The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SPIN covid19 RMRIO dataset is a time series of MRIO tables covering years from 2016-2026 on a yearly basis. The dataset covers 163 sectors in 155 countries.
This repository includes data for years from 2016 to 2019 (hist scenario) and the corresponding labels. Data for years 2020 to 2026 are stored in the corresponding repositories:
covid: 10.5281/zenodo.5713825
counterfactual: 10.5281/zenodo.5713839
Tables are generated using the SPIN method, based on the RMRIO tables for the year 2015, GDP, imports and exports data from the International Financial Statistics (IFS) and the World Economic Outlooks (WEO) of October 2019 and April 2021.
From 2020 to 2026, the dataset includes two diverging scenarios. The covid scenario is in line with April 2021 WEO's data and includes the macroeconomic effects of Covid 19. The counterfactual scenario is in line with October 2019 WEO's data and simulates the global economy without Covid 19. Tables from 2016 to 2019 are labelled as hist.
The Projections folder includes the generated tables for years from 2016 to 2019 (hist scenario) and the corresponding labels. The Sources folder contains the data records from the IFS and WEO databases. The Method data contains the data files used to generate the tables with the SPIN method and the following Python scripts:
SPIN_covid19_MRIO_files_preparation.py generates the data files from the source data.
SPIN_covid19_RMRIO runs.py is the command to run the SPIN method and generate the dataset.
figures.py is a script to produce figures reflecting the consistency of the projected tables and the evolution of macroeconomic figures in the 2016-2026 period for a selection of countries.
All tables are labelled in 2015 US$ and valued in basic prices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:
This brief shows an overview of the potential impact that the COVID-19 emergency might cause on monetary variables with a counterfactual effect on agricultural markets. The referred sanitary emergency has unexpectedly strengthened the dollar resulting on a hamper to Ecuadorian food prices and food security. Our country (in full dept) fulfil with the necessary conditions to shift the crisis (human and economic burden) to international levels which should be considered by the private and public stakeholders.
Palabras clave: Economía agrícola, Seguridad alimentaria, COVID-19/SARS-CoV-2, desarrollo
Key Words: Agricultural Economics, Food Security, COVID-19 / SARS-CoV-2, development
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://imgur.com/AYzsmYU.jpg" alt="Dataset Structure">
I read an article yesterday which got my mind storming, A article by Worldbank on August 15th, 2022 better explains it, It has been quoted below,
I already have a project i'm working on since Feb 2021, trying to solving this problem, listed in my datasets
This dataset showcases the statistics over the past 6-7 decades which covers the production of 150+ unique crops, 50+ livestock elements, Land distribution by usage and population, As aspiring data scientists one can try to extract insights incentivizing the optimal use of natural resources and distribution of resources
Record high food prices have triggered a global crisis that will drive millions more into extreme poverty, magnifying hunger and malnutrition, while threatening to erase hard-won gains in development. The war in Ukraine, supply chain disruptions, and the continued economic fallout of the COVID-19 pandemic are reversing years of development gains and pushing food prices to all-time highs. Rising food prices have a greater impact on people in low- and middle-income countries, since they spend a larger share of their income on food than people in high-income countries. This brief looks at rising food insecurity and World Bank responses to date.
<--- | (❁´◡`❁) | ---> |
---|---|---|
![]() | ![]() | ![]() |
In Chad, COVID-19 is expected to affect households in many ways. First, governments might reduce social transfers to households due to the decline in revenue arising from the potential COVID-19 economic recession. Second households deriving income from vulnerable sectors such as tourism and related activities will likely face risk of unemployment or loss of income. Third an increase in prices of imported goods can also negatively impact household welfare, as a direct consequence of the increase of these imported items or as indirect increase of prices of local good manufactured using imported inputs. In this context, there is a need to produce high frequency data to help policy makers in monitoring the channels by which the pandemic affects households and assessing its distributional impact. To do so, the sample of the longitudinal survey will be a sub-sample of the 2018/19 Enquête sur la Consommation des Ménages et le Secteur Informel au Tchad (Ecosit 4) in Chad.
This has the advantage of conducting cost effectively welfare analysis without collecting new consumption data. The 30 minutes questionnaires covered many modules, including knowledge, behavior, access to services, food security, employment, safety nets, shocks, coping, etc. Data collection is planned for four months (four rounds) and the questionnaire is designed with core modules and rotating modules.
The main objectives of the survey are to: • Identify type of households directly or indirectly affected by the pandemic; • Identify the main channels by which the pandemic affects households; • Provide relevant data on income and socioeconomic indicators to assess the welfare impact of the pandemic.
National coverage, including Ndjamena (Capital city), other urban and rural
The survey covered only households of the 2018/19 Enquête sur la Consommation des Ménages et le Secteur Informel au Tchad (ECOSIT 4) which excluded populations in prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
The Chad COVID-19 impact monitoring survey is a high frequency Computer Assisted Telephone Interview (CATI). The survey’s sample was drawn from the Enquête sur la Consommation des Ménages et le Secteur Informel au Tchad (Ecosit 4) which was conducted in 2018-2019. ECOSIT 4 is a survey with a sample size of 7,493 household’s representative at national, regional and by urban/rural. During the survey, each household was asked to provide a phone number of at least one member or a non-household member (e.g. friends or neighbors) so that they can be contacted for follow-up questions. The sampling of the high frequency survey aimed at having representative estimates by national and area of residence: Ndjamena (capital city), other urban and rural area. The minimum sample size was 2,000 for which 1,748 households (87.5%) were successfully interviewed at the national level. To account for non-response and attrition and given that this survey was the first experience of INSEED, 2,833households were initially selected, among them 1,832 households have been reached. The 1,748 households represent the final sample and will be contacted for the next three rounds of the survey.
None
Computer Assisted Personal Interview [capi]
The questionnaire is in French and has been administrated in French and local languages. The length of an interview varies between 20 and 30 minutes. The questionnaires consisted of the following sections: 1- Household Roster 2- Knowledge of COVID-19 3- Behavior and Social Distancing 4- Access to Basic Services 5- Employment and Income 6- Prices and Food Security 7- Other Impacts of COVID-19 8- Income Loss 9- Coping/Shocks 10- Social Safety Nets 11- Fragility 12. Gender based Violence (for the fourth wave) 13. Vaccine (for the fourth wave)
At the end of data collection, the raw dataset was cleaned by the INSEED with the support of the WB team. This included formatting, and correcting results based on monitoring issues, enumerator feedback and survey changes.
The minimum sample expected is 2,000 households covering Ndjamena, other urban and rural areas. Overall, the survey has been completed for 1,748 households that is about 87.5 % of the expected minimal sample size at the national level. This provide reliable estimates at national and area of residence level.
An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India’s 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, the World Bank, IDinsight, and the Development Data Lab sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.
Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, and Uttar Pradesh
Household
Sample survey data [ssd]
This dataset includes observations covering six states (Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, Uttar Pradesh) and three survey rounds. The survey did not have a single, unified frame from which to sample phone numbers. The final sample was assembled from several different sample frames, and the choice of frame sample frames varied across states and survey rounds.
These frames comprise four prior IDinsight projects and from an impact evaluation of the National Rural Livelihoods project conducted by the Ministry of Rural Development. Each of these surveys sought to represent distinct populations, and employed idiosyncratic sample designs and weighting schemes.
A detailed note covering key features of each sample frame is available for download.
Computer Assisted Telephone Interview [cati]
The survey questionnaires covered the following subjects:
Agriculture: COVID-19-related changes in price realisation, acreage decisions, input expenditure, access to credit, access to fertilisers, etc.
Income and consumption: Changes in wage rates, employment duration, consumption expenditure, prices of essential commodities, status of food security etc.
Migration: Rates of in-migration, migrant income and employment status, return migration plans etc.
Access to relief: Access to in-kind, cash and workfare relief, quantities of relief received, and constraints on the access to relief.
Health: Access to health facilities and rates of foregone healthcare, knowledge of COVID-19 related symptoms and protective behaviours.
While a number of indicators were consistent across all three rounds, questions were added and removed as and when necessary to account for seasonal changes (i.e: in the agricultural cycle).
Round 1: ~55% Round 2: ~46% Round 3: ~55%
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Supplemental Nutrition Assistance Program (SNAP) is the largest of the domestic nutrition assistance programs administered by the Food and Nutrition Service (FNS) of the U.S. Department of Agriculture (USDA), providing millions of Americans with the means to purchase food for a nutritious diet. During fiscal year (FY) 2020, SNAP served an average of 39.9 million people monthly and paid out $74.2 billion in benefits, which includes the cost of emergency allotments to supplement SNAP benefits due to the COVID-19 public health emergency. In response to legislative adjustments to program rules and changes in economic and demographic trends, the characteristics of SNAP participants and households and the size of the SNAP caseload change over time. To quantify these changes or estimate the effect of adjustments to program rules on the current SNAP caseload, FNS relies on data from the SNAP Quality Control (QC) database. This database is an edited version of the raw data file of monthly case reviews conducted by State SNAP agencies to assess the accuracy of eligibility determinations and benefit calculations for each State’s SNAP caseload. The COVID-19 public health emergency resulted in an incomplete FY 2020 sample in the raw data file. FNS granted States temporary waivers on conducting QC reviews starting in March 2020. Very few States collected QC data from March 2020 through May 2020. Most States opted to conduct QC reviews from June 2020 through September 2020, although FNS was unable to provide its usual level of oversight of the sampling procedures. Furthermore, monthly State samples for this time period were often smaller than usual. This dataset includes separate SNAP QC files for FY 2020. The first covers the “pre-pandemic” period of October 2019 through February 2020. The second covers the “waiver” period of June 2020 through September 2020 for the 47 States and territories that provided sufficient data for at least one of those months. Resources in this dataset:Resource Title: Fiscal Year 2020 Supplemental Nutrition Assistance Program Quality Control Database (Period 2). File Name: qc_pub_fy2020_per2.csvResource Description: The Supplemental Nutrition Assistance Program (SNAP) is the largest of the domestic nutrition assistance programs administered by the Food and Nutrition Service (FNS) of the U.S. Department of Agriculture (USDA), providing millions of Americans with the means to purchase food for a nutritious diet. During fiscal year (FY) 2020, SNAP served an average of 39.9 million people monthly and paid out $74.2 billion in benefits, which includes the cost of emergency allotments to supplement SNAP benefits due to the COVID-19 public health emergency. In response to legislative adjustments to program rules and changes in economic and demographic trends, the characteristics of SNAP participants and households and the size of the SNAP caseload change over time. To quantify these changes or estimate the effect of adjustments to program rules on the current SNAP caseload, FNS relies on data from the SNAP Quality Control (QC) database. This database is an edited version of the raw data file of monthly case reviews conducted by State SNAP agencies to assess the accuracy of eligibility determinations and benefit calculations for each State’s SNAP caseload.
The COVID-19 public health emergency resulted in an incomplete FY 2020 sample in the raw data file. FNS granted States temporary waivers on conducting QC reviews starting in March 2020. Very few States collected QC data from March 2020 through May 2020. Most States opted to conduct QC reviews from June 2020 through September 2020, although FNS was unable to provide its usual level of oversight of the sampling procedures. Furthermore, monthly State samples for this time period were often smaller than usual.
There are separate SNAP QC databases for FY 2020. The first covers the “pre-pandemic” period of October 2019 through February 2020. The second covers the “waiver” period of June 2020 through September 2020 for the 47 States and territories that provided sufficient data for at least one of those months.Resource Title: Fiscal Year 2020 Supplemental Nutrition Assistance Program Quality Control Database (Period 1). File Name: qc_pub_fy2020_per1.csvResource Description: The Supplemental Nutrition Assistance Program (SNAP) is the largest of the domestic nutrition assistance programs administered by the Food and Nutrition Service (FNS) of the U.S. Department of Agriculture (USDA), providing millions of Americans with the means to purchase food for a nutritious diet. During fiscal year (FY) 2020, SNAP served an average of 39.9 million people monthly and paid out $74.2 billion in benefits, which includes the cost of emergency allotments to supplement SNAP benefits due to the COVID-19 public health emergency. In response to legislative adjustments to program rules and changes in economic and demographic trends, the characteristics of SNAP participants and households and the size of the SNAP caseload change over time. To quantify these changes or estimate the effect of adjustments to program rules on the current SNAP caseload, FNS relies on data from the SNAP Quality Control (QC) database. This database is an edited version of the raw data file of monthly case reviews conducted by State SNAP agencies to assess the accuracy of eligibility determinations and benefit calculations for each State’s SNAP caseload.
The COVID-19 public health emergency resulted in an incomplete FY 2020 sample in the raw data file. FNS granted States temporary waivers on conducting QC reviews starting in March 2020. Very few States collected QC data from March 2020 through May 2020. Most States opted to conduct QC reviews from June 2020 through September 2020, although FNS was unable to provide its usual level of oversight of the sampling procedures. Furthermore, monthly State samples for this time period were often smaller than usual.
There are separate SNAP QC databases for FY 2020. The first covers the “pre-pandemic” period of October 2019 through February 2020. The second covers the “waiver” period of June 2020 through September 2020 for the 47 States and territories that provided sufficient data for at least one of those months.Resource Title: Technical Documentation for the Fiscal Year 2020 Supplemental Nutrition Assistance Program Quality Control Database and the QC Minimodel. File Name: FY2020TechDoc.pdfResource Description: The Supplemental Nutrition Assistance Program (SNAP) is the largest of the domestic nutrition assistance programs administered by the Food and Nutrition Service (FNS) of the U.S. Department of Agriculture (USDA), providing millions of Americans with the means to purchase food for a nutritious diet. During fiscal year (FY) 2020, SNAP served an average of 39.9 million people monthly and paid out $74.2 billion in benefits, which includes the cost of emergency allotments to supplement SNAP benefits due to the COVID-19 public health emergency. In response to legislative adjustments to program rules and changes in economic and demographic trends, the characteristics of SNAP participants and households and the size of the SNAP caseload change over time. To quantify these changes or estimate the effect of adjustments to program rules on the current SNAP caseload, FNS relies on data from the SNAP Quality Control (QC) database. This database is an edited version of the raw data file of monthly case reviews conducted by State SNAP agencies to assess the accuracy of eligibility determinations and benefit calculations for each State’s SNAP caseload.
The COVID-19 public health emergency resulted in an incomplete FY 2020 sample in the raw data file. FNS granted States temporary waivers on conducting QC reviews starting in March 2020. Very few States collected QC data from March 2020 through May 2020. Most States opted to conduct QC reviews from June 2020 through September 2020, although FNS was unable to provide its usual level of oversight of the sampling procedures. Furthermore, monthly State samples for this time period were often smaller than usual.
There are separate SNAP QC databases for FY 2020. The first covers the “pre-pandemic” period of October 2019 through February 2020. The second covers the “waiver” period of June 2020 through September 2020 for the 47 States and territories that provided sufficient data for at least one of those months.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The online price changes of selected high-demand products (HDPs) dataset. These data are experimental estimates developed to deliver timely indicators to help understand the impact of the coronavirus (COVID-19).
Vulnerable populations in urban areas globally have been among the worst hit by the global COVID-19 crisis. In South and South-East Asia, the COVID-19 pandemic has increased levels of vulnerability and food insecurity in cities through disruptions to food supply chains, increased food prices and loss of income.
The data gateway of the Food Security Portal contains over 12,000 datasets related to excessive price variability, COVID-19 food price monitoring, media analysis, high-frequency commodity prices, food security indicators, and others. Much of this data is available for 50 countries in the world and goes back over 50 years. We draw from the public, authoritative data sources like the World Bank, FAO, UNICEF, and others, as well as IFPRI's own data. In order to make the data contained on the site as useful as possible, it is available to freely download as a text file for human or as a JSON API for machines. Visitors to the site are welcome to download, aggregate, mash-up, and share this information as they like. For more information on the data license and how to use this data, please visit each dataset page. If you have any questions about the Data portal, our data collection techniques, or other related issues, please feel free to contact us (ifpri-fsp@cgiar.org) via email.
Data provided by La Empresa Mixta de Mercados Centrales de Abastecimiento de Madrid, S.A. (MERCAMADRID) in the period of the COVID19 pandemic. NOTICE: This dataset is no longer updated. Data are offered from 13-04.2020 to 8-08-2020. In this portal is available another set of data with the historical series of this information (since 2019) and quarterly update: Mercamadrid: The quotations or prices recorded by the products on the market are the result of the daily meeting of supply and demand and are fixed through the direct negotiation of buyer and seller. Therefore, the prices indicated serve as a reference for the quotations recorded in the wholesale link of the distribution chain.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundTo limit the spread of COVID-19, a strict lockdown was imposed in France between March and May 2020. Mobility limitations and closure of non-essential public places (restaurants, open-air markets, etc.) affected peoples' food environment (FE) and thus their food purchasing practices (FPPs). This study aimed to explore changes in FPPs of French households during lockdown and associations with individual and environmental factors.MethodsIn April of 2020 households from the Mont'Panier cross-sectional study (n = 306), a quota sampling survey conducted in the south of France, were asked to complete an online questionnaire about their FPPs during lockdown and related factors, including perceived FE (distance to closest general food store, perception of increased food prices, etc.). Objective FE (presence, number, proximity, and density of food outlets) was assessed around participant's home using a geographical information system. Multiple correspondence analysis based on changes in frequency of use and quantity of food purchased by food outlet, followed by a hierarchical cluster analysis, resulted in the identification of clusters. Logistic regression models were performed to assess associations between identified clusters and household's sociodemographic characteristics, perceived, and objective FE.ResultsFive clusters were identified. Cluster “Supermarket” (38% of the total sample), in which households reduced frequency of trips, but increased quantity bought in supermarkets during lockdown, was associated with lower incomes and the perception of increased food prices. Cluster “E-supermarket” (12%), in which households increased online food shopping with pickup at supermarket, was associated with higher incomes. Cluster “Diversified” (22%), made up of households who reduced frequency of trips to diverse food outlet types, was associated with the perception of increased food prices. Cluster “Organic Food Store” (20%), in which households did not change frequency of trips, nor quantity purchased in organic food stores, was associated with being older (35–50 y vs.
Energy production and consumption statistics are provided in total and by fuel and provide an analysis of the latest 3 months data compared to the same period a year earlier. Energy price statistics cover domestic price indices, prices of road fuels and petroleum products and comparisons of international road fuel prices.
Highlights for the 3 month period March 2021 to May 2021, compared to the same period a year earlier include:
*Major Power Producers (MPPs) data published monthly, all generating companies data published quarterly.
Highlights for July 2021 compared to June 2021:
Lead statistician Warren Evans, Tel 0300 068 5059
Press enquiries, Tel 020 7215 1000
Statistics on monthly production and consumption of coal, electricity, gas, oil and total energy include data for the UK for the period up to the end of May 2021.
Statistics on average temperatures, wind speeds, sun hours and rainfall include data for the UK for the period up to the end of June 2021.
Statistics on energy prices include retail price data for the UK for June 2021, and petrol & diesel data for July 2021, with EU comparative data for June 2021.
The next release of provisional monthly energy statistics will take place on Thursday 26 August 2021.
To access the data tables associated with this release please click on the relevant subject link(s) below. For further information please use the contact details provided.
Please note that the links below will always direct you to the latest data tables. If you are interested in historical data tables please contact BEIS (kevin.harris@beis.gov.uk)
Subject and table number | Energy production and consumption, and weather data |
---|---|
Total Energy | Contact: Energy statistics, Tel: 0300 068 5041 |
ET 1.1 | Indigenous production of primary fuels |
ET 1.2 | Inland energy consumption: primary fuel input basis |
<a href="https://www.gov.uk/government/statistics/solid-fuels-and-derived-gas |
An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India's 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, researchers from the World Bank, in collaboration with IDinsight, the Development Data Lab, and John Hopkins University sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.
Regional coverage
Households
Households located in Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh
Sample survey data [ssd]
This dataset includes observations covering six states (Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, Uttar Pradesh) and three survey rounds. The survey did not have a single, unified frame from which to sample phone numbers. The final sample was assembled from several different sample frames, and the choice of frame sample frames varied across states and survey rounds.
These frames comprise four prior IDinsight projects and from an impact evaluation of the National Rural Livelihoods project conducted by the Ministry of Rural Development. Each of these surveys sought to represent distinct populations, and employed idiosyncratic sample designs and weighting schemes.
A detailed note covering key features of each sample frame is available for download.
Details will be made available after all rounds of data collection and analysis is complete.
Computer Assisted Telephone Interview [cati]
The survey questionnaires covered the following subjects:
Agriculture: COVID-19-related changes in price realisation, acreage decisions, input expenditure, access to credit, access to fertilisers, etc.
Income and consumption: Changes in wage rates, employment duration, consumption expenditure, prices of essential commodities, status of food security etc.
Migration: Rates of in-migration, migrant income and employment status, return migration plans etc.
Access to relief: Access to in-kind, cash and workfare relief, quantities of relief received, and constraints on the access to relief.
Health: Access to health facilities and rates of foregone healthcare, knowledge of COVID-19 related symptoms and protective behaviours.
While a number of indicators were consistent across all three rounds, questions were added and removed as and when necessary to account for seasonal changes (i.e: in the agricultural cycle).
The India COVID-19 surveys were conducted using Computer Assisted Telephone Interview (CATI) techniques. The household questionnaire was implemented using the CATI software, SurveyCTO. The software was deployed through surveyors’ smartphones, who called respondents via mobile, and recorded their responses over the phone. If unreached, surveyors would attempt to call back respondents up to 7 times, often seeking explicit appointments for suitable times to avoid non-responses.
Validation and consistency checks were incorporated into the SurveyCTO software to avoid human error. Extreme values and outliers were scrutinised through a real time dashboard set up by IDinsight. Surveys were also audio audited by monitors to check for consistency and accuracy of question phrasing and answer recording. Finally, supervisors also randomly back-checked a subset of interviews to further ensure data accuracy.
IDinsight cleaned and labelled the data for further processing and analysis. The Development Data Lab examined the data for discrepancies and errors and merged the dataset with their proprietary spatial data.
All personally identifiable information has been removed from the datasets.
Round 1: ~55% Round 2: ~46% Round 3: ~55%
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This is an archival release to document the state of the data set for this research project before it got severely derailed by the Covid-19 pandemic and the explosion in Beirut on 4 August 2020. Please consult the readme for a detailed description of the contents and workflows.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Panel Data describe the six region of the world as output using six inputs:
Value Agriculture (VAit) represents the Output where the bioeconomy (residual biomass) is integrated. Crop and livestock statistics are recorded for 278 products, covering the following categories: 1) crops primary, 2) crops processed, 3) live animals, 4) livestock primary (Galanakis et al., 2022; Mahari et al., 2022).
Land use (LUit) represents the input 1, Land use indicates the socioeconomic use of land (for example, agriculture, forestry, recreation or residential use). In particular it defines a number of services such as agriculture, forestry, industry, transport, housing and other services that use land as a natural and/or an economic resource. This variable can affect the level of technological innovation, which can contribute to the improvement of TFP in the bioeconomy (Egenolf et al., 2022; Rahman et al., 2022).
Unit Capital Stock (UCSit) represents the input 2, can affect the changes of technological innovation. It can also be described as the difference between gross capital stock and consumption of fixed capital (Scandizzo, 2022; Nakamya, 2022).
Annual population (APit) represents input 3, can affect the changes of technical efficiency, in conditions of Covid-19 affected the working market (Ronzon et al., 2022; Zhao et al., 2022).
Trade Indices (TIit) represents input 4, can affect the changes of technological innovation. It includes re-exports. According to the FAO methodology, the quantity of food and agricultural exports included in the FAOSTAT database is expressed in terms of weight (tonnes) for all commodities except for live animals which are expressed in units (heads); poultry, rabbits, pigeons and other birds are expressed in thousand units (Rahman et al., 2022; Huang et al., 2022).
Consumer Prices, Food Indices (2015 = 100) (CPFIit) represents input 5, can affect the changes of technological innovation. Consumer Price Indices measure the price change between the current and reference periods of an average basket of goods and services purchased by households (Egenolf et al., 2022; Ronzon et al., 2022).
Access to up-to-date socio-economic data is a widespread challenge in Solomon Islands and other Pacific Island Countries. To increase data availability and promote evidence-based policymaking, the Pacific Observatory provides innovative solutions and data sources to complement existing survey data and analysis. One of these data sources is a series of High Frequency Phone Surveys (HFPS), which began in 2020 as a way to monitor the socio-economic impacts of the COVID-19 Pandemic, and since 2023 has grown into a series of continuous surveys for socio-economic monitoring. See https://www.worldbank.org/en/country/pacificislands/brief/the-pacific-observatory for further details.
For Solmon Islands, after five rounds of data collection from 2020-2020, in April 2023 a monthly HFPS data collection commenced and continued for 18 months (ending September 2024) –on topics including employment, income, food security, health, food prices, assets and well-being. Fieldwork took place in two non-consecutive weeks of each month. Data for April 2023-December 2023 were a repeated cross section, while January 2024 established the first month of a panel, the was continued to September 2024. Each month has approximately 550 households in the sample and is representative of urban and rural areas, but is not representative at the province level. This dataset contains combined monthly survey data for all months of the continuous HFPS in Solomon Islands. There is one date file for household level data with a unique household ID. and a separate file for individual level data within each household data, that can be matched to the household file using the household ID, and which also has a unique individual ID within the household data which can be used to track individuals over time within households, where the data is panel data.
Urban and rural areas of Solomon Islands.
Household, individual.
Sample survey data [ssd]
The initial sample was drawn through Random Digit Dialing (RDD) with geographic stratification. As an objective of the survey was to measure changes in household economic wellbeing over time, the HFPS sought to contact a consistent number of households across each province month to month. This was initially a repeated cross section from April 2023-Dec 2023. The initial sample was drawn from information provided by a major phone service provider in Solomon Islands, covering all the provinces in the country. It had a probability-based weighted design, with a proportionate stratification to achieve geographical representation. The geographical distribution compared to the 2019 Census is listed below for the first month of the HFPS monthly survey:
Choiseul : Census: 4.3%, HFPS: 5.2% Western : Census: 14.4%, HFPS: 13.7% Isabel : Census: 4.8%, HFPS: 4.7% Central : Census: 3.6%, HFPS: 5.2% Ren Bell : Census: 0.6%, HFPS: 1.4% Guadalcanal: Census: 19.8%, HFPS: 21.1% Malaita : Census: 23.1%, HFPS: 18.7% Makira : Census: 5.6%, HFPS: 5.6% Temotu: Census: 3.0%, HFPS: 3% Honiara: Census: 20.7%, HFPS: 21.3%
Source: Census of Population and Housing 2019
Note: The values in the HFPS column represent the proportion of survey participants residing in each province, based on the raw HFPS data from April.
In April 2023, the geographic distribution of World Bank HFPS participants was generally similar to that of the census data at the province level, though within provinces, areas with less mobile phone connectivity are likely to be underrepresented. One indication of this is that urban areas constituted 38.2 percent of the survey sample, which is a slight overrepresentation, compared to 32.5 percent in the Census 2019.
A monthly panel was established in January 2024, that is ongoing as of March 2025. In each subsequent month after January 2024, the survey firm would first attempt to contact all households from the previous month and then attempt to contact households from earlier months that had dropped out. After previous numbers were exhausted, RDD with geographic stratification was used for replacement households. Across all months of the survey a total of, 9,926 interviews were completed.
Computer Assisted Telephone Interview [cati]
The questionnaire, which can be found in the External Resources of this documentation, is available in English, with Solomons Pijin translation. There were few changes to the questionnaire across the survey months, but some sections were only introduced in 2024, namely energy access questions and questions to inform the baseline data of the Solomon Islands Government Integrated Economic Development and Climate Resilience (IEDCR) project.
The raw data were cleaned by the World Bank team using STATA. This included formatting and correcting errors identified through the survey’s monitoring and quality control process. The data are presented in two datasets: a household dataset and an individual dataset. The total number of observations is 9,926 in the household dataset and 62,054 in the individual dataset. The individual dataset contains information on individual demographics and labor market outcomes of all household members aged 15 and above, and the household data set contains information about household demographics, education, food security, food prices, household income, agriculture activities, social protection, access to services, and durable asset ownership. The household identifier (hhid) is available in both the household dataset and the individual dataset. The individual identifier (id_member) can be found in the individual dataset.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data recorded the consumers' perception and attitude towards online food delivery services (OFDS) among Malaysians during and post COVID-19 pandemic. A primary dataset of 307 respondents was collected. The questionnaire was adopted from previous studies and responses were collected through an online survey and invitation through email and social media over 4 weeks from March 2021 to April 2021. It studies the influences of convenience motivation, perceived ease of use, time-saving orientation and price-saving orientation on the attitude and behavioural intention towards using OFDS continuingly after the pandemic
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom National Average Wholesale Prices (NAWP): Fruit: Apples: Bramley's Seedling data was reported at 1.440 GBP/kg in 25 Apr 2025. This records a decrease from the previous number of 1.470 GBP/kg for 11 Apr 2025. United Kingdom National Average Wholesale Prices (NAWP): Fruit: Apples: Bramley's Seedling data is updated weekly, averaging 1.070 GBP/kg from Jan 2015 (Median) to 25 Apr 2025, with 507 observations. The data reached an all-time high of 3.510 GBP/kg in 29 Jul 2022 and a record low of 0.572 GBP/kg in 18 Dec 2015. United Kingdom National Average Wholesale Prices (NAWP): Fruit: Apples: Bramley's Seedling data remains active status in CEIC and is reported by Department for Environment, Food and Rural Affairs. The data is categorized under Global Database’s United Kingdom – Table UK.P001: Wholesale Fruit and Vegetable Prices. [COVID-19-IMPACT]
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations