7 datasets found
  1. ERA5 post-processed daily statistics on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 11, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    *The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

  2. i

    Carbon Footprint of Bank Loans

    • climatedata.imf.org
    • ifeellucky-imf-dataviz.hub.arcgis.com
    Updated Feb 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    climatedata_Admin (2021). Carbon Footprint of Bank Loans [Dataset]. https://climatedata.imf.org/datasets/596f11fea29d429ba6c5507e3756a751
    Explore at:
    Dataset updated
    Feb 27, 2021
    Dataset authored and provided by
    climatedata_Admin
    License

    https://www.imf.org/external/terms.htmhttps://www.imf.org/external/terms.htm

    Description

    Sources: OECD (2021), OECD Inter-Country Input-Output Database, https://oe.cd/icio; International Monetary Fund (IMF), Statistics Department Questionnaire; IMF staff calculations.Category: Climate FinanceData series:Carbon Footprint of Bank Loans (Based on emission intensities)Carbon Footprint of Bank Loans (Based on emission intensities - normalized)Carbon Footprint of Bank Loans (Based on emission multipliers)Carbon Footprint of Bank Loans (Based on emission multipliers - normalized)Metadata:For relevant literature see Guan, Rong, Haitao Zheng, Jie Hu, Qi Fang, and Ruoen Ren. 2017. “The Higher Carbon Intensity of Loans, the Higher Non-Performing Loan Ratio: The Case of China.” Sustainability 9 (4) (April 22): 667. https://dx.doi.org/10.3390/su9040667.Methodology:The IMF has developed the Carbon Footprint of Bank Loans (CFBL) indicator for selected countries. CFBL indicator requires (i) deposit takers’ domestic loans by industry data, and (ii) the estimation of carbon emission factors (CEFs) by industry.The IMF has conducted a data collection exercise to obtain deposit takers’ domestic loans by industry data. The CEFs are calculated based on (i) direct metric tons of carbon emissions from fuel consumption per million $US of output by country and industry (CO2 emission intensities), and (ii) direct and indirect carbon emissions from fuel consumption per million $US of output by country (CO2 emission multipliers). The output multipliers and carbon emission intensities for 66 countries and 45 industries are sourced from the OECD Input-Output Database. Direct and indirect carbon emission factors are calculated by multiplying the Leontief inverse (also known as input-output multipliers) from the OECD World Input-Output Table by the carbon emissions from fuel consumption intensities.CFBL indicator is obtained by multiplying domestic loans to a specific industry by their corresponding carbon emission factors, summing over all industries and dividing the final result by total domestic loans. For a limited number of countries, updated CFBL information until 2018 will be posted in due course. CFBL is an experimental indicator. The index requires a nuanced reading. For instance, a sharp increase in the share of a brown industry in the deposit takers’ loans portfolio may create a negative impact on this indicator in the short term, but longer term results could diverge significantly if these loans were allocated for transition to low carbon environment or for continuing unsustainable brown activities. The emission coefficients applied to loans related to the emissions of the industry and not the emissions resulting from the consumption of the goods the industry produces. Also, the estimation methodology has a number of limitations. First, class level ISIC data could be more appropriate for the CFBL estimation, as it offers more detailed information to evaluate carbon footprint by industry. However, carbon emission factors are not available at this granularity. Also, the ISIC structure is not fully aligned with the needs of climate finance.Second, the granularity of the deposit takers’ domestic loans by industry data availability is not fully consistent across jurisdictions. It is not possible to obtain the loans by industry data at the same level of granularity from all participating countries. Third, the country coverage is limited as carbon intensity factors are available for only 66 countries. Fourth, input-output multipliers have limiting assumptions. Input-output multipliers are static (i.e., assume that there is a fixed input structure and fixed ratios for production for each industry) and do not take into account supply-side constraints or budget constraints. Please see additional information in this link.

  3. i

    Large-Scale Financial Education Program Impact Evaluation 2011-2012 - Mexico...

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David McKenzie (2019). Large-Scale Financial Education Program Impact Evaluation 2011-2012 - Mexico [Dataset]. https://catalog.ihsn.org/index.php/catalog/5135
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    David McKenzie
    Gabriel Lara Ibarra
    Miriam Bruhn
    Time period covered
    2011 - 2012
    Area covered
    Mexico
    Description

    Abstract

    To educate consumers about responsible use of financial products, many governments, non-profit organizations and financial institutions have started to provide financial literacy courses. However, participation rates for non-compulsory financial education programs are typically extremely low.

    Researchers from the World Bank conducted randomized experiments around a large-scale financial literacy course in Mexico City to understand the reasons for low take-up among a general population, and to measure the impact of this financial education course. The free, 4-hour financial literacy course was offered by a major financial institution and covered savings, retirement, and credit use. Motivated by different theoretical and logistics reasons why individuals may not attend training, researchers randomized the treatment group into different subgroups, which received incentives designed to provide evidence on some key barriers to take-up. These incentives included monetary payments for attendance equivalent to $36 or $72 USD, a one-month deferred payment of $36 USD, free cost transportation to the training location, and a video CD with positive testimonials about the training.

    A follow-up survey conducted on clients of financial institutions six months after the course was used to measure the impacts of the training on financial knowledge, behaviors and outcomes, all relating to topics covered in the course.

    The baseline dataset documented here is administrative data received from a screener that was used to get people to enroll in the financial course. The follow-up dataset contains data from the follow-up questionnaire.

    Geographic coverage

    Mexico City

    Analysis unit

    -Individuals

    Universe

    Participants in a financial education evaluation

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Researchers used three different approaches to obtain a sample for the experiment.

    The first one was to send 40,000 invitation letters from a collaborating financial institution asking about interest in participating. However, only 42 clients (0.1 percent) expressed interest.

    The second approach was to advertise through Facebook, with an ad displayed 16 million times to individuals residing in Mexico City, receiving 119 responses.

    The third approach was to conduct screener surveys on streets in Mexico City and outside branches of the partner institution. Together this yielded a total sample of 3,503 people. Researchers divided this sample into a control group of 1,752 individuals, and a treatment group of 1,751 individuals, using stratified randomization. A key variable used in stratification was whether or not individuals were financial institution clients. The analysis of treatment impacts is based on the sample of 2,178 individuals who were financial institution clients.

    The treatment group received an invitation to participate in the financial education course and the control group did not receive this invitation. Those who were selected for treatment were given a reminder call the day before their training session, which was at a day and time of their choosing.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The follow-up survey was conducted between February and July 2012 to measure post-training financial knowledge, behavior and outcomes. The questionnaire was relatively short (about 15 minutes) to encourage participation.

    Interviewers first attempted to conduct the follow-up survey over the phone. If the person did not respond to the survey during the first attempt, researchers offered one a 500 pesos (US$36) Walmart gift card for completing the survey during the second attempt. If the person was still unavailable for the phone interview, a surveyor visited his/her house to conduct a face-to-face interview. If the participant was not at home, the surveyor delivered a letter with information about the study and instructions for how to participate in the survey and to receive the Walmart gift card. Surveyors made two more attempts (three attempts in total) to conduct a face-to-face interview if a respondent was not at home.

    Response rate

    72.8 percent of the sample was interviewed in the follow-up survey. The attrition rate was slightly higher in the treatment group (29 percent) than in the control group (25.3 percent).

  4. T

    INTEREST RATE by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). INTEREST RATE by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/interest-rate?continent=europe
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for INTEREST RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. u

    ERA5 monthly mean back extension 1950-1978 (Preliminary version)

    • rda.ucar.edu
    • rda-web-prod.ucar.edu
    Updated Oct 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). ERA5 monthly mean back extension 1950-1978 (Preliminary version) [Dataset]. https://rda.ucar.edu/#!lfd?nb=y&b=topic&v=Biosphere
    Explore at:
    Dataset updated
    Oct 6, 2011
    Description

    ECMWF has announced that the Copernicus Climate Change Service (C3S) has begun the release of the ERA5 back extension data covering the period 1950-1978 on the Climate Data Store (CDS). ... Although in many other respects the quality of this dataset is quite satisfactory, the current back extension appears to suffer from tropical cyclones that are sometimes unrealistically intense. This is in contrast with the ERA5 product from 1979 onwards (also available from the CDS and RDA ds633.0). For more details see the article, ERA5 back extension 1950-1978 (Preliminary version): tropical cyclones are too intense. For this reason the current release of the back extension is preliminary. It is therefore available from separate CDS catalogue entries (hourly, monthly, single level and pressure levels), and this RDA dataset. Around the end of 2021 an updated version of the back extension is to be made available which will be added to the ERA5 catalogue entries that currently reach back to 1979. After an overlap period (the duration of which is not yet decided), the preliminary back extension will be deprecated. The full back extension preliminary dataset is expected to be made available near the end of 2020/early 2021. After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (12 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses. Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles. Please note: DECS produces a CF 1.6 compliant netCDF-4/HDF5 version of ERA5 for the CISL RDA at NCAR. The netCDF-4/HDF5 version is the de facto RDA ERA5 online data format. The GRIB1 data format is also available online. There is a one-to-one correspondence between the netCDF-4/HDF5 and GRIB1 files, with as much GRIB1 metadata as possible incorporated into the attributes of the netCDF-4/HDF5 counterpart.

  6. Comparison of parameter estimates obtained from different datasets.

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanket Rane; Thea Hogan; Benedict Seddon; Andrew J. Yates (2023). Comparison of parameter estimates obtained from different datasets. [Dataset]. http://doi.org/10.1371/journal.pbio.2003949.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Sanket Rane; Thea Hogan; Benedict Seddon; Andrew J. Yates
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    95% CIs are shown in parentheses. See S1 Text for a description of the models.

  7. D

    Democratic Republic of Congo CD: Income Share Held by Second 20%

    • ceicdata.com
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). Democratic Republic of Congo CD: Income Share Held by Second 20% [Dataset]. https://www.ceicdata.com/en/democratic-republic-of-congo/poverty/cd-income-share-held-by-second-20
    Explore at:
    Dataset updated
    Sep 11, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2004 - Dec 1, 2012
    Area covered
    Democratic Republic of the Congo
    Description

    Congo, The Democratic Republic of the CD: Income Share Held by Second 20% data was reported at 10.000 % in 2012. This records an increase from the previous number of 9.900 % for 2004. Congo, The Democratic Republic of the CD: Income Share Held by Second 20% data is updated yearly, averaging 9.950 % from Dec 2004 (Median) to 2012, with 2 observations. The data reached an all-time high of 10.000 % in 2012 and a record low of 9.900 % in 2004. Congo, The Democratic Republic of the CD: Income Share Held by Second 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Democratic Republic of Congo – Table CD.World Bank: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
Organization logo

ERA5 post-processed daily statistics on single levels from 1940 to present

Explore at:
19 scholarly articles cite this dataset (View in Google Scholar)
gribAvailable download formats
Dataset updated
Jul 17, 2025
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

Time period covered
Jan 1, 1940 - Jul 11, 2025
Description

ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

*The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

Search
Clear search
Close search
Google apps
Main menu