100+ datasets found
  1. Machine learning algorithm validation with a limited sample size

    • plos.figshare.com
    text/x-python
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson (2023). Machine learning algorithm validation with a limited sample size [Dataset]. http://doi.org/10.1371/journal.pone.0224365
    Explore at:
    text/x-pythonAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.

  2. Data from: Web Data Commons Training and Test Sets for Large-Scale Product...

    • linkagelibrary.icpsr.umich.edu
    • da-ra.de
    Updated Nov 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ralph Peeters; Anna Primpeli; Christian Bizer (2020). Web Data Commons Training and Test Sets for Large-Scale Product Matching - Version 2.0 [Dataset]. http://doi.org/10.3886/E127481V1
    Explore at:
    Dataset updated
    Nov 26, 2020
    Dataset provided by
    University of Mannheim (Germany)
    Authors
    Ralph Peeters; Anna Primpeli; Christian Bizer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Many e-shops have started to mark-up product data within their HTML pages using the schema.org vocabulary. The Web Data Commons project regularly extracts such data from the Common Crawl, a large public web crawl. The Web Data Commons Training and Test Sets for Large-Scale Product Matching contain product offers from different e-shops in the form of binary product pairs (with corresponding label “match” or “no match”) for four product categories, computers, cameras, watches and shoes. In order to support the evaluation of machine learning-based matching methods, the data is split into training, validation and test sets. For each product category, we provide training sets in four different sizes (2.000-70.000 pairs). Furthermore there are sets of ids for each training set for a possible validation split (stratified random draw) available. The test set for each product category consists of 1.100 product pairs. The labels of the test sets were manually checked while those of the training sets were derived using shared product identifiers from the Web weak supervision. The data stems from the WDC Product Data Corpus for Large-Scale Product Matching - Version 2.0 which consists of 26 million product offers originating from 79 thousand websites. For more information and download links for the corpus itself, please follow the links below.

  3. Titanic Dataset - Machine Learning from Disaster

    • kaggle.com
    zip
    Updated Sep 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). Titanic Dataset - Machine Learning from Disaster [Dataset]. https://www.kaggle.com/datasets/whenamancodes/titanic-dataset-machine-learning-from-disaster
    Explore at:
    zip(34877 bytes)Available download formats
    Dataset updated
    Sep 20, 2022
    Authors
    Aman Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    The data has been split into two groups:

    • training set (train.csv)
    • test set (test.csv)

    The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the “ground truth”) for each passenger. Your model will be based on “features” like passengers’ gender and class. You can also use feature engineering to create new features.

    The test set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you trained to predict whether or not they survived the sinking of the Titanic.

    We also include gender_submission.csv, a set of predictions that assume all and only female passengers survive, as an example of what a submission file should look like.

    Data Dictionary:

    | Variable | Definition | Key | | --- | --- | | survival | Survival | 0 = No, 1 = Yes | | pclass | Ticket class | 1 = 1st, 2 = 2nd, 3 = 3rd | | sex | Sex | | | Age | Age in years | | | sibsp | # of siblings / spouses aboard the Titanic | | | parch | # of parents / children aboard the Titanic | | | ticket | Ticket number | | | fare | Passenger fare | | | cabin | Cabin number | | | embarked | Port of Embarkation | C = Cherbourg, Q = Queenstown, S = Southampton |

    Variable Notes

    pclass: A proxy for socio-economic status (SES) 1st = Upper 2nd = Middle 3rd = Lower

    age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

    sibsp: The dataset defines family relations in this way... Sibling = brother, sister, stepbrother, stepsister Spouse = husband, wife (mistresses and fiancés were ignored)

    parch: The dataset defines family relations in this way... Parent = mother, father Child = daughter, son, stepdaughter, stepson Some children travelled only with a nanny, therefore parch=0 for them.

    More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Hehe

  4. f

    Data from: Time-Split Cross-Validation as a Method for Estimating the...

    • acs.figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert P. Sheridan (2023). Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction. [Dataset]. http://doi.org/10.1021/ci400084k.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    ACS Publications
    Authors
    Robert P. Sheridan
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Cross-validation is a common method to validate a QSAR model. In cross-validation, some compounds are held out as a test set, while the remaining compounds form a training set. A model is built from the training set, and the test set compounds are predicted on that model. The agreement of the predicted and observed activity values of the test set (measured by, say, R2) is an estimate of the self-consistency of the model and is sometimes taken as an indication of the predictivity of the model. This estimate of predictivity can be optimistic or pessimistic compared to true prospective prediction, depending how compounds in the test set are selected. Here, we show that time-split selection gives an R2 that is more like that of true prospective prediction than the R2 from random selection (too optimistic) or from our analog of leave-class-out selection (too pessimistic). Time-split selection should be used in addition to random selection as a standard for cross-validation in QSAR model building.

  5. d

    Data from: Training dataset for NABat Machine Learning V1.0

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Training dataset for NABat Machine Learning V1.0 [Dataset]. https://catalog.data.gov/dataset/training-dataset-for-nabat-machine-learning-v1-0
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and 5 of “A Plan for the North American Bat Monitoring Program” (https://doi.org/10.2737/SRS-GTR-208). These data were then post-processed by bat monitoring partners to remove noise files (or those that do not contain recognizable bat calls) and apply a species label to each file. There is undoubtedly variation in the steps that monitoring partners take to apply a species label, but the steps documented in “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program” (https://doi.org/10.3133/ofr20181068) include first processing with an automated classifier and then manually reviewing to confirm or downgrade the suggested species label. Once a manual ID label was applied, audio files of bat acoustic recordings were submitted to the NABat database in Waveform Audio File format. From these available files in the NABat database, we considered files from 35 classes (34 species and a noise class). Files for 4 species were excluded due to low sample size (Corynorhinus rafinesquii, N=3; Eumops floridanus, N =3; Lasiurus xanthinus, N = 4; Nyctinomops femorosaccus, N =11). From this pool, files were randomly selected until files for each species/grid cell combination were exhausted or the number of recordings reach 1250. The dataset was then randomly split into training, validation, and test sets (i.e., holdout dataset). This data release includes all files considered for training and validation, including files that had been excluded from model development and testing due to low sample size for a given species or because the threshold for species/grid cell combinations had been met. The test set (i.e., holdout dataset) is not included. Audio files are grouped by species, as indicated by the four-letter species code in the name of each folder. Definitions for each four-letter code, including Family, Genus, Species, and Common name, are also included as a dataset in this release.

  6. Caltech-256: Pre-Processed 80/20 Train-Test Split

    • kaggle.com
    zip
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KUSHAGRA MATHUR (2025). Caltech-256: Pre-Processed 80/20 Train-Test Split [Dataset]. https://www.kaggle.com/datasets/kushubhai/caltech-256-train-test
    Explore at:
    zip(1138799273 bytes)Available download formats
    Dataset updated
    Nov 12, 2025
    Authors
    KUSHAGRA MATHUR
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context The Caltech-256 dataset is a foundational benchmark for object recognition, containing 30,607 images across 257 categories (256 object categories + 1 clutter category).

    The original dataset is typically provided as a collection of directories, one for each category. This version streamlines the machine learning workflow by providing:

    A clean, pre-defined 80/20 train-test split.

    Manifest files (train.csv, test.csv) that map image paths directly to their labels, allowing for easy use with data generators in frameworks like PyTorch and TensorFlow.

    A flat directory structure (train/, test/) for simplified file access.

    File Content The dataset is organized into a single top-level folder and two CSV files:

    train.csv: A CSV file containing two columns: image_path and label. This file lists all images designated for the training set.

    test.csv: A CSV file with the same structure as train.csv, listing all images designated for the testing set.

    Caltech-256_Train_Test/: The primary data folder.

    train/: This directory contains 80% of the images from all 257 categories, intended for model training.

    test/: This directory contains the remaining 20% of the images from all categories, reserved for model evaluation.

    Data Split The dataset has been thoroughly partitioned to create a standard 80% training and 20% testing split. This split is (or should be assumed to be) stratified, meaning that each of the 257 object categories is represented in roughly an 80/20 proportion in the respective sets.

    Acknowledgements & Original Source This dataset is a derivative work created for convenience. The original data and images belong to the authors of the Caltech-256 dataset.

    Original Dataset Link: https://www.kaggle.com/datasets/jessicali9530/caltech256/data

    Citation: Griffin, G. Holub, A.D. Perona, P. (2007). Caltech-256 Object Category Dataset. California Institute of Technology.

  7. t

    FAIR Dataset for Disease Prediction in Healthcare Applications

    • test.researchdata.tuwien.ac.at
    bin, csv, json, png
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf (2025). FAIR Dataset for Disease Prediction in Healthcare Applications [Dataset]. http://doi.org/10.70124/5n77a-dnf02
    Explore at:
    csv, json, bin, pngAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset provided by
    TU Wien
    Authors
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Description

    Context and Methodology

    • Research Domain/Project:
      This dataset was created for a machine learning experiment aimed at developing a classification model to predict outcomes based on a set of features. The primary research domain is disease prediction in patients. The dataset was used in the context of training, validating, and testing.

    • Purpose of the Dataset:
      The purpose of this dataset is to provide training, validation, and testing data for the development of machine learning models. It includes labeled examples that help train classifiers to recognize patterns in the data and make predictions.

    • Dataset Creation:
      Data preprocessing steps involved cleaning, normalization, and splitting the data into training, validation, and test sets. The data was carefully curated to ensure its quality and relevance to the problem at hand. For any missing values or outliers, appropriate handling techniques were applied (e.g., imputation, removal, etc.).

    Technical Details

    • Structure of the Dataset:
      The dataset consists of several files organized into folders by data type:

      • Training Data: Contains the training dataset used to train the machine learning model.

      • Validation Data: Used for hyperparameter tuning and model selection.

      • Test Data: Reserved for final model evaluation.

      Each folder contains files with consistent naming conventions for easy navigation, such as train_data.csv, validation_data.csv, and test_data.csv. Each file follows a tabular format with columns representing features and rows representing individual data points.

    • Software Requirements:
      To open and work with this dataset, you need VS Code or Jupyter, which could include tools like:

      • Python (with libraries such as pandas, numpy, scikit-learn, matplotlib, etc.)

    Further Details

    • Reusability:
      Users of this dataset should be aware that it is designed for machine learning experiments involving classification tasks. The dataset is already split into training, validation, and test subsets. Any model trained with this dataset should be evaluated using the test set to ensure proper validation.

    • Limitations:
      The dataset may not cover all edge cases, and it might have biases depending on the selection of data sources. It's important to consider these limitations when generalizing model results to real-world applications.

  8. Prediction of Personality Traits using the Big 5 Framework

    • zenodo.org
    csv, text/x-python
    Updated Feb 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neelima Brahmbhatt; Neelima Brahmbhatt (2023). Prediction of Personality Traits using the Big 5 Framework [Dataset]. http://doi.org/10.5281/zenodo.7596072
    Explore at:
    text/x-python, csvAvailable download formats
    Dataset updated
    Feb 2, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Neelima Brahmbhatt; Neelima Brahmbhatt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The methodology is the core component of any research-related work. The methods used to gain the results are shown in the methodology. Here, the whole research implementation is done using python. There are different steps involved to get the entire research work done which is as follows:

    1. Acquire Personality Dataset

    The kaggle machine learning dataset is a collection of datasets, data generators which are used by machine learning community for analysis purpose. The personality prediction dataset is acquired from the kaggle website. This dataset was collected (2016-2018) through an interactive on-line personality test. The personality test was constructed from the IPIP. The personality prediction dataset can be downloaded in zip file format just by clicking on the link available. The personality prediction file consists of two subject CSV files (test.csv & train.csv). The test.csv file has 0 missing values, 7 attributes, and final label output. Also, the dataset has multivariate characteristics. Here, data-preprocessing is done for checking inconsistent behaviors or trends.

    2. Data preprocessing

    After, Data acquisition the next step is to clean and preprocess the data. The Dataset available has numerical type features. The target value is a five-level personality consisting of serious,lively,responsible,dependable & extraverted. The preprocessed dataset is further split into training and testing datasets. This is achieved by passing feature value, target value, test size to the train-test split method of the scikit-learn package. After splitting of data, the training data is sent to the following Logistic regression & SVM design is used for training the artificial neural networks then test data is used to predict the accuracy of the trained network model.

    3. Feature Extraction

    The following items were presented on one page and each was rated on a five point scale using radio buttons. The order on page was EXT1, AGR1, CSN1, EST1, OPN1, EXT2, etc. The scale was labeled 1=Disagree, 3=Neutral, 5=Agree

            EXT1 I am the life of the party.
            EXT2  I don't talk a lot.
            EXT3  I feel comfortable around people.
            EXT4  I am quiet around strangers.
            EST1  I get stressed out easily.
            EST2  I get irritated easily.
            EST3  I worry about things.
            EST4  I change my mood a lot.
            AGR1  I have a soft heart.
            AGR2  I am interested in people.
            AGR3  I insult people.
            AGR4  I am not really interested in others.
            CSN1  I am always prepared.
            CSN2  I leave my belongings around.
            CSN3  I follow a schedule.
            CSN4  I make a mess of things.
            OPN1  I have a rich vocabulary.
            OPN2  I have difficulty understanding abstract ideas.
            OPN3  I do not have a good imagination.
            OPN4  I use difficult words.

    4. Training the Model

    Train/Test is a method to measure the accuracy of your model. It is called Train/Test because you split the the data set into two sets: a training set and a testing set. 80% for training, and 20% for testing. You train the model using the training set.In this model we trained our dataset using linear_model.LogisticRegression() & svm.SVC() from sklearn Package

    5. Personality Prediction Output

    After the training of the designed neural network, the testing of Logistic Regression & SVM is performed using Cohen_kappa_score & Accuracy Score.

  9. Z

    Downsized camera trap images for automated classification

    • data.niaid.nih.gov
    Updated Dec 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Norman, Danielle L; Wearne, Oliver R; Chapman, Philip M; Heon, Sui P; Ewers, Robert M (2022). Downsized camera trap images for automated classification [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6627706
    Explore at:
    Dataset updated
    Dec 1, 2022
    Dataset provided by
    Imperial College London
    Authors
    Norman, Danielle L; Wearne, Oliver R; Chapman, Philip M; Heon, Sui P; Ewers, Robert M
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description: Downsized (256x256) camera trap images used for the analyses in "Can CNN-based species classification generalise across variation in habitat within a camera trap survey?", and the dataset composition for each analysis. Note that images tagged as 'human' have been removed from this dataset. Full-size images for the BorneoCam dataset will be made available at LILA.science. The full SAFE camera trap dataset metadata is available at DOI: 10.5281/zenodo.6627707. Project: This dataset was collected as part of the following SAFE research project: Machine learning and image recognition to monitor spatio-temporal changes in the behaviour and dynamics of species interactions Funding: These data were collected as part of research funded by:

    NERC (NERC QMEE CDT Studentship, NE/P012345/1, http://gotw.nerc.ac.uk/list_full.asp?pcode=NE%2FP012345%2F1&cookieConsent=A) This dataset is released under the CC-BY 4.0 licence, requiring that you cite the dataset in any outputs, but has the additional condition that you acknowledge the contribution of these funders in any outputs.

    XML metadata: GEMINI compliant metadata for this dataset is available here Files: This dataset consists of 3 files: CT_image_data_info2.xlsx, DN_256x256_image_files.zip, DN_generalisability_code.zip CT_image_data_info2.xlsx This file contains dataset metadata and 1 data tables:

    Dataset Images (described in worksheet Dataset_images) Description: This worksheet details the composition of each dataset used in the analyses Number of fields: 69 Number of data rows: 270287 Fields:

    filename: Root ID (Field type: id) camera_trap_site: Site ID for the camera trap location (Field type: location) taxon: Taxon recorded by camera trap (Field type: taxa) dist_level: Level of disturbance at site (Field type: ordered categorical) baseline: Label as to whether image is included in the baseline training, validation (val) or test set, or not included (NA) (Field type: categorical) increased_cap: Label as to whether image is included in the 'increased cap' training, validation (val) or test set, or not included (NA) (Field type: categorical) dist_individ_event_level: Label as to whether image is included in the 'individual disturbance level datasets split at event level' training, validation (val) or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_1: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 1' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_2: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 2' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_3: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 3' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 4' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance level 5' training or test set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_1_2: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1 and 2 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_1_3: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1 and 3 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_1_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1 and 4 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_1_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1 and 5 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_2_3: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2 and 3 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_2_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2 and 4 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_2_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2 and 5 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_3_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 3 and 4 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_3_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 3 and 5 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_pair_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 4 and 5 (pair)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_2_3: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2 and 3 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_2_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2 and 4 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_2_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_3_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 3 and 4 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_3_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 3 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_1_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 4 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_2_3_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2, 3 and 4 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_2_3_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2, 3 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_2_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2, 4 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_triple_3_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 3, 4 and 5 (triple)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_1_2_3_4: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2, 3 and 4 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_1_2_3_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2, 3 and 5 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_1_2_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2, 4 and 5 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_1_3_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 3, 4 and 5 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_quad_2_3_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 2, 3, 4 and 5 (quad)' training set, or not included (NA) (Field type: categorical) dist_combined_event_level_all_1_2_3_4_5: Label as to whether image is included in the 'disturbance level combination analysis split at event level: disturbance levels 1, 2, 3, 4 and 5 (all)' training set, or not included (NA) (Field type: categorical) dist_camera_level_individ_1: Label as to whether image is included in the 'disturbance level combination analysis split at camera level: disturbance

  10. f

    Summary of the training and testing data.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jul 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meysman, Pieter; Laukens, Kris; Bui-Thi, Danh; Rivière, Emmanuel (2022). Summary of the training and testing data. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000250189
    Explore at:
    Dataset updated
    Jul 21, 2022
    Authors
    Meysman, Pieter; Laukens, Kris; Bui-Thi, Danh; Rivière, Emmanuel
    Description

    To small datasets, human and C.elegans, we evaluate the models’ performance using k-fold cross validation, with k = 5. To the other datasets, we split them into three sets: training, validation and testing.

  11. MSL Curiosity Rover Images with Science and Engineering Classes

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Lu; Steven Lu; Kiri L. Wagstaff; Kiri L. Wagstaff (2020). MSL Curiosity Rover Images with Science and Engineering Classes [Dataset]. http://doi.org/10.5281/zenodo.4033453
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Steven Lu; Steven Lu; Kiri L. Wagstaff; Kiri L. Wagstaff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please note that the file msl-labeled-data-set-v2.1.zip below contains the latest images and labels associated with this data set.

    Data Set Description

    The data set consists of 6,820 images that were collected by the Mars Science Laboratory (MSL) Curiosity Rover by three instruments: (1) the Mast Camera (Mastcam) Left Eye; (2) the Mast Camera Right Eye; (3) the Mars Hand Lens Imager (MAHLI). With the help from Dr. Raymond Francis, a member of the MSL operations team, we identified 19 classes with science and engineering interests (see the "Classes" section for more information), and each image is assigned with 1 class label. We split the data set into training, validation, and test sets in order to train and evaluate machine learning algorithms. The training set contains 5,920 images (including augmented images; see the "Image Augmentation" section for more information); the validation set contains 300 images; the test set contains 600 images. The training set images were randomly sampled from sol (Martian day) range 1 - 948; validation set images were randomly sampled from sol range 949 - 1920; test set images were randomly sampled from sol range 1921 - 2224. All images are resized to 227 x 227 pixels without preserving the original height/width aspect ratio.

    Directory Contents

    • images - contains all 6,820 images
    • class_map.csv - string-integer class mappings
    • train-set-v2.1.txt - label file for the training set
    • val-set-v2.1.txt - label file for the validation set
    • test-set-v2.1.txt - label file for the test set

    The label files are formatted as below:

    "Image-file-name class_in_integer_representation"

    Labeling Process

    Each image was labeled with help from three different volunteers (see Contributor list). The final labels are determined using the following processes:

    • If all three labels agree with each other, then use the label as the final label.
    • If the three labels do not agree with each other, then we manually review the labels and decide the final label.
    • We also performed error analysis to correct labels as a post-processing step in order to remove noisy/incorrect labels in the data set.

    Classes

    There are 19 classes identified in this data set. In order to simplify our training and evaluation algorithms, we mapped the class names from string to integer representations. The names of classes, string-integer mappings, distributions are shown below:

    Class name, counts (training set), counts (validation set), counts (test set), integer representation

    Arm cover, 10, 1, 4, 0

    Other rover part, 190, 11, 10, 1

    Artifact, 680, 62, 132, 2

    Nearby surface, 1554, 74, 187, 3

    Close-up rock, 1422, 50, 84, 4

    DRT, 8, 4, 6, 5

    DRT spot, 214, 1, 7, 6

    Distant landscape, 342, 14, 34, 7

    Drill hole, 252, 5, 12, 8

    Night sky, 40, 3, 4, 9

    Float, 190, 5, 1, 10

    Layers, 182, 21, 17, 11

    Light-toned veins, 42, 4, 27, 12

    Mastcam cal target, 122, 12, 29, 13

    Sand, 228, 19, 16, 14

    Sun, 182, 5, 19, 15

    Wheel, 212, 5, 5, 16

    Wheel joint, 62, 1, 5, 17

    Wheel tracks, 26, 3, 1, 18

    Image Augmentation

    Only the training set contains augmented images. 3,920 of the 5,920 images in the training set are augmented versions of the remaining 2000 original training images. Images taken by different instruments were augmented differently. As shown below, we employed 5 different methods to augment images. Images taken by the Mastcam left and right eye cameras were augmented using a horizontal flipping method, and images taken by the MAHLI camera were augmented using all 5 methods. Note that one can filter based on the file names listed in the train-set.txt file to obtain a set of non-augmented images.

    • 90 degrees clockwise rotation (file name ends with -r90.jpg)
    • 180 degrees clockwise rotation (file name ends with -r180.jpg)
    • 270 degrees clockwise rotation (file name ends with -r270.jpg)
    • Horizontal flip (file name ends with -fh.jpg)
    • Vertical flip (file name ends with -fv.jpg)

    Acknowledgment

    The authors would like to thank the volunteers (as in the Contributor list) who provided annotations for this data set. We would also like to thank the PDS Imaging Note for the continuous support of this work.

  12. Complete Blood Count (CBC) Dataset

    • kaggle.com
    zip
    Updated May 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Orvile (2025). Complete Blood Count (CBC) Dataset [Dataset]. https://www.kaggle.com/datasets/orvile/complete-blood-count-cbc-dataset/versions/1
    Explore at:
    zip(9067150 bytes)Available download formats
    Dataset updated
    May 16, 2025
    Authors
    Orvile
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete blood count (CBC) dataset contains 360 blood smear images along with their annotation files splitting into Training, Testing, and Validation sets. The training folder contains 300 images with annotations. The testing and validation folder both contain 60 images with annotations. We have done some modification over the original dataset to prepare this CBC dataset where some of the image annotation files contain very low red blood cells (RBCs) than actual and one annotation file does not include any RBC at all although the cell smear image contains RBCs. So, we clear up all the fallacious files and split the dataset into three parts. Among the 360 smear images, 300 blood cell images with annotations are used as the training set first, and then the rest of the 60 images with annotations are used as the testing set. Due to the shortage of the data, a subset of the training set is used to prepare the validation set which contains 60 images with annotations.

  13. Training and testing data for deep learning assisted jet tomography

    • figshare.com
    hdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LongGang Pang; zhong yang; Yayun He; wei chen; WeiYao Ke; Xin-Nian Wang (2023). Training and testing data for deep learning assisted jet tomography [Dataset]. http://doi.org/10.6084/m9.figshare.20422500.v1
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    LongGang Pang; zhong yang; Yayun He; wei chen; WeiYao Ke; Xin-Nian Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    When energetic partons traverse the quark gluon plasma (QGP), they will deposite energy and momentum into the medium. Mach cones are expected to form whose opening angles are tightly related to the speed of sound of QGP. This provides a way to detect the QGP equation of state. However, the mach cones are distorted by the collective expansion of QGP. The distortions depend on the initial jet production positions and its travelling direction.

    We trained a deep point cloud neural network to locate the iniital jet production positions using the momenta of final state hadrons with transverse momentum pt>2 GeV. This folder contains training and testing data for this AI4Science interdisplinary study.

    There are 3 files in hdf5 format. 1. CoLBT_Hadrons_Frag.h5 (734.17 MB) , stores training and testing data from CoLBT model using fragmentation for particlization.

    The data tables contained are listed below. gamma_pt_phi_eta_test Dataset {97908, 3} gamma_pt_phi_eta_train Dataset {78334, 3} hadrons_test Dataset {97908, 90, 6} hadrons_train Dataset {78334, 90, 6} ids_test Dataset {97908} ids_train Dataset {78334} jet_pt_phi_eta_test Dataset {97908, 3} jet_pt_phi_eta_train Dataset {78334, 3} jetxy_test Dataset {97908, 2} jetxy_train Dataset {78334, 2} where the data are split into training and testing sets. In the training set, gamma_pt_phi_eta_train is a 2D numpy array which stores the global information (pt, phi, pseudo-rapidity) of 78334 gamma triggers. hadrons_train is a numpy array of shape {78334, 90, 6} where 78334 is the number of events, 90 is the maximum number of hadrons in the jet cone and 6 is the number of features of each hadron. jet_pt_phi_eta_train is a numpy array of shape {78334, 3} where 3 stands for (pt, phi, eta) of the jet using jet finding algorithm. jetxy_train is a numpy array of shape {78334, 2} where 2 stands for (x, y). They are the jet production positions that the neural network is going to predict.

    1. CoLBT_Hadrons_Comb.h5 (408.4 MB), , stores training and testing data from CoLBT model using combination for particlization.

    The data tables contained are listed below. gamma_pt_phi_eta_test Dataset {19615, 3} gamma_pt_phi_eta_train Dataset {78334, 3} hadrons_test Dataset {19615, 90, 6} hadrons_train Dataset {78334, 90, 6} ids_test Dataset {19615} ids_train Dataset {78334} jet_pt_phi_eta_test Dataset {19615, 3} jet_pt_phi_eta_train Dataset {78334, 3} jetxy_test Dataset {19615, 2} jetxy_train Dataset {78334, 2} where the data are split into training and testing sets. In the training set, gamma_pt_phi_eta_train is a 2D numpy array which stores the global information (pt, phi, pseudo-rapidity) of 78334 gamma triggers. hadrons_train is a numpy array of shape {78334, 90, 6} where 78334 is the number of events, 90 is the maximum number of hadrons in the jet cone and 6 is the number of features of each hadron. jet_pt_phi_eta_train is a numpy array of shape {78334, 3} where 3 stands for (pt, phi, eta) of the jet using jet finding algorithm. jetxy_train is a numpy array of shape {78334, 2} where 2 stands for (x, y). They are the jet production positions that the neural network is going to predict.

    1. Lido_Hadrons_Frag.h5 (186.22 MB), stores the testing data used for deep learning assisted jet tomography from LIDO Monte Carlo model which is different from CoLBT that is used for training. gamma_pt_phi_eta_test Dataset {44867, 3}, global information of gamma, (pt, phi, pseudo-rapidity) for 44867 events hadrons_test Dataset {44867, 90, 6}, final state hadrons for 44867 events, maximum number of hadrons is 90 for each event, number of features is 6 for each hadron. jet_pt_phi_eta_test Dataset {44867, 3}: the global information of the jet hadrons inside the cone. jetxy_test Dataset {44867, 2}: the production positions of the initial jet in the transverse plane.
  14. Learning Privacy from Visual Entities - Curated data sets and pre-computed...

    • zenodo.org
    zip
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alessio Xompero; Alessio Xompero; Andrea Cavallaro; Andrea Cavallaro (2025). Learning Privacy from Visual Entities - Curated data sets and pre-computed visual entities [Dataset]. http://doi.org/10.5281/zenodo.15348506
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 7, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alessio Xompero; Alessio Xompero; Andrea Cavallaro; Andrea Cavallaro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    This repository contains the curated image privacy datasets and pre-computed visual entities used in the publication Learning Privacy from Visual Entities by A. Xompero and A. Cavallaro.
    [
    arxiv][code]

    Curated image privacy data sets

    In the article, we trained and evaluated models on the Image Privacy Dataset (IPD) and the PrivacyAlert dataset. The datasets are originally provided by other sources and have been re-organised and curated for this work.

    Our curation organises the datasets in a common structure. We updated the annotations and labelled the splits of the data in the annotation file. This avoids having separated folders of images for each data split (training, validation, testing) and allows a flexible handling of new splits, e.g. created with a stratified K-Fold cross-validation procedure. As for the original datasets (PicAlert and PrivacyAlert), we provide the link to the images in bash scripts to download the images. Another bash script re-organises the images in sub-folders with maximum 1000 images in each folder.

    Both datasets refer to images publicly available on Flickr. These images have a large variety of content, including sensitive content, seminude people, vehicle plates, documents, private events. Images were annotated with a binary label denoting if the content was deemed to be public or private. As the images are publicly available, their label is mostly public. These datasets have therefore a high imbalance towards the public class. Note that IPD combines two other existing datasets, PicAlert and part of VISPR, to increase the number of private images already limited in PicAlert. Further details in our corresponding https://doi.org/10.48550/arXiv.2503.12464" target="_blank" rel="noopener">publication.

    List of datasets and their original source:

    Notes:

    • For PicAlert and PrivacyAlert, only urls to the original locations in Flickr are available in the Zenodo record
    • Collector and authors of the PrivacyAlert dataset selected the images from Flickr under Public Domain license
    • Owners of the photos on Flick could have removed the photos from the social media platform
    • Running the bash scripts to download the images can incur in the "429 Too Many Requests" status code

    Pre-computed visual entitities

    Some of the models run their pipeline end-to-end with the images as input, whereas other models require different or additional inputs. These inputs include the pre-computed visual entities (scene types and object types) represented in a graph format, e.g. for a Graph Neural Network. Re-using these pre-computed visual entities allows other researcher to build new models based on these features while avoiding re-computing the same on their own or for each epoch during the training of a model (faster training).

    For each image of each dataset, namely PrivacyAlert, PicAlert, and VISPR, we provide the predicted scene probabilities as a .csv file , the detected objects as a .json file in COCO data format, and the node features (visual entities already organised in graph format with their features) as a .json file. For consistency, all the files are already organised in batches following the structure of the images in the datasets folder. For each dataset, we also provide the pre-computed adjacency matrix for the graph data.

    Note: IPD is based on PicAlert and VISPR and therefore IPD refers to the scene probabilities and object detections of the other two datasets. Both PicAlert and VISPR must be downloaded and prepared to use IPD for training and testing.

    Further details on downloading and organising data can be found in our GitHub repository: https://github.com/graphnex/privacy-from-visual-entities (see ARTIFACT-EVALUATION.md#pre-computed-visual-entitities-)

    Enquiries, questions and comments

    If you have any enquiries, question, or comments, or you would like to file a bug report or a feature request, use the issue tracker of our GitHub repository.

  15. d

    Data from: Input Files and Code for: Machine learning can accurately assign...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Input Files and Code for: Machine learning can accurately assign geologic basin to produced water samples using major geochemical parameters [Dataset]. https://catalog.data.gov/dataset/input-files-and-code-for-machine-learning-can-accurately-assign-geologic-basin-to-produced
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    As more hydrocarbon production from hydraulic fracturing and other methods produce large volumes of water, innovative methods must be explored for treatment and reuse of these waters. However, understanding the general water chemistry of these fluids is essential to providing the best treatment options optimized for each producing area. Machine learning algorithms can often be applied to datasets to solve complex problems. In this study, we used the U.S. Geological Survey’s National Produced Waters Geochemical Database (USGS PWGD) in an exploratory exercise to determine if systematic variations exist between produced waters and geologic environment that could be used to accurately classify a water sample to a given geologic province. Two datasets were used, one with fewer attributes (n = 7) but more samples (n = 58,541) named PWGD7, and another with more attributes (n = 9) but fewer samples (n = 33,271) named PWGD9. The attributes of interest were specific gravity, pH, HCO3, Na, Mg, Ca, Cl, SO4, and total dissolved solids. The two datasets, PWGD7 and PWGD9, contained samples from 20 and 19 geologic provinces, respectively. Outliers across all attributes for each province were removed at a 99% confidence interval. Both datasets were divided into a training and test set using an 80/20 split and a 90/10 split, respectively. Random forest, Naïve Bayes, and k-Nearest Neighbors algorithms were applied to the two different training datasets and used to predict on three different testing datasets. Overall model accuracies across the two datasets and three applied models ranged from 23.5% to 73.5%. A random forest algorithm (split rule = extratrees, mtry = 5) performed best on both datasets, producing an accuracy of 67.1% for a training set based on the PWGD7 dataset, and 73.5% for a training set based on the PWGD9 dataset. Overall, the three algorithms predicted more accurately on the PWGD7 dataset than PWGD9 dataset, suggesting that either a larger sample size and/or fewer attributes lead to a more successful predicting algorithm. Individual balanced accuracies for each producing province ranged from 50.6% (Anadarko) to 100% (Raton) for PWGD7, and from 44.5% (Gulf Coast) to 99.8% (Sedgwick) for PWGD9. Results from testing the model on recently published data outside of the USGS PWGD suggests that some provinces may be lacking information about their true geochemical diversity while others included in this dataset are well described. Expanding on this effort could lead to predictive tools that provide ranges of contaminants or other chemicals of concern within each province to design future treatment facilities to reclaim wastewater. We anticipate that this classification model will be improved over time as more diverse data are added to the USGS PWGD.

  16. f

    Data from: Consistency of QSAR models: Correct split of training and test...

    • tandf.figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A. Rácz; D. Bajusz; K. Héberger (2023). Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters [Dataset]. http://doi.org/10.6084/m9.figshare.1569694.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    A. Rácz; D. Bajusz; K. Héberger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recent implementations of QSAR modelling software provide the user with numerous models and a wealth of information. In this work, we provide some guidance on how one should interpret the results of QSAR modelling, compare and assess the resulting models, and select the best and most consistent ones. Two QSAR datasets are applied as case studies for the comparison of model performance parameters and model selection methods. We demonstrate the capabilities of sum of ranking differences (SRD) in model selection and ranking, and identify the best performance indicators and models. While the exchange of the original training and (external) test sets does not affect the ranking of performance parameters, it provides improved models in certain cases (despite the lower number of molecules in the training set). Performance parameters for external validation are substantially separated from the other merits in SRD analyses, highlighting their value in data fusion.

  17. FATURA Dataset

    • zenodo.org
    zip
    Updated Dec 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahmoud Limam; Marwa Dhiaf; Yousri Kessentini; Mahmoud Limam; Marwa Dhiaf; Yousri Kessentini (2023). FATURA Dataset [Dataset]. http://doi.org/10.5281/zenodo.10371464
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 13, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Mahmoud Limam; Marwa Dhiaf; Yousri Kessentini; Mahmoud Limam; Marwa Dhiaf; Yousri Kessentini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset consists of 10000 jpg images with white backgrounds, 10000 jpg images with colored backgrounds (the same colors used in the paper) as well as 3x10000 json annotation files. The images are generated from 50 different templates. For each template, 200 images were generated. We provide annotations in three formats: our own original format, the COCO format and a format compatible with HuggingFace Transformers. Background color varies across templates but not across instances from the same template.

    In terms of objects, the dataset contains 24 different classes. The classes vary considerably in their numbers of occurrences and thus, the dataset is somewhat imbalanced.

    The annotations contain bounding box coordinates, bounding box text and object classes.

    We propose two methods for training and evaluating models. The models were trained until convergence ie until the model reaches optimal performance on the validation split and started overfitting. The model version used for evaluation is the one with the best validation performance.

    First Evaluation strategy:
    For each template, the generated images are randomly split into 3 subsets: training, validation and testing.
    In this scenario, the model trains on all templates and is thus tested on new images rather than new layouts.

    Second Evaluation strategy:
    The real templates are randomly split into a training set, and a common set of templates for validation and testing. All the variants created from the training templates are used as training dataset. The same is done to form the validation and testing datasets. The validation and testing sets are made up of the same templates but of different images.
    This approach tests the models' performance on different unseen templates/layouts, rather than the same templates with different content.

    We provide the data splits we used for every evaluation scenario. We also provide the background colors we used as augmentation for each template.

  18. Z

    Data from: Solar flare forecasting based on magnetogram sequences learning...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grim, Luís Fernando Lopes; Sampaio Gradvohl, André Leon (2023). Solar flare forecasting based on magnetogram sequences learning with MViT and data augmentation [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10246576
    Explore at:
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    Universidade Estadual de Campinas (UNICAMP)
    Universidade Estadual de Campinas
    Authors
    Grim, Luís Fernando Lopes; Sampaio Gradvohl, André Leon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Source codes and dataset of the research "Solar flare forecasting based on magnetogram sequences learning with MViT and data augmentation". Our work employed PyTorch, a framework for training Deep Learning models with GPU support and automatic back-propagation, to load the MViTv2 s models with Kinetics-400 weights. To simplify the code implementation, eliminating the need for an explicit loop to train and the automation of some hyperparameters, we use the PyTorch Lightning module. The inputs were batches of 10 samples with 16 sequenced images in 3-channel resized to 224 × 224 pixels and normalized from 0 to 1. Most of the papers in our literature survey split the original dataset chronologically. Some authors also apply k-fold cross-validation to emphasize the evaluation of the model stability. However, we adopt a hybrid split taking the first 50,000 to apply the 5-fold cross-validation between the training and validation sets (known data), with 40,000 samples for training and 10,000 for validation. Thus, we can evaluate performance and stability by analyzing the mean and standard deviation of all trained models in the test set, composed of the last 9,834 samples, preserving the chronological order (simulating unknown data). We develop three distinct models to evaluate the impact of oversampling magnetogram sequences through the dataset. The first model, Solar Flare MViT (SF MViT), has trained only with the original data from our base dataset without using oversampling. In the second model, Solar Flare MViT over Train (SF MViT oT), we only apply oversampling on training data, maintaining the original validation dataset. In the third model, Solar Flare MViT over Train and Validation (SF MViT oTV), we apply oversampling in both training and validation sets. We also trained a model oversampling the entire dataset. We called it the "SF_MViT_oTV Test" to verify how resampling or adopting a test set with unreal data may bias the results positively. GitHub version The .zip hosted here contains all files from the project, including the checkpoint and the output files generated by the codes. We have a clean version hosted on GitHub (https://github.com/lfgrim/SFF_MagSeq_MViTs), without the magnetogram_jpg folder (which can be downloaded directly on https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531804/dataset_ss2sff.zip) and the output and checkpoint files. Most code files hosted here also contain comments on the Portuguese language, which are being updated to English in the GitHub version. Folders Structure In the Root directory of the project, we have two folders:

    magnetogram_jpg: holds the source images provided by Space Environment Artificial Intelligence Early Warning Innovation Workshop through the link https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531804/dataset_ss2sff.zip. It comprises 73,810 samples of high-quality magnetograms captured by HMI/SDO from 2010 May 4 to 2019 January 26. The HMI instrument provides these data (stored in hmi.sharp_720s dataset), making new samples available every 12 minutes. However, the images from this dataset were collected every 96 minutes. Each image has an associated magnetogram comprising a ready-made snippet of one or most solar ARs. It is essential to notice that the magnetograms cropped by SHARP can contain one or more solar ARs classified by the National Oceanic and Atmospheric Administration (NOAA). Seq_Magnetogram: contains the references for source images with the corresponding labels in the next 24 h. and 48 h. in the respectively M24 and M48 sub-folders.

    M24/M48: both present the following sub-folders structure:

    Seqs16; SF_MViT; SF_MViT_oT; SF_MViT_oTV; SF_MViT_oTV_Test. There are also two files in root:

    inst_packages.sh: install the packages and dependencies to run the models. download_MViTS.py: download the pre-trained MViTv2_S from PyTorch and store it in the cache. M24 and M48 folders hold reference text files (flare_Mclass...) linking the images in the magnetogram_jpg folders or the sequences (Seq16_flare_Mclass...) in the Seqs16 folders with their respective labels. They also hold "cria_seqs.py" which was responsible for creating the sequences and "test_pandas.py" to verify head info and check the number of samples categorized by the label of the text files. All the text files with the prefix "Seq16" and inside the Seqs16 folder were created by "criaseqs.py" code based on the correspondent "flare_Mclass" prefixed text files. Seqs16 folder holds reference text files, in which each file contains a sequence of images that was pointed to the magnetogram_jpg folders. All SF_MViT... folders hold the model training codes itself (SF_MViT...py) and the corresponding job submission (jobMViT...), temporary input (Seq16_flare...), output (saida_MVIT... and MViT_S...), error (err_MViT...) and checkpoint files (sample-FLARE...ckpt). Executed model training codes generate output, error, and checkpoint files. There is also a folder called "lightning_logs" that stores logs of trained models. Naming pattern for the files:

    magnetogram_jpg: follows the format "hmi.sharp_720s...magnetogram.fits.jpg" and Seqs16: follows the format "hmi.sharp_720s...to.", where:

    hmi: is the instrument that captured the image
    sharp_720s: is the database source of SDO/HMI.
    is the identification of SHARP region, and can contain one or more solar ARs classified by the (NOAA).
    is the date-time the instrument captured the image in the format yyyymmdd_hhnnss_TAI (y:year, m:month, d:day, h:hours, n:minutes, s:seconds).
    is the date-time when the sequence starts, and follow the same format of .

    is the date-time when the sequence ends, and follow the same format of . Reference text files in M24 and M48 or inside SF_MViT... folders follows the format "flare_Mclass_.txt", where:

    is Seq16 if refers to a sequence, or void if refers direct to images.

    "24h" or "48h".

    is "TrainVal" or "Test". The refers to the split of Train/Val.

    void or "_over" after the extension (...txt_over): means temporary input reference that was over-sampled by a training model. All SF_MViT...folders:

    Model training codes: "SF_MViT_M+_", where:

    void or "oT" (over Train) or "oTV" (over Train and Val) or "oTV_Test" (over Train, Val and Test);

    "24h" or "48h";

    "oneSplit" for a specific split or "allSplits" if run all splits.

    void is default to run 1 GPU or "2gpu" to run into 2 gpus systems; Job submission files: "jobMViT_", where:

    point the queue in Lovelace environment hosted on CENAPAD-SP (https://www.cenapad.unicamp.br/parque/jobsLovelace) Temporary inputs: "Seq16_flare_Mclass_.txt:

    train or val;

    void or "_over" after the extension (...txt_over): means temporary input reference that was over-sampled by a training model. Outputs: "saida_MViT_Adam_10-7", where:

    k0 to k4, means the correlated split of the output, or void if the output is from all splits. Error files: "err_MViT_Adam_10-7", where:

    k0 to k4, means the correlated split of the error log file, or void if the error file is from all splits. Checkpoint files: "sample-FLARE_MViT_S_10-7-epoch=-valid_loss=-Wloss_k=.ckpt", where:

    epoch number of the checkpoint;

    corresponding valid loss;

    0 to 4.

  19. Z

    DustNet - structured data and Python code to reproduce the model,...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +1more
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nowak, T. E.; Augousti, Andy T.; Simmons, Benno I.; Siegert, Stefan (2024). DustNet - structured data and Python code to reproduce the model, statistical analysis and figures [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10631953
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    University of Exeter
    Kingston University
    Authors
    Nowak, T. E.; Augousti, Andy T.; Simmons, Benno I.; Siegert, Stefan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and Python code used for AOD prediction with DustNet model - a Machine Learning/AI based forecasting.

    Model input data and code

    Processed MODIS AOD data (from Aqua and Terra) and selected ERA5 variables* ready to reproduce the DustNet model results or for similar forecasting with Machine Learning. These long-term daily timeseries (2003-2022) are provided as n-dimensional NumPy arrays. The Python code to handle the data and run the DustNet model** is included as Jupyter Notebook ‘DustNet_model_code.ipynb’. A subfolder with normalised and split data into training/validation/testing sets is also provided with Python code for two additional ML based models** used for comparison (U-NET and Conv2D). Pre-trained models are also archived here as TensorFlow files.

    Model output data and code

    This dataset was constructed by running the ‘DustNet_model_code.ipynb’ (see above). It consists of 1095 days of forecased AOD data (2020-2022) by CAMS, DustNet model, naïve prediction (persistence) and gridded climatology. The ground truth raw AOD data form MODIS is provided for comparison and statystical analysis of predictions. It is intended for a quick reproduction of figures and statystical analysis presented in DustNet introducing paper.

    *datasets are NumPy arrays (v1.23) created in Python v3.8.18.

    **all ML models were created with Keras in Python v3.10.10.

  20. Rescaled CIFAR-10 dataset

    • zenodo.org
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrzej Perzanowski; Andrzej Perzanowski; Tony Lindeberg; Tony Lindeberg (2025). Rescaled CIFAR-10 dataset [Dataset]. http://doi.org/10.5281/zenodo.15188748
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrzej Perzanowski; Andrzej Perzanowski; Tony Lindeberg; Tony Lindeberg
    Description

    Motivation

    The goal of introducing the Rescaled CIFAR-10 dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data.

    The Rescaled CIFAR-10 dataset was introduced in the paper:

    [1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, 67(29), https://doi.org/10.1007/s10851-025-01245-x.

    with a pre-print available at arXiv:

    [2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.

    Importantly, the Rescaled CIFAR-10 dataset contains substantially more natural textures and patterns than the MNIST Large Scale dataset, introduced in:

    [3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2

    and is therefore significantly more challenging.

    Access and rights

    The Rescaled CIFAR-10 dataset is provided on the condition that you provide proper citation for the original CIFAR-10 dataset:

    [4] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Tech. rep., University of Toronto.

    and also for this new rescaled version, using the reference [1] above.

    The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.

    The dataset

    The Rescaled CIFAR-10 dataset is generated by rescaling 32×32 RGB images of animals and vehicles from the original CIFAR-10 dataset [4]. The scale variations are up to a factor of 4. In order to have all test images have the same resolution, mirror extension is used to extend the images to size 64x64. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].

    There are 10 distinct classes in the dataset: “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, “ship” and “truck”. In the dataset, these are represented by integer labels in the range [0, 9].

    The dataset is split into 40 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 40 000 samples from the original CIFAR-10 training set. The validation dataset, on the other hand, is formed from the final 10 000 image batch of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original CIFAR-10 test set.

    The h5 files containing the dataset

    The training dataset file (~5.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:

    cifar10_with_scale_variations_tr40000_vl10000_te10000_outsize64-64_scte1p000_scte1p000.h5

    Additionally, for the Rescaled CIFAR-10 dataset, there are 9 datasets (~1 GB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:

    cifar10_with_scale_variations_te10000_outsize64-64_scte0p500.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte0p595.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte0p707.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte0p841.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte1p000.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte1p189.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte1p414.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte1p682.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte2p000.h5

    These dataset files were used for the experiments presented in Figures 9, 10, 15, 16, 20 and 24 in [1].

    Instructions for loading the data set

    The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
    ('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.

    The training dataset can be loaded in Python as:

    with h5py.File(`

    x_train = np.array( f["/x_train"], dtype=np.float32)
    x_val = np.array( f["/x_val"], dtype=np.float32)
    x_test = np.array( f["/x_test"], dtype=np.float32)
    y_train = np.array( f["/y_train"], dtype=np.int32)
    y_val = np.array( f["/y_val"], dtype=np.int32)
    y_test = np.array( f["/y_test"], dtype=np.int32)

    We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:

    x_train = np.transpose(x_train, (0, 3, 1, 2))
    x_val = np.transpose(x_val, (0, 3, 1, 2))
    x_test = np.transpose(x_test, (0, 3, 1, 2))

    The test datasets can be loaded in Python as:

    with h5py.File(`

    x_test = np.array( f["/x_test"], dtype=np.float32)
    y_test = np.array( f["/y_test"], dtype=np.int32)

    The test datasets can be loaded in Matlab as:

    x_test = h5read(`

    The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson (2023). Machine learning algorithm validation with a limited sample size [Dataset]. http://doi.org/10.1371/journal.pone.0224365
Organization logo

Machine learning algorithm validation with a limited sample size

Explore at:
text/x-pythonAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.

Search
Clear search
Close search
Google apps
Main menu