61 datasets found
  1. PLACES: Census Tract Data (GIS Friendly Format), 2024 release

    • healthdata.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). PLACES: Census Tract Data (GIS Friendly Format), 2024 release [Dataset]. https://healthdata.gov/dataset/PLACES-Census-Tract-Data-GIS-Friendly-Format-2024-/4efd-4ue6
    Explore at:
    csv, application/rssxml, application/rdfxml, xml, tsv, jsonAvailable download formats
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    data.cdc.gov
    Description

    This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census tract 2022 boundary file in a GIS system to produce maps for 40 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  2. d

    PLACES: Census Tract Data (GIS Friendly Format), 2022 release

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Census Tract Data (GIS Friendly Format), 2022 release [Dataset]. https://catalog.data.gov/dataset/places-census-tract-data-gis-friendly-format-2022-release
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based census tract level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  3. Region

    • hub.arcgis.com
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK (2023). Region [Dataset]. https://hub.arcgis.com/datasets/esriukcontent::census-2021-health-disability-and-unpaid-care-disability-ts038?layer=1
    Explore at:
    Dataset updated
    Feb 28, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK
    Area covered
    Description

    Office for National Statistics' national and subnational Census 2021. DisabilityThis dataset provides Census 2021 estimates that classify usual residents in England and Wales by long-term health problems or disabilities. The estimates are as at Census Day, 21 March 2021. Disability definition: People who assessed their day-to-day activities as limited by long-term physical or mental health conditions or illnesses are considered disabled. This definition of a disabled person meets the harmonised standard for measuring disability and is in line with the Equality Act (2010).Comparability with 2011: Broadly comparableThe question related to this variable was split into two parts for Census 2021. In Census 2021 we asked people completing the questionnaire if they have any physical or mental health conditions or illnesses. In the 2011 Census, people were asked if they have a health problem or disability. We also removed the option to include information about problems related to old age. This data is issued at (BGC) Generalised (20m) boundary type for:Country - England and WalesRegion - EnglandUTLA - England and WalesLTLA - England and WalesWard - England and WalesMSOA - England and WalesLSOA - England and WalesOA - England and WalesIf you require the data at full resolution boundaries, or if you are interested in the range of statistical data that Esri UK make available in ArcGIS Online please enquire at content@esriuk.com.The data services available from this page are derived from the National Data Service. The NDS delivers thousands of open national statistical indicators for the UK as data-as-a-service. Data are sourced from major providers such as the Office for National Statistics, Public Health England and Police UK and made available for your area at standard geographies such as counties, districts and wards and census output areas. This premium service can be consumed as online web services or on-premise for use throughout the ArcGIS system.Read more about the NDS.

  4. AHRQ Social Determinants of Health Updated Database

    • datalumos.org
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AHRQ (2025). AHRQ Social Determinants of Health Updated Database [Dataset]. http://doi.org/10.3886/E220762V1
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset provided by
    Agency for Healthcare Research and Qualityhttp://www.ahrq.gov/
    Authors
    AHRQ
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    AHRQ's database on Social Determinants of Health (SDOH) was created under a project funded by the Patient Centered Outcomes Research (PCOR) Trust Fund. The purpose of this project is to create easy to use, easily linkable SDOH-focused data to use in PCOR research, inform approaches to address emerging health issues, and ultimately contribute to improved health outcomes.The database was developed to make it easier to find a range of well documented, readily linkable SDOH variables across domains without having to access multiple source files, facilitating SDOH research and analysis.Variables in the files correspond to five key SDOH domains: social context (e.g., age, race/ethnicity, veteran status), economic context (e.g., income, unemployment rate), education, physical infrastructure (e.g, housing, crime, transportation), and healthcare context (e.g., health insurance). The files can be linked to other data by geography (county, ZIP Code, and census tract). The database includes data files and codebooks by year at three levels of geography, as well as a documentation file.The data contained in the SDOH database are drawn from multiple sources and variables may have differing availability, patterns of missing, and methodological considerations across sources, geographies, and years. Users should refer to the data source documentation and codebooks, as well as the original data sources, to help identify these patterns

  5. PLACES: Census Tract Data (GIS Friendly Format), 2021 release

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Census Tract Data (GIS Friendly Format), 2021 release [Dataset]. https://catalog.data.gov/dataset/places-census-tract-data-gis-friendly-format-2021-release-07f98
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based census tract level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf

  6. O

    COVID-19 Vaccinations by Census Tract - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +1more
    application/rdfxml +5
    Updated May 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2021). COVID-19 Vaccinations by Census Tract - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Census-Tract-ARCHIVE/fj4n-gyni
    Explore at:
    tsv, application/rdfxml, csv, application/rssxml, xml, jsonAvailable download formats
    Dataset updated
    May 17, 2021
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    As of 1/13/2022, this dataset is no longer being updated and has been replaced with a new dataset, which can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Census-Tract/ekim-wqrr

    COVID-19 Vaccinations by Census Tract and Age Groups, including Ages 16+, Ages 16-44, Ages 45-64, and Ages 65+.

    CT Vaccination Program (COVP) data obtained from CTWiZ. COVP Coverage data suppressed if the any of the following conditions were met: -Coefficient of Variation of Denominator is > 30%
    -Numerator is <5 -Population is estimated to be 0 (zero)

    Population data obtained from the 2019 Census ACS (www.census.gov)

    DPH recommends that these data are primarily used to identify areas that require additional attention rather than to establish and track the exact level of vaccine coverage.

    All analyses are provisional and subject to change.

    Census tract coverage estimates can play an important role in planning and evaluating vaccination strategies. However, inaccuracies in the data that are inherent to population surveillance may be magnified when analyses are performed on population subgroups within census tracts. We make every effort to provide accurate data, but inaccuracies may result from things like incomplete or inaccurate addresses, duplicate records, and sampling error in the American Community Survey that is used to estimate census tract population size and composition. These things may result in overestimates or underestimates of vaccine coverage.

    Some census tracts are suppressed. This is done if the number of people vaccinated is less than 5 or if the census population estimate is considered to be unreliable (coefficient of variance > 30%). Coverage estimates over 100% are shown as 100%. We suggest that the data are used primarily to identify areas that require additional attention rather than to establish and track the exact level of vaccine coverage. All analyses are provisional and subject to change.

    Caution should be used when interpreting coverage estimates for towns with large college/university populations since coverage may be underestimated. In the census, college/university students who live on or just off campus would be counted in the college/university town. However, if a student was vaccinated while studying remotely in his/her hometown, the student may be counted as a vaccine recipient in that town.

  7. England and Wales Census 2021 - Ethnic group by general health, disability,...

    • statistics.ukdataservice.ac.uk
    xlsx
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2023). England and Wales Census 2021 - Ethnic group by general health, disability, and unpaid care [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/england-and-wales-census-2021-ethnic-group-by-general-health-disability-and-unpaid-care
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    Northern Ireland Statistics and Research Agency
    UK Data Servicehttps://ukdataservice.ac.uk/
    Office for National Statisticshttp://www.ons.gov.uk/
    Authors
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service.
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Wales, England
    Description

    This dataset represents ethnic group (19 tick-box level) by general health, by disabled and non-disabled populations, and provision of unpaid care, for England and Wales combined. The data are also broken down by age and sex for each subtopic.

    The ethnic group that the person completing the census feels they belong to. This could be based on their culture, family background, identity, or physical appearance. Respondents could choose one out of 19 tick-box response categories, including write-in response options.

    Total counts for some population groups may not match between published tables. This is to protect the confidentiality of individuals' data. Population counts have been rounded to the nearest 5 and any counts below 10 are suppressed, this is signified by a 'c' in the data tables.

    "Asian Welsh" and "Black Welsh" ethnic groups were included on the census questionnaire in Wales only, these categories were new for 2021.

    This dataset provides Census 2021 estimates that classify usual residents in England and Wales by ethnic group. The estimates are as at Census Day, 21 March 2021.

    Read more about this quality notice.

    The population base for unpaid care is usual residents aged 5 and above. 5-year age bands have been used for the majority of analysis; however, age groups "5 to 17" and "18 to 24" have been used to allow commentary on young carers and young working age carers.

    Ethnic Group (19 tick-box level)

    These are the 19 ethnic group used in this dataset:

    • Asian, Asian British or Asian Welsh
      • Bangladeshi
      • Chinese
      • Indian
      • Pakistani
      • Other Asian
    • Black, Black British, Black Welsh, Caribbean or African
      • African
      • Caribbean
      • Other Black
    • Mixed or Multiple ethnic groups
      • White and Asian
      • White and Black African
      • White and Black Caribbean
      • Other Mixed or Multiple ethnic groups
    • White
      • English, Welsh, Scottish, Northern Irish or British
      • Gypsy or Irish Traveller
      • Irish
      • Roma
      • Other White
    • Other ethnic group
      • Arab
      • Any other ethnic group

    _General health _

    A person's assessment of the general state of their health from very good to very bad. This assessment is not based on a person's health over any specified period of time.

    _Disability _

    The definition of disability used in the 2021 Census is aligned with the definition of disability under the Equality Act (2010). A person is considered disabled if they self-report having a physical or mental health condition or illness that has lasted or is expected to last 12 months or more, and that this reduces their ability to carry out day-to-day activities.

    Unpaid care

    An unpaid carer may look after, give help or support to anyone who has long-term physical or mental ill-health conditions, illness or problems related to old age. This does not include any activities as part of paid employment. This help can be within or outside of the carer's household.

  8. England and Wales Census 2021 - Religion by general health, disability and...

    • statistics.ukdataservice.ac.uk
    xlsx
    Updated Mar 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2023). England and Wales Census 2021 - Religion by general health, disability and unpaid care [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/england-and-wales-census-2021-religion-by-general-health-disability-and-unpaid-care
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    Northern Ireland Statistics and Research Agency
    UK Data Servicehttps://ukdataservice.ac.uk/
    Office for National Statisticshttp://www.ons.gov.uk/
    Authors
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service.
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Wales, England
    Description

    Census 2021 data on religion by general health, by sex, by age; religion by disability, by sex, by age; and, religion by unpaid care, by sex, by age; England and Wales combined. This dataset provides Census 2021 estimates that classify usual residents in England and Wales by ethnic group. The estimates are as at Census Day, 21 March 2021.

    The religion people connect or identify with (their religious affiliation), whether or not they practise or have belief in it.
    This question was voluntary and the variable includes people who answered the question, including “No religion”, alongside those who chose not to answer this question.

    Total counts for some population groups may not match between published tables. This is to protect the confidentiality of individuals' data. Population counts have been rounded to the nearest 5 and any counts below 10 are suppressed, this is signified by a 'c' in the data tables.

    The population base for unpaid care is usual residents aged 5 years and above. We have used 5-year age bands for the majority of analysis; however, age groups "5 to 17" and "18 to 24" have been used to allow commentary on young carers and young working age carers.

    Quality notes can be found here

    Religion

    The 8 ‘tickbox’ religious groups are as follows:

    • Buddhist
    • Christian
    • Hindu
    • Jewish
    • Muslim
    • No religion
    • Sikh
    • Other religion

    General health

    A person's assessment of the general state of their health from very good to very bad. This assessment is not based on a person's health over any specified period of time.

    Disability

    The definition of disability used in the 2021 Census is aligned with the definition of disability under the Equality Act (2010). A person is considered disabled if they self-report having a physical or mental health condition or illness that has lasted or is expected to last 12 months or more, and that this reduces their ability to carry out day-to-day activities.

    Unpaid care

    An unpaid carer may look after, give help or support to anyone who has long-term physical or mental ill-health conditions, illness or problems related to old age. This does not include any activities as part of paid employment. This help can be within or outside of the carer's household.

  9. l

    Census 21 - Disability MSOA

    • data.leicester.gov.uk
    csv, excel, geojson +1
    Updated Aug 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Census 21 - Disability MSOA [Dataset]. https://data.leicester.gov.uk/explore/dataset/census-21-disability-msoa/
    Explore at:
    excel, json, csv, geojsonAvailable download formats
    Dataset updated
    Aug 22, 2023
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for the MSOAs of Leicester and compare this with Leicester overall statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsDisabilityThis dataset provides Census 2021 estimates that classify usual residents in England and Wales by long-term health problems or disabilities. The estimates are as at Census Day, 21 March 2021.Definition: People who assessed their day-to-day activities as limited by long-term physical or mental health conditions or illnesses are considered disabled. This definition of a disabled person meets the harmonised standard for measuring disability and is in line with the Equality Act (2010).This dataset includes details for Leicester MSOAs.

  10. Daily Census Tract-Level PM2.5 Concentrations, 2011-2014

    • healthdata.gov
    • data.virginia.gov
    • +5more
    application/rdfxml +5
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2021). Daily Census Tract-Level PM2.5 Concentrations, 2011-2014 [Dataset]. https://healthdata.gov/dataset/Daily-Census-Tract-Level-PM2-5-Concentrations-2011/325w-tir6
    Explore at:
    json, csv, tsv, xml, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    data.cdc.gov
    Description

    This dataset provides modeled predictions of PM2.5 levels from the EPA's Downscaler model. Data are at the census tract level for 2011-2014. These data are used by the CDC's National Environmental Public Health Tracking Network to generate air quality measures. Census tract-level datasets contain estimates of the mean predicted concentration and associated standard error. Please refer to the metadata attachment for more information.

    Learn more about outdoor air quality on the Tracking Network's website: https://ephtracking.cdc.gov/showAirLanding.action.

    By using these data, you signify your agreement to comply with the following requirements: 1. Use the data for statistical reporting and analysis only. 2. Do not attempt to learn the identity of any person included in the data and do not combine these data with other data for the purpose of matching records to identify individuals. 3. Do not disclose of or make use of the identity of any person or establishment discovered inadvertently and report the discovery to: trackingsupport@cdc.gov. 4. Do not imply or state, either in written or oral form, that interpretations based on the data are those of the original data sources and CDC unless the data user and data source are formally collaborating. 5. Acknowledge, in all reports or presentations based on these data, the original source of the data and CDC. 6. Suggested citation: Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Web. Accessed: insert date. www.cdc.gov/ephtracking.

  11. A

    ‘COVID-19 Vaccinations by Census Tract - ARCHIVE’ analyzed by Analyst-2

    • analyst-2.ai
    Updated May 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘COVID-19 Vaccinations by Census Tract - ARCHIVE’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-vaccinations-by-census-tract-archive-19b1/174f3397/?iid=005-775&v=presentation
    Explore at:
    Dataset updated
    May 20, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 Vaccinations by Census Tract - ARCHIVE’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/4d4b5bc7-d5be-471a-ad5e-82cea2b3704d on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    As of 1/13/2022, this dataset is no longer being updated and has been replaced with a new dataset, which can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Census-Tract/ekim-wqrr

    COVID-19 Vaccinations by Census Tract and Age Groups, including Ages 16+, Ages 16-44, Ages 45-64, and Ages 65+.

    CT Vaccination Program (COVP) data obtained from CTWiZ. COVP Coverage data suppressed if the any of the following conditions were met: -Coefficient of Variation of Denominator is > 30%
    -Numerator is <5 -Population is estimated to be 0 (zero)

    Population data obtained from the 2019 Census ACS (www.census.gov)

    DPH recommends that these data are primarily used to identify areas that require additional attention rather than to establish and track the exact level of vaccine coverage.

    All analyses are provisional and subject to change.

    Census tract coverage estimates can play an important role in planning and evaluating vaccination strategies. However, inaccuracies in the data that are inherent to population surveillance may be magnified when analyses are performed on population subgroups within census tracts. We make every effort to provide accurate data, but inaccuracies may result from things like incomplete or inaccurate addresses, duplicate records, and sampling error in the American Community Survey that is used to estimate census tract population size and composition. These things may result in overestimates or underestimates of vaccine coverage.

    Some census tracts are suppressed. This is done if the number of people vaccinated is less than 5 or if the census population estimate is considered to be unreliable (coefficient of variance > 30%). Coverage estimates over 100% are shown as 100%. We suggest that the data are used primarily to identify areas that require additional attention rather than to establish and track the exact level of vaccine coverage. All analyses are provisional and subject to change.

    Caution should be used when interpreting coverage estimates for towns with large college/university populations since coverage may be underestimated. In the census, college/university students who live on or just off campus would be counted in the college/university town. However, if a student was vaccinated while studying remotely in his/her hometown, the student may be counted as a vaccine recipient in that town.

    --- Original source retains full ownership of the source dataset ---

  12. PLACES: Census Tract Data (GIS Friendly Format), 2023 release

    • data.cdc.gov
    • healthdata.gov
    • +2more
    Updated Jul 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health (2024). PLACES: Census Tract Data (GIS Friendly Format), 2023 release [Dataset]. https://data.cdc.gov/500-Cities-Places/PLACES-Census-Tract-Data-GIS-Friendly-Format-2023-/hky2-3tpn
    Explore at:
    application/geo+json, kml, csv, application/rssxml, tsv, xml, kmz, application/rdfxmlAvailable download formats
    Dataset updated
    Jul 10, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 36 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588

  13. D

    Daily Census Tract-Level PM2.5 Concentrations, 2001-2005

    • data.cdc.gov
    • healthdata.gov
    • +4more
    application/rdfxml +5
    Updated Jul 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Environmental Public Health Tracking Network (2018). Daily Census Tract-Level PM2.5 Concentrations, 2001-2005 [Dataset]. https://data.cdc.gov/Environmental-Health-Toxicology/Daily-Census-Tract-Level-PM2-5-Concentrations-2001/s5vm-cztk
    Explore at:
    json, csv, xml, tsv, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Jul 10, 2018
    Dataset authored and provided by
    National Environmental Public Health Tracking Network
    Description

    This dataset provides modeled predictions of PM2.5 levels from the EPA's Downscaler model. Data are at the census tract level for 2001-2005. These data are used by the CDC's National Environmental Public Health Tracking Network to generate air quality measures. Census tract-level datasets contain estimates of the mean predicted concentration and associated standard error. Please refer to the metadata attachment for more information.

    Learn more about outdoor air quality on the Tracking Network's website: https://ephtracking.cdc.gov/showAirLanding.action.

    By using these data, you signify your agreement to comply with the following requirements: 1. Use the data for statistical reporting and analysis only. 2. Do not attempt to learn the identity of any person included in the data and do not combine these data with other data for the purpose of matching records to identify individuals. 3. Do not disclose of or make use of the identity of any person or establishment discovered inadvertently and report the discovery to: trackingsupport@cdc.gov. 4. Do not imply or state, either in written or oral form, that interpretations based on the data are those of the original data sources and CDC unless the data user and data source are formally collaborating. 5. Acknowledge, in all reports or presentations based on these data, the original source of the data and CDC. 6. Suggested citation: Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Web. Accessed: insert date. www.cdc.gov/ephtracking.

  14. V

    Daily Census Tract-Level PM2.5 Concentrations, 2016 - 2020

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). Daily Census Tract-Level PM2.5 Concentrations, 2016 - 2020 [Dataset]. https://data.virginia.gov/dataset/daily-census-tract-level-pm2-5-concentrations-2016-2020
    Explore at:
    csv, json, rdf, xslAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset provides modeled predictions of PM2.5 levels from the EPA's Downscaler model. Data are at the census tract level for 2016-2020. These data are used by the CDC's National Environmental Public Health Tracking Network to generate air quality measures. Census tract-level datasets contain estimates of the mean predicted concentration and associated standard error. Please refer to the metadata attachment for more information. Learn more about outdoor air quality on the Tracking Network's website: https://ephtracking.cdc.gov/showAirLanding.action. By using these data, you signify your agreement to comply with the following requirements: 1. Use the data for statistical reporting and analysis only. 2. Do not attempt to learn the identity of any person included in the data and do not combine these data with other data for the purpose of matching records to identify individuals. 3. Do not disclose of or make use of the identity of any person or establishment discovered inadvertently and report the discovery to: trackingsupport@cdc.gov. 4. Do not imply or state, either in written or oral form, that interpretations based on the data are those of the original data sources and CDC unless the data user and data source are formally collaborating. 5. Acknowledge, in all reports or presentations based on these data, the original source of the data and CDC. 6. Suggested citation: Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Web. Accessed: insert date. www.cdc.gov/ephtracking.

  15. A

    Daily Census Tract-Level PM2.5 Concentrations, 2011-2015

    • data.amerigeoss.org
    • healthdata.gov
    • +3more
    csv, json, rdf, xml
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2021). Daily Census Tract-Level PM2.5 Concentrations, 2011-2015 [Dataset]. https://data.amerigeoss.org/dataset/daily-census-tract-level-pm2-5-concentrations-2011-2015-173ca
    Explore at:
    rdf, csv, json, xmlAvailable download formats
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    United States
    Description

    This dataset provides modeled predictions of PM2.5 levels from the EPA's Downscaler model. Data are at the census tract level for 2011-2015. These data are used by the CDC's National Environmental Public Health Tracking Network to generate air quality measures. Census tract-level datasets contain estimates of the mean predicted concentration and associated standard error. Please refer to the metadata attachment for more information.

    Learn more about outdoor air quality on the Tracking Network's website: https://ephtracking.cdc.gov/showAirLanding.action.

    By using these data, you signify your agreement to comply with the following requirements: 1. Use the data for statistical reporting and analysis only. 2. Do not attempt to learn the identity of any person included in the data and do not combine these data with other data for the purpose of matching records to identify individuals. 3. Do not disclose of or make use of the identity of any person or establishment discovered inadvertently and report the discovery to: trackingsupport@cdc.gov. 4. Do not imply or state, either in written or oral form, that interpretations based on the data are those of the original data sources and CDC unless the data user and data source are formally collaborating. 5. Acknowledge, in all reports or presentations based on these data, the original source of the data and CDC. 6. Suggested citation: Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Web. Accessed: insert date. www.cdc.gov/ephtracking.

  16. a

    2018 ACS Demographic & Socio-Economic Data Of USA At Zip Code Level

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated May 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). 2018 ACS Demographic & Socio-Economic Data Of USA At Zip Code Level [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/items/25ba4049241f4ac49fd231dcf192ab53
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    Data SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at both the tract and zip code levels, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsTargeted Interventions: Facilitates the development of targeted interventions to address the needs of vulnerable populations within specific zip codes.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability at the zip code level.Research: Provides a rich dataset for academic and applied research in socio-economic and demographic studies at a granular zip code level.Community Planning: Supports the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities within specific zip code areas.Note: Due to limitations in the data environment, variable names may be truncated. Refer to the provided table for a clear understanding of the variables. CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2013-2017 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2013-2017 ACSEP_PCIEP_PCIPer capita income estimate, 2013-2017 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2013-2017 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2013-2017 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2013-2017 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2013-2017 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computerThis table provides a mapping between the CSV variable names and the shapefile variable names, along with a brief description of each variable.

  17. r

    Panel Study of Income Dynamics

    • rrid.site
    • dknet.org
    • +1more
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Panel Study of Income Dynamics [Dataset]. http://identifiers.org/RRID:SCR_008976
    Explore at:
    Dataset updated
    May 26, 2025
    Description

    Long-term longitudinal dataset with information on generational links and socioeconomic and health conditions of individuals over time. The central foci of the data are economic and demographic, with substantial detail on income sources and amounts, wealth, savings, employment, pensions, family composition changes, childbirth and marriage histories, and residential location. Over the life of the PSID, the NIA has funded supplements on wealth, health, parental health and long term care, housing, and the financial impact of illness, thus also making it possible to model retirement and residential mobility. Starting in 1999, much greater detail on specific health conditions and health care expenses is included for respondent and spouse. Other enhancements have included a question series about emotional distress (2001); the two stem questions from the Composite International Diagnostic Interview to assess symptoms of major depression (2003); a supplement on philanthropic giving and volunteering (2001-03); a question series on Internet and computer use (2003); linkage to the National Death Index with cause of death information for more than 4,000 individuals through the 1997 wave, updated for each subsequent wave; social and family history variables and GIS-linked environmental data; basic data on pension plans; event history calendar methodology to facilitate recall of employment spells (2001). The reporting unit is the family: single person living alone or sharing a household with other non-relatives; group of people related by blood, marriage, or adoption; unmarried couple living together in what appears to be a fairly permanent arrangement. Interviews were conducted annually from 1968 through 1997; biennial interviewing began in 1999. There is an oversample of Blacks (30%). Waves 1990 through 1995 included a 20% Hispanic oversample; within the Hispanic oversample, Cubans and Puerto Ricans were oversampled relative to Mexicans. All data from 1994 through 2001 are available as public release files; prior waves can be obtained in archive versions. The special files with weights for families are also available. Restricted files include the Geocode Match File with information for 1968 through 2001, the 1968-2001 Death File, and the 1991 Medicare Claims File. * Dates of Study: 1968-2003 * Study Features: Longitudinal, Minority Oversampling * Sample Size: 65,000+ Links * ICPSR Series: http://www.icpsr.umich.edu/icpsrweb/ICPSR/series/00131 * ICPSR 1968-1999: Annual Core Data: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/07439 * ICPSR 1968-1999: Supplemental Files: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03202 * ICPSR 1989-1990: Latino Sample: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03203

  18. w

    Daily Census Tract-Level Ozone Concentrations, 2006-2010

    • data.wu.ac.at
    • healthdata.gov
    • +6more
    csv, json, xml
    Updated Jul 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Environmental Public Health Tracking Network (2018). Daily Census Tract-Level Ozone Concentrations, 2006-2010 [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/dmR1YS11cWN0
    Explore at:
    json, xml, csvAvailable download formats
    Dataset updated
    Jul 16, 2018
    Dataset provided by
    National Environmental Public Health Tracking Network
    Description

    This dataset provides modeled predictions of ozone levels from the EPA's Downscaler model. Data are at the census tract level for 2006-2010. These data are used by the CDC's National Environmental Public Health Tracking Network to generate air quality measures. Census tract-level datasets contain estimates of the mean predicted concentration and associated standard error. Please refer to the metadata attachment for more information.

    Learn more about outdoor air quality on the Tracking Network's website: https://ephtracking.cdc.gov/showAirLanding.action.

    By using these data, you signify your agreement to comply with the following requirements: 1. Use the data for statistical reporting and analysis only. 2. Do not attempt to learn the identity of any person included in the data and do not combine these data with other data for the purpose of matching records to identify individuals. 3. Do not disclose of or make use of the identity of any person or establishment discovered inadvertently and report the discovery to: trackingsupport@cdc.gov. 4. Do not imply or state, either in written or oral form, that interpretations based on the data are those of the original data sources and CDC unless the data user and data source are formally collaborating. 5. Acknowledge, in all reports or presentations based on these data, the original source of the data and CDC. 6. Suggested citation: Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Web. Accessed: insert date. www.cdc.gov/ephtracking.

  19. Survey of Income and Program Participation (SIPP): 1984 Panel, Wave 1...

    • archive.ciser.cornell.edu
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2025). Survey of Income and Program Participation (SIPP): 1984 Panel, Wave 1 Rectangular Files [Dataset]. http://doi.org/10.6077/tc5d-7828
    Explore at:
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    Bureau of the Census
    Variables measured
    Individual
    Description

    This longitudinal survey was designed to add significantly to the amount of detailed information available on the economic situation of households and persons in the United States. These data examine the level of economic well-being of the population and also provide information on how economic situations relate to the demographic and social characteristics of individuals. There are three basic elements contained in the survey. The first is a control card that records basic social and demographic characteristics for each person in a household, as well as changes in such characteristics over the course of the interviewing period. The second element is the core portion of the questionnaire, with questions repeated at each interview on labor force activity, types and amounts of income, participation in various cash and noncash benefit programs, attendance in postsecondary schools, private health insurance coverage, public or subsidized rental housing, low-income energy assistance, and school breakfast and lunch participation. The third element consists of topical modules which are series of supplemental questions asked during selected household visits. No topical modules were created for the first or second waves. The Wave III Rectangular Core and Topical Module File offers both the core data and additional data on (1) education and work history and (2) health and disability. In the areas of education and work history, data are supplied on the highest level of schooling attained, courses or programs studied in high school and after high school, whether the respondent received job training, and if so, for how long and under what program (e.g., CETA or WIN). Other items pertain to the respondent's general job history and include a description of selected previous jobs, duration of jobs, and reasons for periods spent not working. Health and disability variables present information on the general condition of the respondent's health, functional limitations, work disability, and the need for personal assistance. Data are also provided on hospital stays or periods of illness, health facilities used, and whether health insurance plans (private or Medicare) were available. Respondents whose children had physical, mental, or emotional problems were questioned about the causes of the problems and whether the children attended regular schools. The Wave IV Rectangular Core and Topical Module file contains both the core data and sets of questions exploring the subjects of (1) assets and liabilities, (2) retirement and pension coverage, and (3) housing costs, conditions, and energy usage. Some of the major assets for which data are provided are savings accounts, stocks, mutual funds, bonds, Keogh and IRA accounts, home equity, life insurance, rental property, and motor vehicles. Data on unsecured liabilities such as loans, credit cards, and medical bills also are included. Retirement and pension information covers such items as when respondents expect to stop working, whether they will receive retirement benefits, whether their employers have retirement plans, if so whether they are eligible, and how much they expect to receive per year from these plans. In the category of housing costs, conditions, and energy usage, variables pertain to mortgage payments, real estate taxes, fire insurance, principal owed, when the mortgage was obtained, interest rates, rent, type of fuel used, heating facilities, appliances, and vehicles. The Wave V topical modules explore the subject areas of (1) child care, (2) welfare history and child support, (3) reasons for not working/reservation wage, and (4) support for nonhousehold members/work-related expenses. Data on child care include items on child care arrangements such as who provides the care, the number of hours of care per week, where the care is provided, and the cost. Questions in the areas of welfare history and child support focus on receipt of aid from specific welfare programs and child support agreements and their fulfillment. The reasons for not working/reservation wage module presents data on why persons are not in the labor force and the conditions under which they might join the labor force. Additional variables cover job search activities, pay rate required, and reason for refusal of a job offer. The set of questions dealing with nonhousehold members/work-related expenses contains items on regular support payments for nonhousehold members and expenses associated with a job such as union dues, licenses, permits, special tools, uniforms, or travel expenses. Information is supplied in the Wave VII Topical Module file on (1) assets and liabilities, (2) pension plan coverage, and (3) real estate property and vehicles. Variables pertaining to assets and liabilities are similar to those contained in the topical module for Wave IV. Pension plan coverage items include whether the respondent will receive retirement benefits, whether the employer offers a retirement plan and if the respondent is included in the plan, and contributions by the employer and the employee to the plan. Real estate property and vehicles data include information on mortgages held, amount of principal still owed and current interest rate on mortgages, rental and vacation properties owned, and various items pertaining to vehicles belonging to the household. Wave VIII Topical Module includes questions on support for nonhousehold members, work-related expenses, marital history, migration history, fertility history, and household relationships. Support for nonhousehold members includes data for children and adults not in the household. Weekly and annual work-related expenses are documented. Widowhood, divorce, separation, and marriage dates are part of the marital history. Birth expectations as well as dates of birth for all the householder's children, in the household or elsewhere, are recorded in the fertility history. Migration history data supplies information on birth history of the householder's parents, number of times moved, and moving expenses. Household relationships lists the exact relationships among persons living in the household. Part 49, Wave IX Rectangular Core and Topical Module Research File, includes data on annual income, retirement accounts, taxes, school enrollment, and financing. This topical module research file has not been edited nor imputed, but has been topcoded or bottomcoded and recoded if necessary by the Census Bureau to avoid disclosure of individual respondents' identities. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08317.v2. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  20. a

    Potential Access to Parks (Southeast Blueprint Indicator)

    • hub.arcgis.com
    • gis-fws.opendata.arcgis.com
    Updated Sep 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2023). Potential Access to Parks (Southeast Blueprint Indicator) [Dataset]. https://hub.arcgis.com/content/0f44447ccc2b4968ae61e239bbfbeeda
    Explore at:
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for Selection Protected natural areas help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). However, parks are not equitably distributed within easy walking distance for everyone. It also complements the urban park size indicator by capturing the value of potential new parks. Input Data

      The Trust for Public Land (TPL) ParkServe database, accessed 8-8-2021: Park priority areas (ParkServe_ParkPriorityAreas_08062021) 
        From the TPL ParkServe documentation:
    

    The ParkServe database maintains an inventory of parks for every urban area in the U.S., including Puerto Rico. This includes all incorporated and Census-designated places that lie within any of the country’s 3,000+ census-designated urban areas. All populated areas in a city that fall outside of a 10-minute walk service area are assigned a level of park priority, based on a comprehensive index of six equally weighted demographic and environmental metrics:Population densityDensity of low-income households – which are defined as households with income less than 75 percent of the urban area median household incomeDensity of people of colorCommunity health – a combined index based on the rate of poor mental health and low physical activity from the 2020 CDC PLACES census tract datasetUrban heat islands – surface temperature at least 1.25o greater than city mean surface temperature from The Trust for Public Land, based on Landsat 8 satellite imageryPollution burden - Air toxics respiratory hazard index from 2020 EPA EJScreen The 10-minute walkFor each park, we create a 10-minute walkable service area using a nationwide walkable road network dataset provided by Esri. The analysis identifies physical barriers such as highways, train tracks, and rivers without bridges and chooses routes without barriers.

      CDC Social Vulnerability Index 2018: RPL_Themes 
    

    Social vulnerability refers to the capacity for a person or group to “anticipate, cope with, resist and recover from the impact” of a natural or anthropogenic disaster such as extreme weather events, oil spills, earthquakes, and fires. Socially vulnerable populations are more likely to be disproportionately affected by emergencies (Wolkin et al. 2018).

    In this indicator, we use the “RPL_THEMES” attribute from the Social Vulnerability Index, described here. “The Geospatial Research, Analysis, and Services Program (GRASP) at Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry developed the Social Vulnerability Index (SVI). The SVI is a dataset intended to help state, local, and tribal disaster management officials identify where the most socially vulnerable populations occur (Agency for Toxic Substances and Disease Registry [ATSDR] 2018)” (Flanagan et al. 2018).

    “The SVI database is regularly updated and includes 15 census variables (ATSDR 2018). Each census variable was ranked from highest to lowest vulnerability across all census tracts in the nation with a nonzero population. A percentile rank was calculated for each census tract for each variable. The variables were then grouped among four themes.... A tract-level percentile rank was also calculated for each of the four themes. Finally, an overall percentile rank for each tract as the sum of all variable rankings was calculated. This process of percentile ranking was then repeated for the individual states” (Flanagan et al. 2018).

    Base Blueprint 2022 extent
    Southeast Blueprint 2023 extent
    

    Mapping Steps

    Convert the ParkServe park priority areas layer to a raster using the ParkRank field. Note: The ParkRank scores are calculated using metrics classified relative to each city. Each city contains park rank values that range from 1-3. For the purposes of this indicator, we chose to target potential park areas to improve equity. Because the ParkRank scores are relative for each city, a high score in one city is not necessarily comparable to a high score from another city. In an effort to try to bring more equity into this indicator, we also use the CDC Social Vulnerability Index to narrow down the results.
    Reclassify the ParkServe raster to make NoData values 0. 
    Convert the SVI layer from vector to raster based on the “RPL_Themes” field. 
    To limit the ParkRank layer to areas with high SVI scores, first identify census tracts with an “RPL_Themes” field value >0.65. Make a new raster that assigns a value of 1 to census tracts that score >0.65, and a value of 0 to everything else. Take the resulting raster times the ParkRank layer.
    Reclassify this raster into the 4 classes seen in the final indicator below.
    Clip to the spatial extent of Base Blueprint 2022.
    As a final step, clip to the spatial extent of Southeast Blueprint 2023. 
    

    Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator values Indicator values are assigned as follows: 3 = Very high priority for a new park that would create nearby equitable access

    2 = High priority for a new park that would create nearby equitable access1 = Moderate priority for a new park that would create nearby equitable access 0 = Not identified as a priority for a new park that would create nearby equitable access (within urban areas) Known Issues

    This indicator could overestimate park need in areas where existing parks are missing from the ParkServe database. TPL regularly updates ParkServe to incorporate the best available park data. If you notice missing parks or errors in the park boundaries or attributes, you can submit corrections through the ParkReviewer tool or by contacting TPL staff.
    Within a given area of high park need, the number of people served by the creation of a new park depends on its size and how centrally located it is. This indicator does not account for this variability. Similarly, while creating a new park just outside an area of high park need would create access for some people on the edge, the indicator does not capture the benefits of new parks immediately adjacent to high-need areas. For a more granular analysis of new park benefits, ParkServe’s ParkEvaluator tool allows you to draw a new park, view its resulting 10-minute walk service area, and calculate who would benefit.
    Beyond considering distance to a park and whether it is open to the public, this indicator does not account for other factors that might limit park access, such as park amenities or public safety. The TPL analysis excludes private or exclusive parks that restrict access to only certain individuals (e.g., parks in gated communities, fee-based sites). The TPL data includes a wide variety of parks, trails, and open space as long as there is no barrier to entry for any portion of the population.
    The indicator does not incorporate inequities in access to larger versus smaller parks. In predicting where new parks would benefit nearby people who currently lack access, this indicator treats all existing parks equally.
    This indicator identifies areas where parks are needed, but does not consider whether a site is available to become a park. We included areas of low intensity development in order to capture vacant lots, which can serve as new park opportunities. However, as a result, this indicator also captures some areas that are already used for another purpose (e.g., houses, cemeteries, and businesses) and are unlikely to become parks. In future updates, we would like to use spatial data depicting vacant lots to identify more feasible park opportunities.
    This indicator underestimates places in rural areas where many people within a socially vulnerable census tract would benefit from a new park. ParkServe covers incorporated and Census-designated places within census-designated urban areas, which leaves out many rural areas. We acknowledge that there are still highly socially vulnerable communities in rural areas that would benefit from the development of new parks. However, based on the source data, we were not able to capture those places in this version of the indicator. 
    

    Other Things to Keep in MindThe zero values in this indicator contain three distinct types of areas that we were unable to distinguish between in the legend: 1) Areas that are not in a community analyzed by ParkServe (ParkServe covers incorporated and Census-designated places within census-designated urban areas); 2) Areas in a community analyzed by ParkServe that were not identified as a priority; 3) Areas that ParkServe identifies as a priority but do not meet the SVI threshold used to represent areas in most need of improved equitable access.This indicator only includes park priority areas that fall within the 65th percentile or above from the Social Vulnerability Index. We did not perform outreach to community leaders or community-led organizations for feedback on this threshold. This indicator is intended to generally help identify potential parks that can increase equitable access but should not be solely used to inform the creation of new parks. As the social equity component relies on information summarized by census tract, it should only be used in conjunction with local knowledge and in discussion with local communities (NRPA 2021, Manuel-Navarete et al. 2004). Disclaimer: Comparing with Older Indicator Versions There are numerous problems with using Southeast Blueprint indicators for change analysis. Please consult Blueprint staff if you would like to do this (email hilary_morris@fws.gov). Literature Cited Centers for

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cdc.gov (2023). PLACES: Census Tract Data (GIS Friendly Format), 2024 release [Dataset]. https://healthdata.gov/dataset/PLACES-Census-Tract-Data-GIS-Friendly-Format-2024-/4efd-4ue6
Organization logo

PLACES: Census Tract Data (GIS Friendly Format), 2024 release

Explore at:
csv, application/rssxml, application/rdfxml, xml, tsv, jsonAvailable download formats
Dataset updated
Jul 26, 2023
Dataset provided by
data.cdc.gov
Description

This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census tract 2022 boundary file in a GIS system to produce maps for 40 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

Search
Clear search
Close search
Google apps
Main menu