As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.
This dataset is having data of customers who buys clothes online. The store offers in-store style and clothing advice sessions. Customers come in to the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.
The company is trying to decide whether to focus their efforts on their mobile app experience or their website.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Mariusz Šapczyński, Cracow University of Economics, Poland, lapczynm '@' uek.krakow.pl Sylwester Białowąs, Poznan University of Economics and Business, Poland, sylwester.bialowas '@' ue.poznan.pl
The dataset contains information on clickstream from online store offering clothing for pregnant women. Data are from five months of 2008 and include, among others, product category, location of the photo on the page, country of origin of the IP address and product price in US dollars.
The dataset contains 14 variables described in a separate file (See 'Data set description')
N/A
If you use this dataset, please cite:
Šapczyński M., Białowąs S. (2013) Discovering Patterns of Users' Behaviour in an E-shop - Comparison of Consumer Buying Behaviours in Poland and Other European Countries, “Studia Ekonomiczne†, nr 151, “La société de l'information : perspective européenne et globale : les usages et les risques d'Internet pour les citoyens et les consommateurs†, p. 144-153
========================================================
========================================================
========================================================
========================================================
following categories:
1-Australia 2-Austria 3-Belgium 4-British Virgin Islands 5-Cayman Islands 6-Christmas Island 7-Croatia 8-Cyprus 9-Czech Republic 10-Denmark 11-Estonia 12-unidentified 13-Faroe Islands 14-Finland 15-France 16-Germany 17-Greece 18-Hungary 19-Iceland 20-India 21-Ireland 22-Italy 23-Latvia 24-Lithuania 25-Luxembourg 26-Mexico 27-Netherlands 28-Norway 29-Poland 30-Portugal 31-Romania 32-Russia 33-San Marino 34-Slovakia 35-Slovenia 36-Spain 37-Sweden 38-Switzerland 39-Ukraine 40-United Arab Emirates 41-United Kingdom 42-USA 43-biz (.biz) 44-com (.com) 45-int (.int) 46-net (.net) 47-org (*.org)
========================================================
========================================================
1-trousers 2-skirts 3-blouses 4-sale
========================================================
(217 products)
========================================================
1-beige 2-black 3-blue 4-brown 5-burgundy 6-gray 7-green 8-navy blue 9-of many colors 10-olive 11-pink 12-red 13-violet 14-white
========================================================
1-top left 2-top in the middle 3-top right 4-bottom left 5-bottom in the middle 6-bottom right
========================================================
1-en face 2-profile
========================================================
========================================================
the average price for the entire product category
1-yes 2-no
========================================================
++++++++++++++++++++++++++++++++++++++++++++++++++++++++
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Clickstream Data for Online Shopping is an e-commerce analysis dataset that summarizes user clickstream, product information, country, price, and other session-specific behavior data from April to August 2008 at an online shopping mall specializing in maternity clothing.
2) Data Utilization (1) Clickstream Data for Online Shopping has characteristics that: • Each row contains 14 key variables: year, month, day, click order, country (by access IP), session ID, main category, product code, color, photo location, model photo type, price, category average price, page number, etc. • Data is configured to enable analysis of various consumer behaviors such as click flows for each session, product attributes, and country-specific access patterns. (2) Clickstream Data for Online Shopping can be used to: • Online Shopping Mall User Behavior Analysis: Using clickstream, session, and product information, you can analyze purchase conversion routes, popular products, and behavioral patterns by country and category. • Improve marketing strategies and UI/UX: analyze the relationship between product photo location, color, price, etc. and click behavior and apply to establish effective marketing strategies and improvement of shopping mall UI/UX.
In 2024, global retail e-commerce sales reached an estimated ************ U.S. dollars. Projections indicate a ** percent growth in this figure over the coming years, with expectations to come close to ************** dollars by 2028. World players Among the key players on the world stage, the American marketplace giant Amazon holds the title of the largest e-commerce player globally, with a gross merchandise value of nearly *********** U.S. dollars in 2024. Amazon was also the most valuable retail brand globally, followed by mostly American competitors such as Walmart and the Home Depot. Leading e-tailing regions E-commerce is a dormant channel globally, but nowhere has it been as successful as in Asia. In 2024, the e-commerce revenue in that continent alone was measured at nearly ************ U.S. dollars, outperforming the Americas and Europe. That year, the up-and-coming e-commerce markets also centered around Asia. The Philippines and India stood out as the swiftest-growing e-commerce markets based on online sales, anticipating a growth rate surpassing ** percent.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
A dataset consisting of 751,500 English app reviews of 12 online shopping apps. The dataset was scraped from the internet using a python script. This ShoppingAppReviews dataset contains app reviews of the 12 most popular online shopping android apps: Alibaba, Aliexpress, Amazon, Daraz, eBay, Flipcart, Lazada, Meesho, Myntra, Shein, Snapdeal and Walmart. Each review entry contains many metadata like review score, thumbsupcount, review posting time, reply content etc. The dataset is organized in a zip file, under which there are 12 json files and 12 csv files for 12 online shopping apps. This dataset can be used to obtain valuable information about customers' feedback regarding their user experience of these financially important apps.
Revolutionize Customer Engagement with Our Comprehensive Ecommerce Data
Our Ecommerce Data is designed to elevate your customer engagement strategies, providing you with unparalleled insights and precision targeting capabilities. With over 61 million global contacts, this dataset goes beyond conventional data, offering a unique blend of shopping cart links, business emails, phone numbers, and LinkedIn profiles. This comprehensive approach ensures that your marketing strategies are not just effective but also highly personalized, enabling you to connect with your audience on a deeper level.
What Makes Our Ecommerce Data Stand Out?
Unique Features for Enhanced Targeting
Our Ecommerce Data is distinguished by its depth and precision. Unlike many other datasets, it includes shopping cart links—a rare and valuable feature that provides you with direct insights into consumer behavior and purchasing intent. This information allows you to tailor your marketing efforts with unprecedented accuracy. Additionally, the integration of business emails, phone numbers, and LinkedIn profiles adds multiple layers to traditional contact data, enriching your understanding of clients and enabling more personalized engagement.
Robust and Reliable Data Sourcing
We pride ourselves on our dual-sourcing strategy that ensures the highest levels of data accuracy and relevance:
Primary Use Cases Across Industries
Our Ecommerce Data is versatile and can be leveraged across various industries for multiple applications: - Precision Targeting in Marketing: Create personalized marketing campaigns based on detailed shopping cart activities, ensuring that your outreach resonates with individual customer preferences. - Sales Enrichment: Sales teams can benefit from enriched client profiles that include comprehensive contact information, enabling them to connect with key decision-makers more effectively. - Market Research and Analytics: Research and analytics departments can use this data for in-depth market studies and trend analyses, gaining valuable insights into consumer behavior and market dynamics.
Global Coverage for Comprehensive Engagement
Our Ecommerce Data spans across the globe, providing you with extensive reach and the ability to engage with customers in diverse regions: - North America: United States, Canada, Mexico - Europe: United Kingdom, Germany, France, Italy, Spain, Netherlands, Sweden, and more - Asia: China, Japan, India, South Korea, Singapore, Malaysia, and more - South America: Brazil, Argentina, Chile, Colombia, and more - Africa: South Africa, Nigeria, Kenya, Egypt, and more - Australia and Oceania: Australia, New Zealand - Middle East: United Arab Emirates, Saudi Arabia, Israel, Qatar, and more
Comprehensive Employee and Revenue Size Information
Our dataset also includes detailed information on: - Employee Size: Whether you’re targeting small businesses or large corporations, our data covers all employee sizes, from startups to global enterprises. - Revenue Size: Gain insights into companies across various revenue brackets, enabling you to segment the market more effectively and target your efforts where they will have the most impact.
Seamless Integration into Broader Data Offerings
Our Ecommerce Data is not just a standalone product; it is a critical piece of our broader data ecosystem. It seamlessly integrates with our comprehensive suite of business and consumer datasets, offering you a holistic approach to data-driven decision-making: - Tailored Packages: Choose customized data packages that meet your specific business needs, combining Ecommerce Data with other relevant datasets for a complete view of your market. - Holistic Insights: Whether you are looking for industry-specific details or a broader market overview, our integrated data solutions provide you with the insights necessary to stay ahead of the competition and make informed business decisions.
Elevate Your Business Decisions with Our Ecommerce Data
In essence, our Ecommerce Data is more than just a collection of contacts—it’s a strategic tool designed to give you a competitive edge in understanding and engaging your target audience. By leveraging the power of this comprehensive dataset, you can elevate your business decisions, enhance customer interactions, and navigate the digital landscape with confi...
This dataset contains longitudinal purchases data from 5027 Amazon.com users in the US, spanning 2018 through 2022: amazon-purchases.csv It also includes demographic data and other consumer level variables for each user with data in the dataset. These consumer level variables were collected through an online survey and are included in survey.csv fields.csv describes the columns in the survey.csv file, where fields/survey columns correspond to survey questions. The dataset also contains the survey instrument used to collect the data. More details about the survey questions and possible responses, and the format in which they were presented can be found by viewing the survey instrument. A 'Survey ResponseID' column is present in both the amazon-purchases.csv and survey.csv files. It links a user's survey responses to their Amazon.com purchases. The 'Survey ResponseID' was randomly generated at the time of data collection. amazon-purchases.csv Each row in this file corresponds to an Amazon order. Each such row has the following columns: Survey ResponseID Order date Shipping address state Purchase price per unit Quantity ASIN/ISBN (Product Code) Title Category The data were exported by the Amazon users from Amazon.com and shared by users with their informed consent. PII and other information not listed above were stripped from the data. This processing occurred on users' machines before sharing with researchers.
Online Retail E-Commerce Data Hey everyone! 👋
This dataset contains real e-commerce transaction data from 2009 to 2011. It comes from a UK-based online store that sells a variety of products. The data includes details like invoices, product codes, descriptions, prices, and even customer IDs.
What’s Inside? Each row represents a transaction, and the dataset has the following key columns: 🛒 Invoice – Unique order ID 📦 StockCode – Product code 📝 Description – Name of the product 📊 Quantity – Number of units sold ⏳ InvoiceDate – When the purchase happened 💰 Price – Unit price of the product 👤 Customer ID – Unique identifier for each customer 🌍 Country – Where the customer is from
Why is this dataset useful? This dataset is great for exploring: Customer Segmentation (Find high-value customers) Customer Lifetime Value (LTV) Analysis Sales & Revenue Trends Market Basket Analysis (Which products are bought together?) Predicting Churn & Retention Strategies
How Can You Use It? If you're into data science, machine learning, or business analytics, this dataset is perfect for hands-on projects. You can analyze customer behavior, predict sales, or even build recommendation systems.
Hope this dataset helps with your projects! Let me know if you find something interesting.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Consumer Behavior and Shopping Habits Dataset is a tabular collection of customer demographics, purchase history, product preferences, shopping frequency, and online and offline purchasing behavior.
2) Data Utilization (1) Consumer Behavior and Shopping Habits Dataset has characteristics that: • Each row contains detailed consumer and transaction information such as customer ID, age, gender, purchased goods and categories, purchase amount, region, product attributes (size, color, season), review rating, subscription status, delivery method, discount/promotion usage, payment method, purchase frequency, etc. • Data is organized to cover a variety of variables and purchasing patterns to help segment customers, establish marketing strategies, analyze product preferences, and more. (2) Consumer Behavior and Shopping Habits Dataset can be used to: • Customer Segmentation and Target Marketing: You can analyze demographics and purchasing patterns to define different customer groups and use them to develop customized marketing strategies. • Product and service improvement: Based on purchase history, review ratings, discount/promotional responses, etc., it can be applied to product and service improvements such as identifying popular products, managing inventory, and analyzing promotion effects.
In today’s rapidly evolving digital landscape, understanding consumer behavior has never been more crucial for businesses seeking to thrive. Our Consumer Behavior Data database serves as an essential tool, offering a wealth of comprehensive insights into the current trends and preferences of online consumers across the United States. This robust database is meticulously designed to provide a detailed and nuanced view of consumer activities, preferences, and attitudes, making it an invaluable asset for marketers, researchers, and business strategists.
Extensive Coverage of Consumer Data Our database is packed with thousands of indexes that cover a broad spectrum of consumer-related information. This extensive coverage ensures that users can delve deeply into various facets of consumer behavior, gaining a holistic understanding of what drives online purchasing decisions and how consumers interact with products and brands. The database includes:
Product Consumption: Detailed records of what products consumers are buying, how frequently they purchase these items, and the spending patterns associated with these products. This data allows businesses to identify popular products, emerging trends, and seasonal variations in consumer purchasing behavior. Lifestyle Preferences: Insights into the lifestyles of consumers, including their hobbies, interests, and activities. Understanding lifestyle preferences helps businesses tailor their marketing strategies to resonate with the values and passions of their target audiences. For example, a company selling fitness equipment can use this data to identify consumers who prioritize health and wellness.
Product Ownership: Information on the types of products that consumers already own. This data is crucial for businesses looking to introduce complementary products or upgrades. For instance, a tech company could use product ownership data to target consumers who already own older versions of their gadgets, offering them incentives to upgrade to the latest models.
Attitudes and Beliefs: Insights into consumer attitudes, opinions, and beliefs about various products, brands, and market trends. This qualitative data is vital for understanding the emotional and psychological drivers behind consumer behavior. It helps businesses craft compelling narratives and brand messages that align with the values and beliefs of their target audience.
Focus group discussions with women in Manchester and Edinburgh on female consumer perceptions about online shopping for fashion, and product visualisation technology on shop websites. Participants discussed how they currently shop online and in shops and how they prefer to visualise items on shop websites. After showcasing novel visualisation technologies allowing shoppers to interact with models on the shop website and scrunching fabrics, participants discussed their views and preferences for such innovations allowing more visual and tactile interactions in online shopping. This study aims to address the challenge of the lack of tactile input which currently characterises online fashion shopping, by developing existing applied research to make it more applicable to the UK fashion retail sector. The inability to touch products during the purchase decision-making process is one of the key challenges for fashion retailers. Product returns rates for fashion currently average 25 per cent and the abandoned shopping basket rate for online retail in the UK currently stands at around 65 per cent. The research objectives are: (1)to assess the application of a novel form of image interactivity technology in the fashion retail context. Specifically the research seeks to address the perceptual gap between digital and physical product evaluation both online and in the physical store environment via the use of novel touchscreen technology, developed by Heriot-Watt University; (2)to assess the potential of image interactivity technology in fulfilling consumers' utilitarian and hedonic online shopping motives; (3) to identify the barriers and facilitators of adoption by fashion retailers, with a focus on SMEs. The methodology will include the collection and analysis of quantitative data from retailer websites (Google analytics), supplemented by qualitative data gathered from interviews with retailers and focus groups with consumers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A comprehensive dataset providing key insights into the eCommerce industry, including global retail online sales projections, number of eCommerce stores, digital buyer statistics, revenue growth in the United States, sector-wise revenue details with a focus on consumer electronics, average conversion rates, and mobile commerce sales forecasts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset Card for Online Shoppers Purchasing Intention Dataset
Dataset Summary
This dataset is a reupload of the Online Shoppers Purchasing Intention Dataset from the UCI Machine Learning Repository.
NOTE: The information below is from the original dataset description from UCI's website.
Overview
Of the 12,330 sessions in the dataset, 84.5% (10,422) were negative class samples that did not end with shopping, and the rest (1908) were positive class samples… See the full description on the dataset page: https://huggingface.co/datasets/jlh/uci-shopper.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Shopper's Behavior and Revenue Dataset contains more than 12,300 pieces of information about online shopping customers' purchasing behavior and revenue, including customer purchasing patterns, product reviews, discounts, and payment methods.
2) Data Utilization (1) Shopper's Behavior and Revenue Dataset has characteristics that: • This dataset includes a variety of variables related to your shopping behavior, including demographics, purchase history, products and categories, purchase frequency, review ratings, discounts, and promotion usage. • Provides information that can analyze e-commerce customer behavior from multiple angles, such as whether to purchase (Revenue), visitor type, traffic type, browser, operating system, region, and weekend visitation. (2) Shopper's Behavior and Revenue Dataset can be used to: • Customer Segmentation and Target Marketing: You can analyze customer behavior patterns and characteristics to establish customized marketing strategies, and use them to request reviews and induce repurchases. • Forecast and Sales Analysis: By analyzing purchase conversion rate, review impact, discount effect, etc., you can contribute to increased sales and improved customer satisfaction.
1. Sales Analysis:
Sales data forms the backbone of this dataset, and it allows users to delve into various aspects of sales performance.
2. Product Analysis:
Each product in this dataset comes with its unique identifier (StockCode) and its name (Description).
3. Customer Segmentation:
If you associated specific business logic onto the transactions (such as calculating total amounts), then you could use standard machine learning methods or even RFM (Recency, Frequency, Monetary) segmentation techniques combining it with 'CustomerID' for your customer base to understand customer behavior better.
4. Geographical Analysis:
The Country column enables analysts to study purchase patterns across different geographical locations.
5. Sales Performance Dashboard:
To track the sales performance of the online retail company, a sales performance dashboard can be created. This dashboard can include key metrics such as total sales, sales by product category, sales by customer segment, and sales by geographical location. By visualizing the sales data in an interactive dashboard, it becomes easier to identify trends, patterns, and areas for improvement.
This database automatically captures metadata, the source of which is the GOVERNMENT OF THE REPUBLIC OF SLOVENIA STATISTICAL USE OF THE REPUBLIC OF SLOVENIA and corresponding to the source database entitled “Number of individuals by motive for online shopping between e-buyers who made an online purchase in the last 3 months, cohesion and statistical regions, Slovenia, 2022”.
Actual data are available in Px-Axis format (.px). With additional links, you can access the source portal page for viewing and selecting data, as well as the PX-Win program, which can be downloaded free of charge. Both allow you to select data for display, change the format of the printout, and store it in different formats, as well as view and print tables of unlimited size, as well as some basic statistical analyses and graphics.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Grocery Store Dataset is a tabulated retail dataset of detailed information, including detailed classifications, prices, discounts, ratings, product names, currencies, key features, and detailed descriptions of groceries collected from the Costco online market.
2) Data Utilization (1) Grocery Store Dataset has characteristics that: • Each row contains a variety of attributes needed for grocery analysis, including detailed categories of products, prices, applied discounts, customer ratings, product names, currencies, key features, and detailed descriptions. • The data encompasses a wide range of products and is organized to enable multi-faceted analysis of price policies, promotions, customer evaluations, and product characteristics. (2) Grocery Store Dataset can be used to: • Analysis of pricing and discount strategies: Use price, discount, and rating data to create effective pricing policies and promotion strategies. • Product recommendations and popularity analysis by category: Based on product characteristics, ratings, and detailed descriptions, it can be applied to recommend customized products and derive popular products by category.
https://brightdata.com/licensehttps://brightdata.com/license
We'll customize a Wildberries dataset to align with your unique requirements, incorporating data on product categories, customer reviews, pricing trends, popular items, demographic insights, sales figures, and other relevant metrics. Leverage our Wildberries datasets for various applications to strengthen strategic planning and market analysis. Examining these datasets enables organizations to understand consumer preferences and online shopping trends, facilitating refined product offerings and marketing campaigns. Tailor your access to the complete dataset or specific subsets according to your business needs. Popular use cases include conducting competitor analysis to understand market positioning, monitoring brand reputation through consumer feedback, and performing consumer market analysis to identify and predict emerging trends in e-commerce and online retail.
https://www.gnu.org/licenses/gpl-2.0.htmlhttps://www.gnu.org/licenses/gpl-2.0.html
There is a significant positive effect of consumers' perceived usefulness and perceived ease of use on purchase intention; there is a significant positive effect of courier service and social evaluation during consumption on perceived usefulness and perceived ease of use, but there is no significant positive effect of information promotion on consumption intention, and there is a significant positive effect of information promotion on consumers' purchase behaviour; there is a significant positive effect of product promotion on both consumers' consumption behaviour and consumption intention
As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.