100+ datasets found
  1. d

    Geofabric Surface Cartography - V2.1.1

    • data.gov.au
    • researchdata.edu.au
    zip
    Updated Apr 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Geofabric Surface Cartography - V2.1.1 [Dataset]. https://data.gov.au/data/dataset/ce5b77bf-5a02-4cf8-9cf2-be4a2cee2677
    Explore at:
    zip(417274222)Available download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    The Geofabric Surface Cartography product provides a set of related feature classes to be used as the basis for the production of consistent hydrological cartographic maps. This product contains a geometric representation of the (major) surface water features of Australia (excluding external territories). Primarily, these are natural surface hydrology features but the product also contains some man-made features (notably reservoirs, canals and other hydrographic features).

    The product is fully topologically correct which means that all the stream segments flow in the correct direction.

    This product contains fifteen feature types including: Waterbody, Mapped Stream, Mapped Node, Mapped Connectivity (Upstream), Mapped Connectivity (Downstream), Sea, Estuary, Dam, Structure, Canal Line, Water Pipeline, Terrain Break Line, Hydro Point, Hydro Line and Hydro Area.

    Purpose

    This product contains a geometric representation of the (major) surface water features of 'geographic Australia' excluding external territories. It is intended to be used as the basis for the production of consistent hydrological cartographic map products, as well as the visualisation of surface hydrology within a GIS to support the selection of features for inclusion in cartographic map production.

    This product can also be used for stream tracing operations both upstream and downstream however, as this is a mapped representation, streams may be represented as interrupted or intermittent features. In contrast, the Geofabric Surface Network product represents the same stream as a continuous connected feature, that is, the path that stream would take (according to the terrain model) if sufficient water were available for flow. Therefore, for stream tracing operations where full stream connectivity is required, the Geofabric Surface Network product should be used.

    Dataset History

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    Geofabric Surface Cartography is part of a suite of Geofabric products produced by the Australian Bureau of Meteorology. The source data input for the Geofabric Surface Cartography product is the AusHydro v1.7.2 (AusHydro) surface hydrology data set. The AusHydro database provides a seamless surface hydrology layer for Australia at a nominal scale of 1:250,000. It consists of lines, points and polygons representing natural and man-made features such as watercourses, lakes, dams and other water bodies. The natural watercourse layer consists of a linear network with a consistent topology of links and nodes that provide directional flow paths through the network for hydrological analysis.

    This network was used to produce the GEODATA 9 Second Digital Elevation Model (DEM-9S) Version 3 of Australia (https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&catno=66006).

    Geofabric Surface Cartography is an amalgamation of two primary datasets. The first is the hydrographic component of the GEODATA TOPO 250K Series 3 (GEODATA 3) product released by Geoscience Australia (GA) in 2006. The GEODATA 3 dataset contains the following hydrographic features: canal lines, locks, rapid lines, spillways, waterfall points, bores, canal areas, flats, lakes, pondage areas, rapid areas, reservoirs, springs, watercourse areas, waterholes, water points, marine hazard areas, marine hazard points and foreshore flats.

    It also provides information on naming, hierarchy and perenniality. The dataset also contains cultural and transport features that may intersect with hydrographic features. These include: railway tunnels, rail crossings, railway bridges, road tunnels, road bridges, road crossings, water pipelines.

    Refer to the GEODATA 3 User Guide http://www.ga.gov.au/meta/ANZCW0703008969.html for additional information.

    The second primary dataset is based on the GEODATA TOPO-250K Series 1 (GEODATA 1) watercourse lines completed by GA in 1994, which was supplemented by additional line work captured by the Australian National University (ANU) during the production of the DEM-9S to improve the representation of surface water flow. This natural watercourse dataset consists of directional flow paths and provides a direct link to the flow paths derived from the DEM. There are approximately 700,000 more line segments in this version of the data.

    AusHydro uses the natural watercourse geometry from the ANU enhanced GEODATA 1 data, and the attributes (names, perenniality and hierarchy) associated with GEODATA 3 to produce a fully attributed data set with topologically correct flow paths. The attributes from GEODATA 3 were attached using spatial queries to identify common features between the two datasets. Additional semi-automated and manual editing was undertaken to ensure consistent attribution along the entire network.

    AusHydro dataset includes a unique identifier for each line, point and polygon. AusHydro-ID will be used to maintain the dataset and to incorporate higher resolution datasets in the future. The AusHydro-ID will be linked to the ANUDEM streams through a common segment identifier and ultimately to a set of National Catchments Boundaries (NCBs).

    Changes at v2.1

    ! New Water Storages in the WaterBody FC.
    

    Changes at v2.1.1

    ! 16 New BoM Water Storages attributed in the AHGFWaterBody feature class
    
    and 1 completely new water storage feature added.
    
    
    
    - Correction to spelling of Numeralla river in AHGFMappedStream (formerly
    
    Numaralla).
    
    
    
    - Flow direction of Geometric Network set.
    

    Processing steps:

    1. AusHydro Surface Hydrology dataset is received and loaded into the Geofabric development GIS environment

    2. feature classes from AusHydro are recomposed into composited Geofabric hydrography dataset feature classes in the Geofabric Maintenance Geodatabase.

    3. re-composited feature classes in the Geofabric Maintenance Geodatabase Hydrography Dataset are assigned unique Hydro-IDs using ESRI ArcHydro for Surface Water (ArcHydro: 1.4.0.180 and ApFramework: 3.1.0.84)

    4. feature classes from the Geofabric Maintenance Geodatabase hydrography dataset are extracted and reassigned to the Geofabric Surface Cartography Feature Dataset within the Geofabric Surface Cartography Geodatabase.

    A complete set of data mappings, from input source data to Geofabric Products, is included in the Geofabric Product Guide, Appendices.

    Dataset Citation

    Bureau of Meteorology (2014) Geofabric Surface Cartography - V2.1.1. Bioregional Assessment Source Dataset. Viewed 12 December 2018, http://data.bioregionalassessments.gov.au/dataset/ce5b77bf-5a02-4cf8-9cf2-be4a2cee2677.

  2. Google Maps Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Google Maps Dataset [Dataset]. https://brightdata.com/products/datasets/google-maps
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 8, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.

  3. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • data.csiro.au
    • researchdata.edu.au
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. http://doi.org/10.4225/08/569C1F6F9DCC3
    Explore at:
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  4. C

    National Hydrography Data - NHD and 3DHP

    • data.cnra.ca.gov
    • data.ca.gov
    • +1more
    Updated Jul 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). National Hydrography Data - NHD and 3DHP [Dataset]. https://data.cnra.ca.gov/dataset/national-hydrography-dataset-nhd
    Explore at:
    zip(128966494), website, pdf, zip(13901824), pdf(1634485), pdf(4856863), arcgis geoservices rest api, zip(10029073), zip(73817620), pdf(3932070), pdf(3684753), zip(39288832), zip(15824984), web videos, zip(972664), zip(578260992), pdf(182651), csv(12977), zip(1647291), pdf(1436424), pdf(1175775), pdf(437025), zip(4657694), pdf(9867020)Available download formats
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    California Department of Water Resources
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.

    DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.

    For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.

    In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.

    The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).

    Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.

  5. d

    California Important Farmland: Most Recent

    • catalog.data.gov
    • data.cnra.ca.gov
    • +8more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2025). California Important Farmland: Most Recent [Dataset]. https://catalog.data.gov/dataset/california-important-farmland-most-recent-3057b
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    California Department of Conservation
    Area covered
    California
    Description

    This dataset may be a mix of two years and is updated as the data is released for each county. For example, one county may have data from 2014 while a neighboring county may have had a more recent release of 2016 data. For specific years, please check the service that specifies the year, i.e. California Important Farmland: 2016.Established in 1982, Government Code Section 65570 mandates FMMP to biennially report on the conversion of farmland and grazing land, and to provide maps and data to local government and the public.The Farmland Mapping and Monitoring Program (FMMP) provides data to decision makers for use in planning for the present and future use of California's agricultural land resources. The data is a current inventory of agricultural resources. This data is for general planning purposes and has a minimum mapping unit of ten acres.

  6. Historical and future precipitation trends (Map Service)

    • catalog.data.gov
    • datasets.ai
    • +8more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical and future precipitation trends (Map Service) [Dataset]. https://catalog.data.gov/dataset/historical-and-future-precipitation-trends-map-service-f7d6d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  7. Statewide Crop Mapping

    • data.cnra.ca.gov
    • data.ca.gov
    • +1more
    data, gdb, html +3
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). Statewide Crop Mapping [Dataset]. https://data.cnra.ca.gov/dataset/statewide-crop-mapping
    Explore at:
    zip(159870566), rest service, html, shp(126828193), gdb(76631083), shp(107610538), zip(144060723), shp(126548912), gdb(85891531), gdb(86886429), zip(140021333), zip(94630663), zip(189880202), data, zip(179113742), zip(169400976), zip(98690638), zip(88308707), gdb(86655350)Available download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.

    Thank you for your interest in DWR land use datasets.

    The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.

    Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.

    For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.

    For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.

    For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.

    Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.

  8. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    • +1more
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

  9. d

    Digital City Map – Geodatabase

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated May 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Digital City Map – Geodatabase [Dataset]. https://catalog.data.gov/dataset/digital-city-map-geodatabase
    Explore at:
    Dataset updated
    May 11, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    The Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive

  10. n

    Satellite images and road-reference data for AI-based road mapping in...

    • data.niaid.nih.gov
    • dataone.org
    • +1more
    zip
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sean Sloan; Raiyan Talkhani; Tao Huang; Jayden Engert; William Laurance (2024). Satellite images and road-reference data for AI-based road mapping in Equatorial Asia [Dataset]. http://doi.org/10.5061/dryad.bvq83bkg7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 4, 2024
    Dataset provided by
    James Cook University
    Vancouver Island University
    Authors
    Sean Sloan; Raiyan Talkhani; Tao Huang; Jayden Engert; William Laurance
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Asia
    Description

    For the purposes of training AI-based models to identify (map) road features in rural/remote tropical regions on the basis of true-colour satellite imagery, and subsequently testing the accuracy of these AI-derived road maps, we produced a dataset of 8904 satellite image ‘tiles’ and their corresponding known road features across Equatorial Asia (Indonesia, Malaysia, Papua New Guinea). Methods

    1. INPUT 200 SATELLITE IMAGES

    The main dataset shared here was derived from a set of 200 input satellite images, also provided here. These 200 images are effectively ‘screenshots’ (i.e., reduced-resolution copies) of high-resolution true-colour satellite imagery (~0.5-1m pixel resolution) observed using the Elvis Elevation and Depth spatial data portal (https://elevation.fsdf.org.au/), which here is functionally equivalent to the more familiar Google Earth. Each of these original images was initially acquired at a resolution of 1920x886 pixels. Actual image resolution was coarser than the native high-resolution imagery. Visual inspection of these 200 images suggests a pixel resolution of ~5 meters, given the number of pixels required to span features of familiar scale, such as roads and roofs, as well as the ready discrimination of specific land uses, vegetation types, etc. These 200 images generally spanned either forest-agricultural mosaics or intact forest landscapes with limited human intervention. Sloan et al. (2023) present a map indicating the various areas of Equatorial Asia from which these images were sourced.
    IMAGE NAMING CONVENTION A common naming convention applies to satellite images’ file names: XX##.png where:

    XX – denotes the geographical region / major island of Equatorial Asia of the image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])

    – denotes the ith image for a given geographical region / major island amongst the original 200 images, e.g., bo1, bo2, bo3…

    1. INTERPRETING ROAD FEATURES IN THE IMAGES For each of the 200 input satellite images, its road was visually interpreted and manually digitized to create a reference image dataset by which to train, validate, and test AI road-mapping models, as detailed in Sloan et al. (2023). The reference dataset of road features was digitized using the ‘pen tool’ in Adobe Photoshop. The pen’s ‘width’ was held constant over varying scales of observation (i.e., image ‘zoom’) during digitization. Consequently, at relatively small scales at least, digitized road features likely incorporate vegetation immediately bordering roads. The resultant binary (Road / Not Road) reference images were saved as PNG images with the same image dimensions as the original 200 images.

    2. IMAGE TILES AND REFERENCE DATA FOR MODEL DEVELOPMENT

    The 200 satellite images and the corresponding 200 road-reference images were both subdivided (aka ‘sliced’) into thousands of smaller image ‘tiles’ of 256x256 pixels each. Subsequent to image subdivision, subdivided images were also rotated by 90, 180, or 270 degrees to create additional, complementary image tiles for model development. In total, 8904 image tiles resulted from image subdivision and rotation. These 8904 image tiles are the main data of interest disseminated here. Each image tile entails the true-colour satellite image (256x256 pixels) and a corresponding binary road reference image (Road / Not Road).
    Of these 8904 image tiles, Sloan et al. (2023) randomly selected 80% for model training (during which a model ‘learns’ to recognize road features in the input imagery), 10% for model validation (during which model parameters are iteratively refined), and 10% for final model testing (during which the final accuracy of the output road map is assessed). Here we present these data in two folders accordingly:

    'Training’ – contains 7124 image tiles used for model training in Sloan et al. (2023), i.e., 80% of the original pool of 8904 image tiles. ‘Testing’– contains 1780 image tiles used for model validation and model testing in Sloan et al. (2023), i.e., 20% of the original pool of 8904 image tiles, being the combined set of image tiles for model validation and testing in Sloan et al. (2023).

    IMAGE TILE NAMING CONVENTION A common naming convention applies to image tiles’ directories and file names, in both the ‘training’ and ‘testing’ folders: XX##_A_B_C_DrotDDD where

    XX – denotes the geographical region / major island of Equatorial Asia of the original input 1920x886 pixel image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])

    – denotes the ith image for a given geographical region / major island amongst the original 200 images, e.g., bo1, bo2, bo3…

    A, B, C and D – can all be ignored. These values, which are one of 0, 256, 512, 768, 1024, 1280, 1536, and 1792, are effectively ‘pixel coordinates’ in the corresponding original 1920x886-pixel input image. They were recorded within the names of image tiles’ sub-directories and file names merely to ensure that names/directory were uniquely named)

    rot – implies an image rotation. Not all image tiles are rotated, so ‘rot’ will appear only occasionally.

    DDD – denotes the degree of image-tile rotation, e.g., 90, 180, 270. Not all image tiles are rotated, so ‘DD’ will appear only occasionally.

    Note that the designator ‘XX##’ is directly equivalent to the filenames of the corresponding 1920x886-pixel input satellite images, detailed above. Therefore, each image tiles can be ‘matched’ with its parent full-scale satellite image. For example, in the ‘training’ folder, the subdirectory ‘Bo12_0_0_256_256’ indicates that its image tile therein (also named ‘Bo12_0_0_256_256’) would have been sourced from the full-scale image ‘Bo12.png’.

  11. California Important Farmland: 2000

    • catalog.data.gov
    • data.cnra.ca.gov
    • +8more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2025). California Important Farmland: 2000 [Dataset]. https://catalog.data.gov/dataset/california-important-farmland-2000-09b8c
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Conservationhttp://www.conservation.ca.gov/
    Area covered
    California
    Description

    Established in 1982, Government Code Section 65570 mandates FMMP to biennially report on the conversion of farmland and grazing land, and to provide maps and data to local government and the public.The Farmland Mapping and Monitoring Program (FMMP) provides data to decision makers for use in planning for the present and future use of California's agricultural land resources. The data is a current inventory of agricultural resources. This data is for general planning purposes and has a minimum mapping unit of ten acres.

  12. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  13. Z

    Data from: 3DHD CityScenes: High-Definition Maps in High-Density Point...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Klingner, Marvin (2024). 3DHD CityScenes: High-Definition Maps in High-Density Point Clouds [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7085089
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Klingner, Marvin
    Fricke, Jenny
    Sertolli, Benjamin
    Fingscheidt, Tim
    Plachetka, Christopher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    3DHD CityScenes is the most comprehensive, large-scale high-definition (HD) map dataset to date, annotated in the three spatial dimensions of globally referenced, high-density LiDAR point clouds collected in urban domains. Our HD map covers 127 km of road sections of the inner city of Hamburg, Germany including 467 km of individual lanes. In total, our map comprises 266,762 individual items.

    Our corresponding paper (published at ITSC 2022) is available here. Further, we have applied 3DHD CityScenes to map deviation detection here.

    Moreover, we release code to facilitate the application of our dataset and the reproducibility of our research. Specifically, our 3DHD_DevKit comprises:

    Python tools to read, generate, and visualize the dataset,

    3DHDNet deep learning pipeline (training, inference, evaluation) for map deviation detection and 3D object detection.

    The DevKit is available here:

    https://github.com/volkswagen/3DHD_devkit.

    The dataset and DevKit have been created by Christopher Plachetka as project lead during his PhD period at Volkswagen Group, Germany.

    When using our dataset, you are welcome to cite:

    @INPROCEEDINGS{9921866, author={Plachetka, Christopher and Sertolli, Benjamin and Fricke, Jenny and Klingner, Marvin and Fingscheidt, Tim}, booktitle={2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)}, title={3DHD CityScenes: High-Definition Maps in High-Density Point Clouds}, year={2022}, pages={627-634}}

    Acknowledgements

    We thank the following interns for their exceptional contributions to our work.

    Benjamin Sertolli: Major contributions to our DevKit during his master thesis

    Niels Maier: Measurement campaign for data collection and data preparation

    The European large-scale project Hi-Drive (www.Hi-Drive.eu) supports the publication of 3DHD CityScenes and encourages the general publication of information and databases facilitating the development of automated driving technologies.

    The Dataset

    After downloading, the 3DHD_CityScenes folder provides five subdirectories, which are explained briefly in the following.

    1. Dataset

    This directory contains the training, validation, and test set definition (train.json, val.json, test.json) used in our publications. Respective files contain samples that define a geolocation and the orientation of the ego vehicle in global coordinates on the map.

    During dataset generation (done by our DevKit), samples are used to take crops from the larger point cloud. Also, map elements in reach of a sample are collected. Both modalities can then be used, e.g., as input to a neural network such as our 3DHDNet.

    To read any JSON-encoded data provided by 3DHD CityScenes in Python, you can use the following code snipped as an example.

    import json

    json_path = r"E:\3DHD_CityScenes\Dataset\train.json" with open(json_path) as jf: data = json.load(jf) print(data)

    1. HD_Map

    Map items are stored as lists of items in JSON format. In particular, we provide:

    traffic signs,

    traffic lights,

    pole-like objects,

    construction site locations,

    construction site obstacles (point-like such as cones, and line-like such as fences),

    line-shaped markings (solid, dashed, etc.),

    polygon-shaped markings (arrows, stop lines, symbols, etc.),

    lanes (ordinary and temporary),

    relations between elements (only for construction sites, e.g., sign to lane association).

    1. HD_Map_MetaData

    Our high-density point cloud used as basis for annotating the HD map is split in 648 tiles. This directory contains the geolocation for each tile as polygon on the map. You can view the respective tile definition using QGIS. Alternatively, we also provide respective polygons as lists of UTM coordinates in JSON.

    Files with the ending .dbf, .prj, .qpj, .shp, and .shx belong to the tile definition as “shape file” (commonly used in geodesy) that can be viewed using QGIS. The JSON file contains the same information provided in a different format used in our Python API.

    1. HD_PointCloud_Tiles

    The high-density point cloud tiles are provided in global UTM32N coordinates and are encoded in a proprietary binary format. The first 4 bytes (integer) encode the number of points contained in that file. Subsequently, all point cloud values are provided as arrays. First all x-values, then all y-values, and so on. Specifically, the arrays are encoded as follows.

    x-coordinates: 4 byte integer

    y-coordinates: 4 byte integer

    z-coordinates: 4 byte integer

    intensity of reflected beams: 2 byte unsigned integer

    ground classification flag: 1 byte unsigned integer

    After reading, respective values have to be unnormalized. As an example, you can use the following code snipped to read the point cloud data. For visualization, you can use the pptk package, for instance.

    import numpy as np import pptk

    file_path = r"E:\3DHD_CityScenes\HD_PointCloud_Tiles\HH_001.bin" pc_dict = {} key_list = ['x', 'y', 'z', 'intensity', 'is_ground'] type_list = ['

  14. Pix2Pix Maps Dataset

    • kaggle.com
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saket Jha (2024). Pix2Pix Maps Dataset [Dataset]. https://www.kaggle.com/datasets/skjha69/map-dataset/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 26, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Saket Jha
    Description

    Subtitle: "Mapping Satellite Images: A Comprehensive Dataset"

    About Dataset:

    This dataset is designed for the task of mapping satellite images to corresponding map representations using advanced techniques like pix2pix GANs. It is structured to facilitate training and validation for machine learning models, providing a robust foundation for image-to-image translation projects.

    Dataset Structure

    • Main Directory: maps
      • Train Folder: Contains 1096 training images
      • Val Folder: Contains 1098 validation images

    Image Details

    • Dimensions: Each image is 1200x600 pixels (width x height)
    • Content:
      • The left half (600x600 pixels) is the satellite image
      • The right half (600x600 pixels) is the corresponding map image, serving as the target for the satellite image

    Usage

    This dataset is ideal for developing and testing models that perform image translation from satellite photos to map images, supporting various applications in remote sensing, urban planning, and geographic information systems (GIS).

  15. INSPIRE Strategic noise maps. Noise contour map for major airports – Lden -...

    • data.gov.ie
    Updated Nov 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2019). INSPIRE Strategic noise maps. Noise contour map for major airports – Lden - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/inspire-strategic-noise-maps-noise-contour-map-for-major-airports-lden
    Explore at:
    Dataset updated
    Nov 22, 2019
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a polygon dataset of the strategic noise mapping of airports, in the form of noise contours for the Lden (day, evening, night) period for Dublin and Cork agglomeration's airports. The dB value represents the average decibel value during the Lden time. Any direct comparison of the Round 3 versus Round 2 results should be carefully considered, as changes to the model input datasets used between these rounds may be significant. This may especially apply to the terrain model used, while there may be improved building height data, & improved traffic flow data with fewer assumed flows. There may also be some revisions to the actual road network modelled in Round 3. The noise maps are the product of assimilating a collection of digital datasets, and over the last 10 years there has been significant improvements to the quality of the digital datasets describing the natural and built environment in Ireland. This has led to the strategic noise models giving much more reliable noise results with much less tendency to over predict the impact.

  16. World shapefile

    • kaggle.com
    Updated Jul 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kamile Novaes (2023). World shapefile [Dataset]. https://www.kaggle.com/datasets/kamilenovaes/world-shapefile
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kamile Novaes
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    World
    Description

    This dataset contains a comprehensive collection of geographic shapefiles representing the boundaries of countries and territories worldwide. The shapefiles define the outlines of each nation and are based on the most recent and accurate geographical data available. The dataset includes polygon geometries that accurately represent the territorial extent of each country, making it suitable for various geographical analyses, visualizations, and spatial applications.

    Content: The dataset comprises shapefiles in the ESRI shapefile format (.shp) along with associated files (.shx, .dbf, etc.) that contain the attributes of each country, such as country names, ISO codes, and other relevant information. The polygons in the shapefiles correspond to the land boundaries of each nation, enabling precise mapping and spatial analysis.

    Use Cases: This dataset can be utilized in a wide range of applications, including but not limited to:

    • Creating choropleth maps to visualize and analyze various socio-economic indicators by country.
    • Conducting spatial analysis to study population distribution, territorial areas, and geographic trends.
    • Performing geopolitical research and country-level comparisons.
    • Integrating with other datasets to enrich geographic analyses and insights.

    Source: The shapefile data is sourced from reputable and authoritative geographic databases, ensuring its accuracy and reliability for diverse applications.

  17. Data from: Not just crop or forest: building an integrated land cover map...

    • catalog.data.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Not just crop or forest: building an integrated land cover map for agricultural and natural areas (spatial files) [Dataset]. https://catalog.data.gov/dataset/data-from-not-just-crop-or-forest-building-an-integrated-land-cover-map-for-agricultural-a-42e52
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    Introduction and Rationale:Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce integrated ‘Spatial Products for Agriculture and Nature’ (SPAN). Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated SPAN for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update SPAN. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in the final version of SPAN.Contents:Spatial dataNational rasters of land cover in the conterminous United States: 2012-2021Rasters of pixels mismatched between CDL and NVC: 2012-2021Resources in this dataset:Resource Title: SPAN land cover in the conterminous United States: 2012-2021 - SCINet File Name: KammererNationalRasters.zip Resource Description: GeoTIFF rasters showing location of pixels that are mismatched between 2016 NVC and specific year of CDL (2012-2021). Spatial Products for Agriculture and Nature ('SPAN') land cover in the conterminous United States from 2012-2021. This raster dataset is available in GeoTIFF format and was created by joining agricultural classes from the USDA-NASS Cropland Data Layer (CDL) to national vegetation from the LANDFIRE National Vegetation Classification v2.0 ('Remap'). Pixels of national vegetation are the same in all rasters provided here and represent land cover in 2016. Agricultural pixels were taken from the CDL in the specified year, so depict agricultural land from 2012-2021. Resource Title: Rasters of pixels mismatched between CDL and NVC: 2012-2021 - SCINet File Name: MismatchedNational.zip Resource Description: GeoTIFF rasters showing location of pixels that are mismatched between 2016 NVC and specific year of CDL (2012-2021). This dataset includes pixels that were classified as agriculture in the NVC but, in the CDL, were not agriculture (or were a conflicting agricultural class). For more details, we refer users to the linked publication describing our geospatial processing and validation workflow.SCINet users: The files can be accessed/retrieved with valid SCINet account at this location: /LTS/ADCdatastorage/NAL/published/node455886/ See the SCINet File Transfer guide for more information on moving large files: https://scinet.usda.gov/guides/data/datatransferGlobus users: The files can also be accessed through Globus by following this data link. The user will need to log in to Globus in order to retrieve this data. User accounts are free of charge with several options for signing on. Instructions for creating an account are on the login page.

  18. Data from: A-MAPS: Augmented MAPS Dataset with Rhythm and Key Annotations

    • zenodo.org
    zip
    Updated Nov 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adrien Ycart; Emmanouil Benetos; Adrien Ycart; Emmanouil Benetos (2021). A-MAPS: Augmented MAPS Dataset with Rhythm and Key Annotations [Dataset]. http://doi.org/10.5281/zenodo.1317039
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Adrien Ycart; Emmanouil Benetos; Adrien Ycart; Emmanouil Benetos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MAPS dataset is one of the most used benchmark dataset for automatic music transcription. We propose here an updated version of the ground truth MIDI files, containing, on top of the original pitch, onset and offsets, additional annotations.

    The annotations include:

    • Tempo curve

    • Time signature

    • Durations of notes in fraction of a quarter note (some of them are approximate)

    • Key signature (always written as the major relative)

    • Sustain pedal activation

    • Separate left and right hand staff

    • Text annotations from the score (tempo indications, coda...).

    If you use these annotations in a published research project, please cite:
    Adrien Ycart and Emmanouil Benetos. “A-MAPS: Augmented MAPS Dataset with Rhythm and Key Annotations” 19th International Society for Music Information Retrieval Conference Late Breaking and Demo Papers, September 2018, Paris, France.

    More information is available at: http://c4dm.eecs.qmul.ac.uk/ycart/a-maps.html

  19. g

    Map Viewing Service (WMS) of the dataset: Departmental File on Major Risks...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Map Viewing Service (WMS) of the dataset: Departmental File on Major Risks of Hérault | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_fr-120066022-srv-064dd01b-1aa7-4696-a9ae-0bfd68da8d1c
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Hérault
    Description

    Informing citizens about major natural and technological risks is a right enshrined in the Environmental Code. It should enable citizens to know the dangers to which they are exposed, the preventive measures they can take and the means of protection and relief implemented by the public authorities. It is an essential condition for dealing with risk and adapting our behaviour. At the departmental level, the State services prepare and disseminate this departmental risk file majors (DDRM) listing the municipalities at risk and the preventive and crisis management measures to be implemented for each of these risks. This file lists the levels of risk to which the communes of Hérault are exposed and various data used to produce the DDRM maps approved by the Prefect of Hérault on July 6, 2021. Downloadable from the Hérault Prefecture website 10/07/2014 Correction of an oversight on the municipality of Aigues-vives which is concerned by the mining risk. 11/01/2019 Passage in Shape

  20. g

    Map visualisation service (WMS) of the dataset: [Sort of NANCY DAMELEVIERES]...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Map visualisation service (WMS) of the dataset: [Sort of NANCY DAMELEVIERES] (Important Flood Risk Territory of the Rhine-Meuse Basin — Geolocated Data produced by GIS Flood Directive) | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_fr-120066022-srv-16647f86-338a-4719-b14c-d23638311d52
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Meuse
    Description

    The dataset contains the data produced and used for the mapping of flood risk on the Flooding Lands of Lorraine on which the order fixing the flood area maps and flood risk maps has been taken. Sorting of the Rhine-Meuse Basin with Arrests: — NANCY_DAMELEVIERES: 13/06/2014 A series of geographical data produced by the GIS Flood Directive of territories at significant risk of flooding (TRI) of Lorraine and mapped for reporting purposes for the European Flood Directive. European Directive 2007/60/EC of 23 October 2007 on the assessment and management of flood risks (OJ L 288, 06-11-2007, p. 27) influences the flood prevention strategy in Europe. It requires the production of a flood risk management plan aimed at reducing the negative consequences of flooding on human health, the environment, cultural heritage and economic activity. The objectives and requirements for achievement are given by the Law of 12 July 2010 on the National Commitment for the Environment (LENE) and the Decree of 2 March 2011. Within this framework, the primary objective of the mapping of flood areas and flood risks for IRRs is to contribute, by homogenising and objecting knowledge of the exposure of issues to floods, to the development of Flood Risk Management Plans (IFMPs). This dataset is used to produce flood surface maps and flood risk maps that represent flood hazards and issues on an appropriate scale, respectively. Their objective is to provide quantitative elements to better assess the vulnerability of a territory for the three levels of flood probability (high, medium, low) (Source: standard COVADIS, Flood Directive of 26/09/2012). Tables contained in the lot: N_TRI_NANC_COMMUNE_S_054.TAB N_TRI_NANC_ENJEU_CRISE_P_054.TAB N_TRI_NANC_ENJEU_CRISE_L_054.TAB N_TRI_NANC_ENJEU_RAPPORT_054.TAB N_TRI_NANC_TRI_S_054.TAB N_TRI_NANC_ENJEU_IPPC_P_054.TAB N_TRI_NANC_ENJEU_STEU_P_054.TAB N_TRI_NANC_ENJEU_ECO_S_054.TAB N_TRI_NANC_CARTE_RISQ_S_054.TAB N_TRI_NANC_CARTE_INOND_S_054.TAB N_TRI_NANC_ISO_HT_S_054.TAB N_TRI_NANC_INONDABLE_S_054.TAB N_TRI_NANC_BATI_S_054.TAB N_TRI_NANC_SURFACE_EN_EAU_S_054.TAB

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bioregional Assessment Program (2022). Geofabric Surface Cartography - V2.1.1 [Dataset]. https://data.gov.au/data/dataset/ce5b77bf-5a02-4cf8-9cf2-be4a2cee2677

Geofabric Surface Cartography - V2.1.1

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
zip(417274222)Available download formats
Dataset updated
Apr 13, 2022
Dataset authored and provided by
Bioregional Assessment Program
License

Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically

Description

Abstract

This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

The Geofabric Surface Cartography product provides a set of related feature classes to be used as the basis for the production of consistent hydrological cartographic maps. This product contains a geometric representation of the (major) surface water features of Australia (excluding external territories). Primarily, these are natural surface hydrology features but the product also contains some man-made features (notably reservoirs, canals and other hydrographic features).

The product is fully topologically correct which means that all the stream segments flow in the correct direction.

This product contains fifteen feature types including: Waterbody, Mapped Stream, Mapped Node, Mapped Connectivity (Upstream), Mapped Connectivity (Downstream), Sea, Estuary, Dam, Structure, Canal Line, Water Pipeline, Terrain Break Line, Hydro Point, Hydro Line and Hydro Area.

Purpose

This product contains a geometric representation of the (major) surface water features of 'geographic Australia' excluding external territories. It is intended to be used as the basis for the production of consistent hydrological cartographic map products, as well as the visualisation of surface hydrology within a GIS to support the selection of features for inclusion in cartographic map production.

This product can also be used for stream tracing operations both upstream and downstream however, as this is a mapped representation, streams may be represented as interrupted or intermittent features. In contrast, the Geofabric Surface Network product represents the same stream as a continuous connected feature, that is, the path that stream would take (according to the terrain model) if sufficient water were available for flow. Therefore, for stream tracing operations where full stream connectivity is required, the Geofabric Surface Network product should be used.

Dataset History

This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

Geofabric Surface Cartography is part of a suite of Geofabric products produced by the Australian Bureau of Meteorology. The source data input for the Geofabric Surface Cartography product is the AusHydro v1.7.2 (AusHydro) surface hydrology data set. The AusHydro database provides a seamless surface hydrology layer for Australia at a nominal scale of 1:250,000. It consists of lines, points and polygons representing natural and man-made features such as watercourses, lakes, dams and other water bodies. The natural watercourse layer consists of a linear network with a consistent topology of links and nodes that provide directional flow paths through the network for hydrological analysis.

This network was used to produce the GEODATA 9 Second Digital Elevation Model (DEM-9S) Version 3 of Australia (https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&catno=66006).

Geofabric Surface Cartography is an amalgamation of two primary datasets. The first is the hydrographic component of the GEODATA TOPO 250K Series 3 (GEODATA 3) product released by Geoscience Australia (GA) in 2006. The GEODATA 3 dataset contains the following hydrographic features: canal lines, locks, rapid lines, spillways, waterfall points, bores, canal areas, flats, lakes, pondage areas, rapid areas, reservoirs, springs, watercourse areas, waterholes, water points, marine hazard areas, marine hazard points and foreshore flats.

It also provides information on naming, hierarchy and perenniality. The dataset also contains cultural and transport features that may intersect with hydrographic features. These include: railway tunnels, rail crossings, railway bridges, road tunnels, road bridges, road crossings, water pipelines.

Refer to the GEODATA 3 User Guide http://www.ga.gov.au/meta/ANZCW0703008969.html for additional information.

The second primary dataset is based on the GEODATA TOPO-250K Series 1 (GEODATA 1) watercourse lines completed by GA in 1994, which was supplemented by additional line work captured by the Australian National University (ANU) during the production of the DEM-9S to improve the representation of surface water flow. This natural watercourse dataset consists of directional flow paths and provides a direct link to the flow paths derived from the DEM. There are approximately 700,000 more line segments in this version of the data.

AusHydro uses the natural watercourse geometry from the ANU enhanced GEODATA 1 data, and the attributes (names, perenniality and hierarchy) associated with GEODATA 3 to produce a fully attributed data set with topologically correct flow paths. The attributes from GEODATA 3 were attached using spatial queries to identify common features between the two datasets. Additional semi-automated and manual editing was undertaken to ensure consistent attribution along the entire network.

AusHydro dataset includes a unique identifier for each line, point and polygon. AusHydro-ID will be used to maintain the dataset and to incorporate higher resolution datasets in the future. The AusHydro-ID will be linked to the ANUDEM streams through a common segment identifier and ultimately to a set of National Catchments Boundaries (NCBs).

Changes at v2.1

! New Water Storages in the WaterBody FC.

Changes at v2.1.1

! 16 New BoM Water Storages attributed in the AHGFWaterBody feature class

and 1 completely new water storage feature added.



- Correction to spelling of Numeralla river in AHGFMappedStream (formerly

Numaralla).



- Flow direction of Geometric Network set.

Processing steps:

  1. AusHydro Surface Hydrology dataset is received and loaded into the Geofabric development GIS environment

  2. feature classes from AusHydro are recomposed into composited Geofabric hydrography dataset feature classes in the Geofabric Maintenance Geodatabase.

  3. re-composited feature classes in the Geofabric Maintenance Geodatabase Hydrography Dataset are assigned unique Hydro-IDs using ESRI ArcHydro for Surface Water (ArcHydro: 1.4.0.180 and ApFramework: 3.1.0.84)

  4. feature classes from the Geofabric Maintenance Geodatabase hydrography dataset are extracted and reassigned to the Geofabric Surface Cartography Feature Dataset within the Geofabric Surface Cartography Geodatabase.

A complete set of data mappings, from input source data to Geofabric Products, is included in the Geofabric Product Guide, Appendices.

Dataset Citation

Bureau of Meteorology (2014) Geofabric Surface Cartography - V2.1.1. Bioregional Assessment Source Dataset. Viewed 12 December 2018, http://data.bioregionalassessments.gov.au/dataset/ce5b77bf-5a02-4cf8-9cf2-be4a2cee2677.

Search
Clear search
Close search
Google apps
Main menu