SBAGuarterNeedApproval data to determine which zipcodes or states have received more funding from the SBA and apply this information in aid targeting certain areas as part of govermental stimulus packages during tough economic times

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: 7a_504_FOIA%20Data%20Dictionary.csv

    File: FOIA%20-%207(a)(FY1991-FY1999).csv | Column name | Description | |:--------------------------|:-------------------------------------------------------------| | AsOfDate | Date the data was last updated. (Date) | | Program | Type of loan program. (String) | | BorrName | Name of the borrower. (String) | | BorrStreet | Street address of the borrower. (String) | | BorrCity | City of the borrower. (String) | | BorrState | State of the borrower. (String) | | BorrZip | Zip code of the borrower. (String) | | BankName | Name of the bank. (String) | | BankStreet | Street address of the bank. (String) | | BankCity | City of the bank. (String) | | BankState | State of the bank. (String) | | BankZip | Zip code of the bank. (String) | | GrossApproval | Total amount of the loan approved. (Number) | | SBAGuaranteedApproval | Amount of the loan guaranteed by the SBA. (Number) | | ApprovalDate | Date the loan was approved. (Date) | | ApprovalFiscalYear | Fiscal year the loan was approved. (Number) | | FirstDisbursementDate | Date the loan was disbursed. (Date) | | DeliveryMethod | Method of delivery for the loan. (String) | | subpgmdesc | Description of the loan program. (String) ...

  17. Consumer Credit

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve System (2024). Consumer Credit [Dataset]. https://catalog.data.gov/dataset/consumer-credit
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Description

    The G.19 Statistical Release, Consumer Credit, reports outstanding credit extended to individuals for household, family, and other personal expenditures, excluding loans secured by real estate. Total consumer credit comprises two major types: revolving and nonrevolving. Revolving credit plans may be unsecured or secured by collateral and allow a consumer to borrow up to a prearranged limit and repay the debt in one or more installments. Credit card loans comprise most of revolving consumer credit measured in the G.19, but other types, such as prearranged overdraft plans, are also included. Nonrevolving credit is closed-end credit extended to consumers that is repaid on a prearranged repayment schedule and may be secured or unsecured. To borrow additional funds, the consumer must enter into an additional contract with the lender. Consumer motor vehicle and education loans comprise the majority of nonrevolving credit, but other loan types, such as boat loans, recreational vehicle loans, and personal loans, are also included. This statistical release is designated by OMB as a Principal Federal Economic Indicator (PFEI).

  18. c

    creditrisk Dataset

    • cubig.ai
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). creditrisk Dataset [Dataset]. https://cubig.ai/store/products/506/creditrisk-dataset
    Explore at:
    Dataset updated
    Jun 22, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The credit_risk Dataset is a structured dataset designed to predict loan default status (default) based on a customer’s financial condition, credit history, and loan-related information. Each sample includes various features necessary for assessing the applicant’s credit risk.

    2) Data Utilization (1) Characteristics of the credit_risk Dataset: • The dataset includes key financial indicators such as current account balance, savings balance, loan amount, job type, and number of existing loans. The default column serves as a binary classification label indicating whether the customer failed to repay the loan.

    (2) Applications of the credit_risk Dataset: • Loan default prediction model training: The dataset can be used to train machine learning-based binary classification models that estimate a customer’s credit risk in advance and support decisions on loan approvals. • Credit risk analysis and policy development: By analyzing the relationship between financial status and credit history, the dataset can help in setting credit scoring criteria, adjusting risk-based interest rates, and personalizing financial services.

  19. Credit scoring with class imbalance data: An out-of-sample and out-of-time...

    • zenodo.org
    Updated Oct 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonah Mushava; Mike Murray; Jonah Mushava; Mike Murray (2023). Credit scoring with class imbalance data: An out-of-sample and out-of-time perspective [Dataset]. http://doi.org/10.5281/zenodo.8401978
    Explore at:
    Dataset updated
    Oct 6, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonah Mushava; Mike Murray; Jonah Mushava; Mike Murray
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The raw datasets provided here are intended for use in a Data in Brief article. These comprehensive files, sourced from the Freddie Mac website, offer quarterly snapshots of mortgage loans that have been originated in the USA since 1999, along with details of their subsequent repayment behaviours. This data remains current and is updated every three months. Specifically, the loan origination data present here encompasses amortized fixed-rate mortgage loans from 1999 up to June 2022. In contrast, the performance data is presented on a monthly basis, detailing loan repayment profiles from 1999 until September 30, 2022. Both the origination and performance datasets feature a unique loan ID, which can be utilized to integrate the data on loan originations with that of loan repayments.

  20. Bondora P2P Loans outdated

    • kaggle.com
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marco Beyer (2024). Bondora P2P Loans outdated [Dataset]. https://www.kaggle.com/datasets/marcobeyer/bondora-loans
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2024
    Dataset provided by
    Kaggle
    Authors
    Marco Beyer
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Peer-to-peer (P2P) lending has gained significant attention as an alternative to traditional banking, offering a direct connection between borrowers and lenders. The industry has seen rapid growth, especially in the U.S. and Europe, due to the increasing acceptance of online business models and supportive regulations.

    For investors, P2P lending provides an opportunity to diversify portfolios and enhance returns by investing in a proven asset class. However, the uncollateralized nature of these loans presents a default risk, making it crucial for lenders to minimize risks while maximizing returns.

    This dataset offers valuable insights for building and analyzing credit risk models, featuring data from a leading European P2P lending platform, Bondora. It includes demographic and financial information on borrowers and loan transactions starting at February 2009.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate

United States 30-Year Mortgage Rate

United States 30-Year Mortgage Rate - Historical Dataset (1971-04-01/2025-07-10)

Explore at:
csv, json, xml, excelAvailable download formats
Dataset updated
Jul 10, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Apr 1, 1971 - Jul 10, 2025
Area covered
United States
Description

30 Year Mortgage Rate in the United States increased to 6.72 percent in July 10 from 6.67 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

Search
Clear search
Close search
Google apps
Main menu